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Background.  Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment

of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the

mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

Methods.  TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the

integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the

impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic

effect was checked using the chequerboard assay. ICR male mice were used to evaluate the  in vivo 

toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with

ceftriaxone.

Results.  The results obtained from TEM and SEM indicated that the hybrid peptides caused significant

morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell

wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing

that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage.

The DNA retardation assay revealed that at 62.5µg/ml all the hybrid peptides were capable of binding

and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In  vitro

synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each

other and with conventional drugs erythromycin and ceftriaxone. The  in vivo  therapeutic efficacy results

revealed that the hybrid peptide RN7-IN8 at 20mg/kg could improve the survival rate of pneumococcal

bacteremia infected mice, as 50% of the infected mice were survived up to 7 days post-infection. In vivo 

antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the

standard antibiotic ceftriaxone at (20mg/kg +20mg/kg) as 100% of the infected mice survived up to

seven days post-infection.

Discussion.  Our results suggest that attacking and breaching the cell wall/membrane is most probably

the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another

mechanism of action by inhibiting intracellular functions such as DNA synthesis.   AMPs could play a great

role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard

drugs.
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Abstract

Background. Antimicrobial peptides (AMPs) are of great potential as novel antibiotics, for the

treatment of a broad spectrum of pathogenic microorganisms including resistant bacteria. In this
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study, the mechanisms of action and the in vivo antibacterial efficacy of the hybrid peptides were

examined.  

Methods. TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides

on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was used to

measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel.

In vitro synergistic effect was checked using the checkerboard assay. ICR male mice were used to

evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides, in a standalone form

and in combination with ceftriaxone.

Resusts.  The results  obtained from TEM and SEM indicated that the hybrid peptides caused

significant morphological alterations in Streptococcus pneutoniae, disrupting the integrity of the

cell  wall/membrane.  The  rapid  release  of  ATP from  pneumococcal  cells  after  one  hour  of

incubation proposes that the antibacterial action for the hybrid peptides is based on membrane

permeabilization and damage. The DNA retardation assay revealed that  at  62.5µg/ml,  all  the

hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from

migrating through the agarose gel. In vitro synergy was observed, when pneumococcal cells were

treated  with  combinations  of  hybrid  peptides  with  each  other  and  with  conventional  drugs

erythromycin and ceftriaxone. The  in vivo therapeutic efficacy results revealed that the hybrid

peptide  RN7-IN8  at  20mg/kg  could  improve  the  survival  rate  of  pneumococcal  bacteremia

infected  mice,  as  50%  of  the  infected  mice  survived  up  to  7  days,  post-infection.  in  vivo

antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved, when combined

with the standard antibiotic ceftriaxone at (20mg/kg +20mg/kg), as 100% of the infected mice

survived up to seven days, post-infection. 

Discussion. Our results  suggest  that  attacking and breaching the cell  wall/membrane is  most

probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could

possess  another  mechanism  of  action,  by  inhibiting  intracellular  functions  such  as  DNA
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synthesis. The  ability  of  the  hybrid  peptides  to  act  synergistically  with  standard  antibiotics,

proposes that our novel AMPs could play a great role in combating antibiotic resistance, as they

can reduce the therapeutic concentrations of standard drugs. 

1. Introduction

Pneumococcus is a major human respiratory pathogen in both children and adults (Jacobs,

2004; Cao et al., 2007). Formerly known as Diplococcus pneutoniae, S. pneutoniae is Gram-

positive,  α hemolytic  and encapsulated bacterium capable of  causing both invasive and non-

invasive  diseases  (Moschioni  et  al.,  2012).  To date,  more  than  93  different  S.  pneutoniae

serotypes have been recognized,  based on the immunochemical  differences in  their  capsules.

However, a few of these serotypes are linked to more than 80% of pneumococcal disease (Lin et

al., 2010; Jauneikaite et al., 2012). Globally, this pathogen is responsible for 1.6 million deaths

each year, of which 0.7 to 1 million are children below five years, especially in Asian and African

countries  (Bravo,  2009).  According  to  a  study  conducted  by  O’Brien  and  his  team  (the

Pneumococcal Global Burden of Disease Study Team), it was stated that 5 out of ten countries

with  the  highest  number  of  deaths  in  children  below  five  years,  caused  by  pneumococcal

infections, were in Asia (O’Brien et al., 2009).

Since the last  three decades, there has been an enormous increase in the incidence of

antibiotic-resistant pneumococci, due to the extensive use of inappropriate antimicrobials (Zhou

et al.,  2012; Cornick & Bentley, 2012).  The rise of pneumococcal strains resistant to various

antibacterial drugs has been documented internationally, in several surveillance studies. In the

United States, a total of 18,911 pneumococcal isolates, collected from 1998 to 2011, showed that

18.9% were resistant to amoxicillin/clavulanate, 14.8% were resistant to penicillin and 11.7% to

ceftriaxone (Jones et al., 2013). Results obtained from 20 European sentinel health centers as part

of the SENTRY Program, showed that 7% of pneumococci isolates were penicillin – resistant and
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21% were intermediate.  Among those  strains  resistant  to  penicillin,  35% and 55% exhibited

resistance to clindamycin and erythromycin, respectively (Fluit et al., 1999). Data collected from

multi-country studies indicated that the rates of antibacterial resistance are the highest in Asian

countries. Pneumococcal strains collected from China, Vietnam, South Korea, Thailand, Hong

Kong and Taiwan have the greatest antibacterial-resistance share among Asian countries (Hung et

al.,  2013). An earlier study showed that pneumococcal resistance to antibiotics (erythromycin

penicillin, fluoroquinolones) had led to 32,398 additional outpatient visits and 19,336 additional

hospitalizations. The incremental cost of antibacterial drug resistance accounted for $91 million

(4%) in direct medical fees and $233 million (5%) of total fees including work and productivity

losses (Reynolds et al., 2014). Although Pneumococcal conjugate vaccine PCV served as a great

tool against antibiotic resistance by S. pneutoniae and helped reduce the frequency of vaccine

serotypes, there has been a considerable rise in the disease induced by non-vaccine serotypes

(Reynolds  et al., 2014). Hence, newer classes of antibacterial agents to overcome this serious

issue are a top priority worldwide. One of the advantageous alternatives to today’s antibiotics is

antimicrobial peptides (AMPs)  (Deslouches et al., 2013; Sánchez-Vásquez et al., 2013). AMPs

are synthesized by almost all living beings as the first line of defense in their immune system

against microbial infection. Many aspects favor AMPs over traditional antibiotics: a broad range

of  antimicrobial  activity  against  pathogenic  micro-organisms  (including  viruses,  parasites,

bacteria,  and  fungi),  microbial  pathogens  are  less  efficient  in  developing  resistance  against

AMPs, as killing take place in a short contact time and AMPs can act in a synergistic manner

with traditional antibiotics (Yeaman & Yount, 2003; Torcato et al., 2013; Xi et al., 2013). 

It is well known that AMPs act principally by disrupting bacterial membrane integrity.

AMPs’ membrane destructive properties come from their cationic and hydrophobic composition,

which  gives  them  the  ability  to  target  the  negatively  charged  bacterial  membranes  and

subsequently  impact  their  integrity  (Yeaman  & Yount,  2003;  Wimley, 2010).   Besides  their

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

PeerJ reviewing PDF | (2017:05:18224:1:1:REVIEW 19 Jul 2017)

Manuscript to be reviewed



capacity to permeabilize bacterial membrane, AMPs have also been acknowledged to achieve

their antimicrobial activities by inhibiting the synthesis of intracellular components such as DNA

and protein (Sahl et al., 2005; Straus & Hancock, 2006). In our earlier study, we had designed 13

novel  antimicrobial  peptides,  based  on  two  naturally  occurring  templates,  indolicidin  and

ranalexin  (Jindal et al., 2015). Of these, five hybrid peptides (RN7-IN10, RN7-IN9, RN7-IN8,

RN7-IN7  and  RN7-IN6)  presented  the  most  potent  antimicrobial  activity  against  30

pneumococcal  clinical  isolates.  The  MICs  of  RN7-IN10,  RN7-IN9,  RN7-IN8  and  RN7-IN6

ranged from 7.81 to 15.62µg/ml for each peptide, while the MIC of RN7-IN7 was 62.5 µg/ml.

Also, none of the hybrid peptides revealed any cytotoxic effects against human cells at their MIC

levels. RN7-IN10 peptide was designed by fusing the first seven amino acids at the N-terminus

(FLGGLIK)  of  ranalexin  with  the  4th to  13th residual  fragment  (WKWPWWPWRR)  of

indolicidin.  Likewise,  RN7-IN9,  RN7-IN8,  RN7-IN7  and  RN7-IN6  were  also  designed  by

trimming the first seven amino acid residues of ranalexin and fusing it with 5 th to 13th, 6th to 13th,

7th to 13th and 8th to 13th residual fragments of indolicidin (Jindal et al., 2015) in order to preserve

the biological activity of both segments in the newly designed hybrid peptides (Table 1 illustrate

the  sequences  and physicochemical  properties  of  all  five  hybrid  peptides).  In  this  study, we

describe the mechanisms of action, the  in vitro  synergism effect and the  in vivo antibacterial

efficacy of the hybrid peptides against Streptococcus pneutoniae. 

2. Materiass and Methods

Bacterias custure and assay medium

S. pneutoniae clinical strains used in this study were obtained from University of Malaya

Medical Centre (UMMC). Columbia agar with 5% sheep blood was used to culture the bacteria.

Mueller-Hinton broth (MHB) was used for synergism assay and cationally adjusted as described

in the guidelines of Clinical and Laboratory Standard Institute (2012). 
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Transmission esectron microscopy (TEM)  

Bacteria were prepared for TEM according to the guidelines of the Electron Microscopy

Unit at  the Faculty of Medicine,  University of Malaya.   S. pneutoniae cultures were grown

overnight on Columbia agar with 5% sheep blood and suspended in cationally adjusted Mueller-

Hinton broth (CAMHB) at 108  CFU/ml. Pneumococcal suspensions were incubated with hybrid

peptides  RN7-IN10,  RN7-IN9,  RN7-IN8  and  RN7-IN6  at  125µg/ml  and  with  RN7-IN7  at

500µg/ml (8 × of their respective MIC) in a 1.5ml eppendorf tube for 1hr at 37°C under 5% CO2.

Cells in cationally adjusted Mueller-Hinton broth (CAMHB) were used as an untreated control.

After an hour of incubation, the pneumococcal cells were centrifuged to discard the medium,

washed thrice with 10 mM phosphate buffer saline at pH 7.3 and fixed overnight in 4% (v/v)

glutaraldehyde.  All  samples  were  washed twice  with  cacodylate  buffer, incubated  for  2hr  in

osmium tetroxide buffer (OsO4 1: 1 cacodylate), washed twice with cacodylate buffer and then

incubated overnight in cacodylate buffer. All the samples were washed with distilled water twice

and incubated for 10 min with uranyl acetate. After this, all samples were then washed twice with

distilled water and dehydrated in an ascending series of ethanol: 35% (10 min), 50% (10 min),

70% (10 min), 95% (15 min), and thrice in 100% ethanol  (15 min). After dehydration, Samples

were incubated with propylene oxide (15 min), propylene oxide 1:1 Epon (1hr), propylene oxide

1:3 Epon (2hr) and finally incubated overnight with Epon. All the samples were embedded in

agar 100 resin at 37°C for 5hr and maintained at 60°C until viewing. Reichert Ultramicrotome

copper  grids  3.05  mm  (300  square  mesh)  (Agar  Scientific)  were  used  to  prepare  Ultrathin

sections.  Ethanol-based uranyl  acetate  and lead  citrate  were  used  to  stain  the  samples  for  5

minutes. Transmission electron microscope (Leo Libra 120) was used to capture the images.

Scanning esectron microscopy (SEM)
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S. pneutoniae with a  starting inoculum of  1×108 cells/mL in CAMHB medium, was

treated with hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8 and RN7-IN6 at 125µg/ml and with

RN7-IN7 at 500µg/ml of respective peptides and incubated for 1hr at 37°C for under 5% CO2.

After  incubation,  20  µL of  the  untreated  and  treated  cell  suspensions  were  transferred  onto

membrane filters and processed as described by the standard guidelines provided by Electron

Microscopy Unit, Faculty of Medicine, University of Malaya. Briefly, the bacterial samples were

fixed  overnight with 4% glutaraldehyde at 4°C and then washed twice with sodium cacodylate

buffer for 10 minutes each. In the second fixation, 1% osmium tetroxide was used to fix the

samples for 1 hour at 4°C and then washed twice with distilled water for 10 minutes each. All the

samples were then dehydrated through a serially graded ethanol (30%, 50%, 70%, 80%, 90%,

95% and  twice  in  100%)  for  15  minutes  each,  followed  by dehydration  in  ethanol:acetone

mixtures (3:1, 1:1 and 1:3) for 15 minutes each and three rounds of pure acetone for 20 minutes

each. The samples were then dried for an hour and kept in a desiccator before the examination.

The samples were then mounted on stubs, coated with gold in sputter coater and viewed under the

FEI-Quanta 650 Scanning Electron Microscope. 

ATP effsux assay

The amount of ATP released from pneumococcal cells incubated with hybrid peptides was

measured  as  described previously, with a  slight  modification  (Tanida et  al.,  2006).  The ATP

determination kit (Molecular Probes, USA) was used to measure the amount of ATP released

based on the luciferin/luciferase method according to the manufacturer’s instructions. Briefly, S.

pneutoniae were grown overnight on Columbia agar with 5% sheep blood. Bacterial suspensions

were spectrophotometrically adjusted to (1 × 107 CFU/mL) and incubated with hybrid peptides

RN7-IN10, RN7-IN9, RN7-IN8 and RN7-IN6 at 125µg/ml and with RN7-IN7 at 500µg/ml. The

amount of ATP released form the pneumococcal cells were measured at three time points 1, 2 and
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3hr. The samples were then centrifuged at 5000 rpm for 5 min, and ATP efflux was subsequently

estimated  using  an  ATP  standard  curve.  Values  were  obtained  from  three  independent

experiments. Ceftriaxone and erythromycin were used as positive controls.

Ges retardation assay

This assay was carried out as described previously, with minor modifications  (Li et al.,

2013).  S. pneutoniae were grown overnight on Columbia agar with 5% sheep blood. A few

bacterial colonies were transferred into a 1.5ml eppendorf tube containing phosphate buffered

saline (PBS). The bacterial cells were centrifuged, PBS was discarded and 50 µL of TE buffer

containing 0.08g/mL of lysozyme and 150 U/mL of mutanolysin was added to the cells. Genomic

DNA was  isolated  from  pneumococcal  cells  using  DNeasy  Blood  &  Tissue  Kit  (Qiagen),

following  the  manufacturer’s  giudlines.  The  optical  density  ratio  of  260  and  280nm

(OD260/OD280 = 1.83) was used to measure the purity of the DNA. Genomic DNA (250 ng)

was incubated with hybrid peptides at various concentrations (0.24-500µg/ml) in 12μl at room

temperature for 10 min. 2μl of loading buffer were added to the mixture and the migration of

DNA through 1% agarose gel was evaluated by electrophoresis in 1× Tris borate–EDTA buffer

(45mM Tris–borate and 1mM EDTA at pH8.0) and spotted by the fluorescence of gel stain (Gel

Red, BIOTIUM). 

Synergistic effect

Pneumococcal cells were cultured overnight using Columbia agar with 5% sheep blood at

37 °C under 5% CO2, resuspended in cation-supplemented Mueller-Hinton broth and adjusted to

5×105 CFU/ml, following CLSI guidelines. Combinations of hybrid AMPs with each other and

with standard drugs (ceftriaxone and erythromycin) were assessed for their synergistic effects by
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the checkerboard titration method described previously, with minor modification (Bajaksouzian

et al., 1996). Briefly, 50µl of eight serial two-fold dilutions of  drug B starting at 4×MIC were

added to each column of the plate followed by  50µl of a fixed 0.25×MIC of drug A, this yielded

8 peptide-peptide combinations at different ratios. 100µl of bacterial suspension (5×105 CFU/ml)

were then added to each well and the plates were incubated for 24hr at 37 °C under 5% CO 2. The

fractional inhibitory concentration (FIC) index of each combination was calculated according to

the following formula: 

   FI CI =  

MIC A in combination and MIC B in combination represent the  MICs of drug A and B tested in

combination. MIC A alone and MIC B alone represent the MICs of drug A and B in standalone.

FIC index values were interpreted as follows: Two drugs have synergy if FIC≤ 0.5, additive or

indifference  if  0.5  <  FIC ≤ 4.0  and  antagonism if  FIC >  4.0.  The  experiment  was  done in

triplicate.

In vivo assessment 

Mice and environmentas conditions

In this study, 4-week old male, pathogen free  ICR (CD-1)  mice were purchased from

InVivos (Singapore) and used to assess the in vivo toxicity and antibacterial efficacy of the novel

peptides,  as  these  animals  are  by  far  the  most  commonly  used  model  for  the  study  of

pneumococcal  disease  (Chiavolini,  Pozzi  &  Ricci,  2008).  The  mice  were  kept  in  ventilated

polycarbonate cages (12hr light/dark cycle, 20±2 °C and 55% relative humidity). All mice were

familiarized for 7 days before any experimental procedure and were given unlimited pellets and

water  ad  libitut.  All  animal  experimentations  were  conducted  according  to  the  guidelines

MIC of drug A in combination
+

MIC of drug B in combination

MIC of drug A asone MIC of drug B asone
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approved by Faculty of Medicine Institutional Animal Care and Use Committee (FOM IACUC),

University of Malaya (ethics Reference no. : 2013-07-15/MMBTR/SDS). 

In vivo toxicity 

In order to evaluate the possible toxic effects correlated to peptides administered in mice, four

hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8 and RN7-IN6 were chosen for  in vivo toxicity

assessment, due to their promising in vitro antibacterial activity (Jindal et al., 2015). Mice were

separated into 4 groups (each with 4 mice) and were injected with respective peptides at 1 hr, 12

hr, and 24 hr (three-dose regimen) via IP, SC, and IN administration routes. The hybrid peptides

were  first  administered  at  high  doses  (100mg/kg  for  IP route,  100mg/kg  for  SC routes  and

20mg/kg for IN route). Any abnormal behavior was recorded and survival of mice was noted as

well. In  case adverse effects such as high physical stress, severe lethargy, physical inactiveness,

and/or  death were detected,  lower graded doses  were given.  All  the administered mice were

monitored for 7 days or until death occurred. At day seven post administration, all animals were

sacrificed and blood and organs were collected. Untreated mice were used as a control group.  

  

In vivo antipneumococcas activity 

Two pneumococcal infection models developed previously in our lab  (Le et al.,  2015)

were used to assess the therapeutic efficacy of peptides in vivo. The systemic infection model was

used to mimic pneumococcal bacteremia in humans and the pneumococcal pneumonia model was

used to mimic pneumococcal pneumonia in humans. A highly virulent strain was used in both the

models. The bacterial isolate was grown overnight on Columbia agar with 5% sheep blood at 37

°C under 5% CO2.  The bacterial suspension was adjusted to OD625 0.08-0.1 (1 ~ 2 ×108 CFU/ml).

Mice tested for lethal systemic infection were inoculated with 1.5 × 102 CFU/mouse (100μl) via

IP  route.  Mice  used  to  assess  the  Pneumococcal  pneumonia  model  were  inoculated  with
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pneumococcal cells of 5 × 103 CFU/mouse (50μl) via the intrathoracic route. Both the infection

models caused 100% death within 2 to 4 days post-infection. 

After 1hr of inoculation, Mice receiving treatment were randomized and divided into six

groups. RN7-IN10 and RN7-IN8 were tested at three different doses for each (5mg/kg, 10mg/kg

and  20mg/kg)  using  a  group  of  10  mice.  Graded  doses  of  ceftriaxone  (5mg/kg,  10mg/kg,

20gm/kg, 40mg/kg and 80mg/kg) were also tested to assess the in vivo antibacterial activity of

this antibiotic. Only mice injected with PBS were served as uninfected control. Mice injected

with bacterial inoculum were used as untreated control group and given sterile distilled water

only. Survival  of mice was documented for  seven days  or  until  death.  After  seven days,  the

experiment  was  ended,  the  blood  and homogenates  of  the  five  major  organs  (kidney, brain,

spleen, liver and lung) of the surviving mice were plated on Columbia agar with 5% sheep blood,

to detect the presence of pneumococcal cells. 

In vivo synergy assessment of peptide/peptide and peptide/ceftriaxone 

After evaluating the in vivo antibacterial activity of the hybrids in the standalone mode,

the in vivo efficiency of the hybrid peptides in combination with each other and with the standard

antibiotic ceftriaxone was carried out. Graded doses of peptide and ceftriaxone were chosen and

prepared at 2X the desired concentration separately in 1 ml tubes, and the volume was 0.1 ml.

Just before injection, both the drugs were combined, giving the final desired concentration at a

volume of 0.2 ml. The synergetic effect was then performed in infection models (n = 10). 

Anesthesia and necropsy
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Mice used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides

using the subcutaneous (SC) and intranasal (IN) administration routes, were anesthetized using a

combination  of  a  standard  dose  of  xylazine  (ilium  xylazil-20,  10  mg/kg)   and  ketamine

(Narketan®-10, 100 mg/kg) through intraperitoneal (IP) injection. After 7 days of treatment, the

in vivo toxicity and antibacterial efficacy experiments were ended and the surviving mice were

anesthetized.  Blood  samples  for  Hematological and  biochemical  analysis  were  collected  via

cardiac puncture using a 25G syringe (BD bioscience, USA). Whole blood for heamatological

analysis was collected in 500 µl dipotassium EDTA microtainer tubes (BD Bioscience, USA).

About 500 µl of blood collected an eppedorff tube and centrifuged at 8000 rpm for 5 min and

then the serum was transferred into a new 1.5 ml tube for biochemistry analysis. The mice were

then euthanized by cervical dislocation, dissected and the following organs were collected for

histopathology evaluation: lung, kidney, brain, liver and spleen.

Hematosogicas and biochemicas anasysis

For whole blood analysis, the parameters were number of red cells (RBC), number of

white  cells  (WBC),  lymphocytes,  monocytes,  eosinophil,  granulocytes,  haemoglobin  (Hgb),

mean corpuscular volume (MCV),  hematocrit (HCT), platelet Counts (PLT), Mean corpuscular

haemoglobin  (MCH) and  corpuscular  haemoglobin  concentration  (MCHC).  For  biochemistry

analysis,  the  parameters  were  alanine  transaminase  (ALT),  creatinine, alkaline  phosphatase

(ALP), aspartate aminotransferase (AST), total bilirubin and urea.

Histopathosogicas examination 

The following organs were collected from all  the dissected mice:  lung, kidney, brain,

spleen, and liver. All tissues were fixed in 10% (v/v) buffered formalin and processed for paraffin
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embedding.  Hematoxylin–eosin  (HE)  was  used  to  stain  the  histological  sections at  the

histopathology laboratory, Veterinary Laboratory Service Unit, University Putra Malaysia (UPM).

Statisticas anasysis

GraphPad Prism 5 was used to perform the Statistical analysis. The results were expressed

as mean ± standard deviation. Two-way ANOVA with Bonferroni post-test was used to analyze

the significance of the difference between the treated groups and control in ATP assay. One-way

ANOVA with  post-hoc  Dunnett-t test was used to assess the statistical difference between the

blood haematogram and blood serum biochemistry parameters of the treated and the untreated

control groups in the  in vivo toxicity assay. Kaplan-Meier analysis with log-rank test (Mantel-

Cox) was used to generate the survival curve for each treated group versus untreated control, for

both in vivo antibacterial activity and in vivo synergy assays.

3. Resusts

Effects of hybrid peptides on cess morphosogy and membrane permeabisity  

TEM and SEM studies were performed to observe the damaging effect of the hybrid

peptides on the pneumococcal cell wall/membrane. The images obtained clearly indicated that all

the hybrid peptides were capable of disrupting the integrity of bacterial membranes. As shown in

Fig. 1A, the untreated cells appeared with complete cell wall and plasma membrane and therefore

preserved  the  normal  integral  shape  of  S.  pneutoniae.  The  pneumococcal  capsular

polysaccharide appeared as a thin layer sheltering the whole cell and the cytoplasm of the cell

was  compactly  packed  and  occupied  the  entire  space  (Fig.  1A,  arrow  1).  Incubation  of

pneumococcal  cells  with hybrid peptides  had led to  a  dramatic  effect  on the morphology of

bacterial surface. After 1hr of incubation, the hybrid peptides were able to breach the intactness

of the cell wall and/or plasma membrane, causing membrane breakage and loss of fragments
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(Fig. 1B-F, arrow 2). Additionally, our TEM results have revealed that treatment with hybrid

peptides has led to the leakage of the cytoplasmic components to the outer environment through

the disruption of the cell wall. As a result, huge halos were detected in the inner space of all these

treated cells, leading to cell collapse and death (Fig. 1B-F, arrow 3). Moreover, the TEM results

also revealed  partial  disconnection  of  the cell  wall  from the cell  membrane in  pneumococci

treated with hybrid peptides, especially those treated with RN7-IN9, RN7-IN8, RN7-IN7 and

RN7-IN6 (Fig. 1C-F, arrow 4).

Scanning electron  microscopy (SEM) was  employed  to  understand the  impact  of  the

hybrid peptides on the morphology of S. pneutoniae. As presented in Fig. 2, the hybrid peptides

were able to induce significant morphological alterations to pneumococcal cells. The untreated S.

pneutoniae displayed normal and smooth surface (Fig. 2A, arrow 1), whereas  S. pneutoniae

treated with hybrid peptides at 8 × MIC appeared with a rough and injured surface (Fig. 2B-F,

arrow 2). The numerous fragments observed on the bacterial surface are an indication of cell wall

breakage  and  fragments  loss  upon  treatment  with  hybrid  peptides.  This  result  indicates  that

hybrid peptides  could  disrupt  and damage the  integrity of  cell  wall/membrane or  breach the

membrane, which was in agreement with the result of TEM. 

In  order  to  evaluate  the  permeability  of  the  membrane  and  leakage  of  intracellular

components upon treatment with hybrid peptides, the level of ATP in the supernatant following

contact of the pneumococcal cells with hybrid peptides was determined using the ATP release

assay. After 1h of treatment with hybrid peptide, the levels of ATP released after 1hr of treatment

with  RN7-IN10 and RN7-IN9  were the highest among the five hybrid peptides tested (54.5±4.7

and 42.27±92pM respectively) (Fig. 3). The ATP efflux steadily decreased, and the ATP release

reached 25.42±3.51 and 22.9±3.22pM after 3h of treatment with RN7-IN10 and RN7-IN9 (Fig.

3). On the other hand, the quantities of ATP released from pneumococcal cells upon incubation

with RN7-IN8, RN7-IN7 and RN7-IN6 after 1hr were 39.03±0.2, 22.35±0.9 and 14.8±0.35. The
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levels of ATP release from pneumococcal cells treated with RN7-IN8, RN7-IN7 and RN7-IN6

were  20.54±1.03,  13.02±2.26 and  11.47±0.32pM respectively  after  3h  of  treatment  (Fig.  3).

However, all the hybrid peptides showed better capacity in efflux ATP from pneumococcal cells,

in comparison with standard antibacterial drugs ceftriaxone and erythromycin. The efflux levels

of ATP by ceftriaxone and erythromycin treated cells after 1hr of incubation were 5.24±1.43pM

and 0.49±0.004pM, respectively (Fig. 3). 

DNA retardation activity

To clarify the  influence  of  the  hybrid  peptides  on  pneumococcal  genomic  DNA,  the

retardation of DNA by the hybrid peptides at various concentrations was assessed by analyzing

electrophoretic movement of pneumococci DNA bands through the  agarose gel (1%, w/v). Our

results  clearly  indicated  that  all  the  five  hybrid  peptides  were  capable  of  inhibiting  DNA

migration through the gel at a concentration of 62.5µg/ml (Fig. 4A-E). On the other hand, the

standard  drugs  ceftriaxone  and  erythromycin  could  not  prevent  the  migration  of  DNA band

through the agarose gel up to a concentration of 500µg/ml (Fig. 4F & 4G). 

In vitro synergistic effects of peptide/peptide and peptide/antibiotic combinations  

The in vitro antibacterial activity of peptide/peptide and peptide/antibiotic combinations

was evaluated using the chequerboard dilution assay.  Our results reveal that combinations of

hybrid  peptides  (RN7-IN10,  RN7-IN9,  RN7-IN8,  RN7-IN7,  and  RN7-IN6)  with  each  other

showed synergistic effects, with FICI of less than 0.5 (Table 2), regardless of the susceptibility of

pneumococcal  isolates  towards  standard  drugs.  Likewise,  combinations  of  standard  drugs

ceftriaxone and erythromycin with all  five  hybrid peptides  presented  synergistic  effects  with

fractional inhibitory concentration (FIC) index of ≤0.5 against both isolates of  S. pneutoniae,
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regardless of their susceptibility to antibiotics (Table 2). These results indicate that all the hybrid

peptides were able to enhance the antibacterial activity of both the standard drugs ceftriaxone and

erythromycin.

In vivo toxicity of hybrid peptides

The in vivo toxicity of four hybrid peptides namely RN7-IN10, RN7-IN9, RN7-IN8 and

RN7-IN6 was evaluated following a three dose regimen with the mice at 1hr, 12hr and 24hr using

three different administration routes. The results revealed that in the case of mice treated with all

hybrid peptides via subcutaneous (SC) injection at the maximum dose (100mg/kg),  no animal

death  or  hypersensitivity  reactions  were  observed  up  to  seven  days  post-treatment.  Minor

differences were noted for mice given RN7-IN10 via SC, which displayed significantly lower

granulocytes (p = 0.0172) and ALP (p = 0.0037) (Table S1, highlighted in yellow), while Mice

treated with RN7-IN6 displayed significantly higher platelet counts (p = 0.0487) in comparison

with the control group (Table S1, highlighted in blue). Histopathological studies were performed

with the lung, brain,  liver, spleen and kidney of control and treated animals. No histological

abnormalities were detected in the organs of any group, as all the tissue sections were normal and

did not display differences with the control group (Fig.  S1).  Similarly, no abnormal physical

behavior was noted upon giving the mice hybrid peptides via the intranasal (IN) route. However,

treatment with RN7-IN9 displayed significantly lower MCV (p = 0.001) (Table S2, highlighted in

yellow)  than  the  control  group.  Mice  treated  with  RN7-IN6  displayed  significantly  lower

percentage of  granulocytes  (p = 0.0482) (Table S2,  highlighted in  blue),  as compared to  the

control group. Histological examination of the organs collected from all the treated and control

groups did not expose any histopathological changes (Fig. S2). 

In terms of the  intraperitoneal (IP) administration route, all four hybrid peptides caused

death and/or high physical stress when injected at a concentration of 100mg/kg. Therefore, low
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graded doses were attempted until we reached the maximum dose at which no signs of stress or

abnormal behavior were evident. Hybrid peptides RN7-IN10 and RN7-IN8 did not display any

sign of toxicity when injected at 20mg/kg; no death occurred in any of the treated mice up to 7

days post-treatment. RN7-IN9 and RN7-IN6 were non-toxic when injected at 10mg/kg. None of

the five major organs of the treated mice revealed any significant histological abnormality, as

compared to the untreated control group (Fig. S3). However, mice treated with RN7-IN9 (10

mg/kg) via IP route showed significantly lower  lymphocytes (p = 0.0445) and lower ALP (p =

0.0187) (Table S3, highlighted in yellow),  while RN7-IN6 treated mice had lower ALT (p =

0.0425) when compared to the control group (Table S3, highlighted in blue).

In vivo antibacterias efficacy of hybrid peptides

Two peptides, RN7-IN10 and RN7-IN8, which showed the fastest killing kinetics (Jindal

et  al.,  2015) and  exhibited  less  toxic  effects  in  vivo were  selected  to  evaluate  their  in  vivo

antibacterial efficacy via IP route. Both hybrid peptides were  tested at three different doses (5

mg/kg, 10mg/kg and 20 mg/kg) in three treatment regimens (1hr, 12hr and 24hr post-infection).

In the pneumococcal bacteremia model, both RN7-IN10 and RN7-IN8 failed to treat any of the

infected  mice  at  5mg/kg.  At  a  dose  of  10  mg/kg,  10% of  the  infected  mice  survived  after

treatment  with RN7-IN10 (p = 0.0018),  whereas  30% of  the  mice was able to  survive after

treatment with RN7-IN8 (p = 0.0002). However, at a dose of 20mg/kg, 30% of the mice treated

with RN7-IN10 survived (p < 0.0001), while 50% of the mice survived when treated with hybrid

peptide RN7-IN8 (p = 0.0002) (Fig. 5). No pneumococci were detected from the blood of the

mice that survived and none of the mice showed presentation of illness,  as compared to the

untreated group which was severely ill and inactive. Treatment via SC and IN routes had no

impact on infected mice up to seven days post-infection and none of the mice survived.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

PeerJ reviewing PDF | (2017:05:18224:1:1:REVIEW 19 Jul 2017)

Manuscript to be reviewed



In addition to our designed peptides, ceftriaxone, as a standard drug, was used to treat

infected mice via IP route at 5mg/kg, 10mg/kg, 20mg/kg, 40mg/kg, and 80mg/kg and the survival

was 10%, 30%, 40%, 70% and 90% up to seven days post-infection (p < 0.0001) (Fig. 6). In the

pneumococcal pneumonia model, none of the  mice treated with both peptides via IP, SC and IN

routes survived up to seven days post-infection and therefore,  this model was excluded from

further studies.

Combinations of peptide-peptide were also assessed for their ability to treat infected mice

with pneumococcal bacteremia. Two combinations were used, 5mg/kg + 5mg/kg and 10mg/kg +

10mg/kg to treat mice via IP route at three regimens 1hr, 12hr and 24hr. The results indicate that

the combination of  5mg/kg + 5mg/kg was able to treat 40% of the mice and protected them from

death up to 7 day post-infection (p = 0.0003), while increasing the dose to 10mg/kg of each

peptide resulted in 60% of the infected mice surviving the pneumococcal infection (p < 0.001)

(Fig. 7). 

In vivo synergy assessment of hybrid peptide RN7-IN8 in combination with ceftriaxone

Among the hybrid peptides RN7-IN10 and RN7-IN8, standalone treatment with RN7-IN8

at 20mg/kg was found to confer significant survivability on mice infected by a highly virulent

pneumococcal  clinical  isolate  via  IP  route.  To assess  the  synergistic  effect  of  RN7-IN8  in

combination  with  the  standard  drug  ceftriaxone  (CTX),  three  different  doses  of  RN7-IN8

(5mg/kg, 10mg/kg and 20mg/kg) and ceftriaxone (5mg/kg, 10mg/kg and 20mg/kg) were tested,

using the same bacteremia infection model in three treatment formulations:  RN7-IN85  – CTX5

(5mg/kg  of  RN7-IN8  and  5mg/kg  of  CTX),  RN7-IN810–  CTX10  (10mg/kg  of  RN7-IN8  and

10mg/kg of CTX) and RN7-IN820  – CTX20  (20mg/kg of RN7-IN8 and 20mg/kg of CTX). Using

groups of 10 mice, the combinations of RN7-IN8 and ceftriaxone RN7-IN85 – CTX5 (5mg/kg of

RN7-IN8 and 5mg/kg of CTX), RN7-IN810– CTX10 (10mg/kg of RN7-IN8 and 10mg/kg of CTX)

and RN7-IN820  – CTX20  (20mg/kg of RN7-IN8 and 20mg/kg of CTX) led to survival rates of
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60%, 80% and 100%  in mice infected with highly virulent pneumococcal strain up to seven days

post-infection (p < 0.0001) (Fig. 8). Our results displayed that treatment using combinations of

peptide-antibiotics conferred higher survival rate than peptide and antibiotic in their stand-alone

form. In addition, all treated mice which survived from the infection appeared physically active

and none of them showed signs of abnormal behavior.  

Histopathosogicas evasuation

All the histopathological examinations of the mice infected with bacteremia model with

and without treatment are presented in Fig. 9 and Fig. 10. Out of the five major organs examined,

the  lung  and  spleen  of  the  infected  animals  were  the  most  severely  affected. A number  of

histopathological changes were observed in the lung of the infected mice. As compared to the

uninfected  control  group,  the  lung  of  the  infected  and  untreated  group  exhibited  extensive

vascular congestion with foci consolidation. Heavy permeation of the red blood cells into the

alveolar  spaces  strongly  denoted  pulmonary  hemorrhage  (Fig.  9A,  arrow  a).  The  greatly

congested lung appeared with little alveolar spaces (Fig. 9A, arrow b).This is in contrast to the

uninfected group, where the normal lung displayed greatly aerated alveolar spaces with a thin

layer of the alveolar wall (Fig. 9B). Severe tissue injuries was also noticed in the spleen of the

infected group (Fig. 10A). Unlike the normal spleen which showed normal red and white pulps

(Fig.  10B,  arrow  b),  the  infected  spleen  demonstrated  depleted  splenocytes  with  no  white

matter/germinal  center  (Fig.  10A,  arrow  a).  No  significant  histopathological  lesions  were

observed in other organs, such as the brain, liver, kidney and heart.

For  the  respective  treatments  of  infected  mice  including  hybrid  peptide  RN7-IN8  at

20mg/kg, combination of hybrid peptides RN7-IN10 and RN7-IN8 (10mg/kg + 10mg/kg) and

combination of RN7-IN8 and ceftriaxone (5mg/kg + 5mg/kg, 10mg/kg + 10mg/kg and 20mg/kg

+ 20mg/kg), it was noticed that although lesions, inflammatory events and the degree of tissues
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damage were found in the organs, the degree and severity of the damage were significantly less

than the infected control group. Unlike the lung of the untreated mice which exhibited severe

inflammation  and  the  alveolar  spaces  were  about  90%  congested  (Fig.  9A),  all  the  lungs

harvested from the treated mice revealed only low level of congestion and minor thickening of

the alveolar wall, even though these histological changes were still noticeable in the mice (Fig.

9C-G).  Treatment  of  infected  mice  with  a  combination  of  hybrid  peptide  RN7-IN8  and

ceftriaxone at three different dosages (5mg/kg - 5mg, 10mg/kg - 10mg and 20mg/kg - 20mg/kg)

showed gradual decrease in the degree of congestion and damage (Fig. 9E-G). Lungs harvested

from mice treated with a combination of RN7-IN8 and ceftriaxone at 20mg/kg + 20mg/kg (Fig.

9G) which presented 100% mice survival, were similar to those harvested from the uninfected

control mice (Fig. 9B) in degree of normality. Likewise, all the spleens of treated mice displayed

no or minimum damage, with the white and red pulps being clearly observed (Fig. 10C-G), as

compared to the infected one (Fig. 10A). No significant tissue damage was observed in the brain,

kidney and liver in both treated and untreated mice. 

4. Discussion

We report here the mechanisms of actions, in vivo toxicity and antibacterial efficiency of

five  hybrid  peptides  designed  earlier  in  our  lab,  based  on  two  templates,  indolicidin  and

ranalexin. TEM and SEM were used to evaluate the morphological alterations caused by hybrid

peptides. Results obtained from TEM displayed strong evidence that targeting the bacterial cell

wall/plasma membrane is the main antibacterial mechanism used by hybrid peptides. Unlike the

untreated cells, pneumococcal cells treated with hybrid peptides faced dramatic morphological

changes. The breakage and fragments loss of the bacterial cell wall/membrane is probably a result

of the strong interaction between the negatively charged membrane and the hybrid peptides due

to their positive charge and high hydrophobic content  (Jindal et al., 2015). Unlike the normal
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mammalian cell membranes, bacterial membranes are richer in highly electronegative lipids such

as  phosphatidylserine  (PS),  cardiolipin  (CL)  or  phosphatidylglycerol  (PG).  These  acidic

phospholipids tend to make the bacterial membrane highly negative in charge and thus attract the

positively charged antimicrobial peptides to attach to the bacterial membranes and make them

preferred by AMPs over mammalian membranes  (Ghavami et al.,  2008). To the contrary, the

membrane  of  mammalian  cells  is  enriched  with  zwitterionic  phospholipids  such  as

sphingomyelin  (SM),  phosphatidylethanolamine  (PE)  or  phosphatidylcholine  (PC),  which  are

neutral in net charge. These substances prevent the amalgamation of peptide molecules into cell

membranes  and thus  prevent  pores  formation  (Yeaman & Yount,  2003). In  addition  to  their

positive charge, these five hybrid peptides have a high content of hydrophobic residues. Peptide

hydrophobicity is another critical property that governs the  attraction of  AMPs toward bacterial

membrane, as it directs the level to which an AMP can penetrate into the lipid bilayer (Yeaman &

Yount, 2003). The high content of tryptophan (Trp) is another advantage of these hybrids. It is

well known that  Trp has a significant role in the interaction of antimicrobial peptides with the

bacterial membrane, as this amino acid strongly prefer the interfacial regions of lipid bilayers. In

certain  cases,  Trp  is  considered  hydrophobic  due  to  its  uncharged  sidechain.  However,  it  is

observed  that  Trp  residues  do  not  reside  in  the  hydrocarbon  region  of  lipid  bilayers  and

accordingly it is placed towards the more hydrophilic side of the scale (Chan, Prenner & Vogel,

2006). Another key factor of this amino acid is its ability to form an extensive π–electron system.

Cation–π interaction occurs between the cationic sidechains of the basic amino acids arginine

(Arg) or lysine (Lys) and the aromatic sidechains of the aromatic amino acids tryptophan (Trp),

tyrosine (Tyr) or phenylalanine (Phe)  (Gallivan & Dougherty, 1999). Cation–π interactions are

significant  for  peptide  self-association  inside  membranes  and  enable  deeper  insert  into

membranes by sheltering the cationic side chains  (Torcato et al., 2013). The detachment of the

cytoplasmic  membrane  from cell  wall  observed  in  pneumococcal  cells  upon  treatment  with
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hybrid  peptides,  is  a  possible  indication  of  the  capability  of  hybrid  peptides  to  interpolate

themselves  between  pyrophosphate-linked  cell-wall  anchors  and  the  cell  membrane.

Subsequently, this act would pullout the isoprenyl anchor chains away from the cell membrane

and weaken cell-wall adhesion. The results obtained by TEM were similar to those reported on

the mechanism of nisin against B. subtilis (Hyde et al., 2006) and E. faecalis (Tong et al., 2014).

Likewise, chicken CATH-2 was able to disrupt and detach the plasma membrane from the cell

wall of C. albicans (Ordonez et al., 2014). Another possible explanation is that the breakage of

the cell wall  allows the insertion of water from the medium into the space between the two

membranes and detach them (López-Expósito, Amigo & Recio, 2008).  Likewise, SEM studies

showed the damaging effects of hybrid peptides on the bacterial surface. Unlike the untreated

cells which appeared with normal and smooth cell surface, pneumococcal cells incubated with

hybrid peptides were appeared with swelling and aggregation. Besides, the numerous fragments

observed in S. pneutoniae cultures treated with hybrid peptides point to a cell wall breakage and

cell  lysis.  Membrane  disruption  could  be  associated  with  leakage  of  ions  and  metabolites,

depolarization and eventually cell death. Adenosine triphosphate (ATP) is one of most significant

molecules for all living cells, as it used as an intracellular source of energy for many biological

processes (Mempin et al., 2013). In normal conditions, bacterial membranes are impervious to the

efflux of ATP and other intracellular constituents, as membrane destabilization might lead to the

release of normally impervious substances. Therefore, ATP has been used as a tool to measure the

integrity of living cells. Since most of the ATP is found within the cells, any cell injury will result

in a prompt reduction in the cytoplasmic ATP.  Our results revealed that the ATP efflux was not

increased  by  the  incubation  of  pneumococcal  cells  with  standard  drugs  ceftriaxone  and

erythromycin, but was increased by incubation with hybrid peptides. Although ceftriaxone is a

member of the β-lactam family of antibiotics, its ability of releasing intracellular ATP was less

than  that  of  the  hybrid  peptides.  This  is  probably  due  to  the  fact  that  AMPs  exert  their
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antimicrobial activity faster than standard drugs. As we have shown in our previous paper, the

hybrid peptides were able to exert their bactericidal activity within one hour of incubation with

resistant S. pneutoniae, whereas ceftriaxone could not eliminate S. pneutoniae up to 240 min of

incubation (Jindal et al., 2015). The ATP efflux results suggest that our positively charged hybrid

peptides have strong affinity to bind to the negatively charged bacterial membrane, disrupting its

integrity and allowing a significant amount of ATP to be released to the surrounding environment.

However, a reduction in the amount of ATP released to the medium was noticed after 1hr of

incubation; this might be due to the rapid degradation of ATP by enzymes released to the medium

as a result of membrane damage, which subsequently leads to rapid cell death. Such results were

also observed when  Candida albicans was treated with CATH-2 peptide; the levels of  ATP

released after 5min of incubation were higher than the levels of ATP after 1hr of incubation

(Ordonez et al., 2014). Also, the synthetic peptide Tet052 was capable of causing a significant

leakage of ATP from S. aureus after 30min of treatment (Hilpert et al., 2009). Altogether, results

from the TEM, SEM and ATP release assay indicate that the hybrid peptides destabilize the cell

envelope of the pneumococcal cells. Hence, it can be hypothesized that the disturbance of the

bacterial surface must activate an autolytic and/or cell death mechanism. However, pore forming

and membrane damage do not preclude hybrid peptides for other mechanisms of action, due to

the fact that antimicrobial peptides could act in a membrane-disruptive way when present in a

high  concentration,  but  shift  to  attack  intracellular  components,  when  present  in  a  low

concentration, or both (Friedrich et al., 2000, 2001).

It is well known that the cell membrane is not the only target for antimicrobial peptides.

AMPs may also attack other cell components such as DNA, RNA or proteins (Li et al., 2013). For

instance, the antimicrobial peptide buforin II has the ability to translocate itself to the inner leaflet

of the plasma membrane and target the DNA after breaching the membranes, resulting in rapid

cell  death  (Park,  Kim  &  Kim,  1998).  The  results  from  the  DNA retardation  assay  clearly
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illustrated that all the hybrid peptides were capable of binding to DNA efficiently and preventing

it from moving down through the agarose gel. These results suggest that hybrid peptides could

possess  another  mechanism  of  bacterial  killing,  by  inhibiting  intracellular  functions  via

interference with DNA function.  Hsu and co-workers have revealed through their work that the

ability of  the  parent  peptide  indolicidin  to  permeabilize  bacterial  membranes  is  not  the  only

mechanism of antimicrobial action. Indolicidin is also capable of binding efficiently to DNA and

form a complex. The ability of indolicidin to penetrate the cell membrane allows the peptide to

translocate itself to the cytoplasm and bind to the negatively charged DNA via its positive charge

(Hsu et al., 2005). Moreover, Ghosh and co-workers have identified the central motif (PWWP) of

Indolicidin responsible of stabilizing the DNA duplex and thus  inhibiting DNA replication and

transcription.  The  two  tryptophan  residues  of  the  central  motif  play  a  significant  role  in

stabilization of the duplex by desolvating the core of the DNA (Ghosh et al., 2014). This motif is

conserved in our hybrid peptides and therefore, we hypothesize that the hybrid peptides like their

parent indolicidin are most probably able to bind to bacterial DNA and preventing its intracellular

function. The interaction of peptides with bacterial DNA can prevent or hinder gene expression,

which  is  an  efficient  way  to  suppress  and  inhibit  normal  enzyme  and  receptor  synthesis,

damaging the intracellular components required for the life cycle of the bacterial cell and thus

leads to cell death. 

Combinations  of  antimicrobial  agents  are  often  used  to  combat  multi-drug  resistant

isolates (Novy et al., 2011). Several studies have reported synergistic effects of combinations of

AMPs with standard antibiotics. The hybrid peptide LHP7 revealed a synergistic effect against a

clinical isolate of methicilin-resistant S. aureus MRSA, when combined with ampicillin (Xi et al.,

2013).  Similarly, a  combination  of  the  A3  peptide  with  chloramphenicol  showed  synergistic

action against  S. aureus, E. coli, and  P. aeruginosa (Park, Kit & Haht, 2004). In the present

study, we utilized the chequerboard MIC technique to assess peptide-drug interaction. Our results
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revealed  that  all  the  five  hybrid  peptides  exhibited  synergistic  effects  against  pneumococcal

clinical isolate, when combined with each other and with conventional drugs erythromycin and

ceftriaxone. One possible explanation of the synergistic effects of peptides-drug combinations is

that  the  hybrid  peptides  may  increase  permeability  by  interacting  with  the  bacterial  cell

wall/membrane, making it easier for conventional drugs to act on their targets. Previous reports

have shown that β-lactam antibiotics like ceftriaxone exert higher antimicrobial activity, when

combined  with  membranolytic  peptides  such  as  nisin,  as  these  AMPs  cause  changes  in  cell

morphology by forming pores, allowing antibiotics to enhance their action and produce a greater

damage within the cell wall (Singh, Prabha & Rishi, 2013; Tong et al., 2014). Another possible

mechanism of synergistic combinations is that the antimicrobial peptides alter the efflux pump

systems,  allowing intracellular  antibiotics  such as macrolides  to  act  more efficiently on their

intracellular targets (Ruhr & Sahl, 1985; Soren et al., 2015). 

For evaluating the in vivo therapeutic efficacy of peptides in living organisms, two hybrid

peptides  RN7-IN10 and RN7-IN8 were selected to  treat  mice models infected with a  highly

virulent pneumococcal strain. Among all the doses assessed, RN7-IN8 showed an interesting in

vivo antibacterial  efficacy. At low dose (20mg/kg)  RN7-IN8 resulted in  50% survival  of  the

infected mice with bacteremia model, up to seven days after infection (p < 0.001), as compared to

the untreated mice.  Combinations of hybrid peptides tested for the synergistic effect resulted in

increased  survival  rates  of  infected  mice.  These  findings  are  in  agreement  with  our  in  vitro

synergism results which showed that hybrid peptides are able to enhance the biological activity of

each other.

The  use  of  two  or  more  antibacterial  drugs  in  combination  therapy is  an  alternative

strategy to enhance treatment outcome in a clinical setting  (Caballero & Rello, 2011). This is

especially valuable in patients with severe pneumococcal infections. For instance, combination

antibiotic therapy with both β-lactam and macrolide had a significantly lower case – mortally
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rate, in comparison with a single antibiotic therapy (Mufson & Stanek, 2006). Broad-spectrum

cephalosporins  such  as  ceftriaxone  are  important  antibiotics  in  the  management  of  invasive

diseases induced by penicillin-resistant pneumococci. However, the rate of pneumococcal strains

resistant to ceftriaxone has increased significantly  (Chiu et al., 2007). Hence, RN7-IN8, which

showed significant therapeutic efficacy in the infected mice in its standalone form, was further

assessed for in vivo therapeutic synergism in combination with ceftriaxone. Combination of RN7-

IN8 and ceftriaxone resulted in a synergistic effect, when tested in vivo using mice infected with

pneumococcal  bacteremia model.  The survival  rates in  mice treated with this  combination at

varying  dosages  increased  dramatically  as  compared  to  the  sum  of  the  survival  rates  of

standalone treatment. These findings are in agreement with our in vitro synergism results which

demonstrated that hybrid peptides and ceftriaxone can act synergistically and kill pneumococci

rapidly. Unlike untreated mice that died within four days after infection, 100% of mice treated

with  combination  of  RN7-IN8 and  ceftriaxone  (20mg –  20mg)  survived  at  day seven  post-

infection.  Using  a  combination  of  these  two  drugs  at  a  low  dose  (20mg/kg)  showed  better

survival rate than the use of ceftriaxone alone at a high dose (80mg/kg), thus giving another

advantage to  the hybrid peptide RN7-IN8 to reduce the risk of developing resistance by the

bacterial pathogen.  All the mice treated with RN7-IN8 and the combinations with ceftriaxone did

not show sign of sickness or abnormal behavior.  

5. Concsusion

In sum, our hybrid peptides showed promising in vitro and  in vivo antibacterial activity

against  S. pneutoniae. The results of the  in vitro and  in vivo synergism tests clearly presented

that  the  hybrids  are  not  only  potent  antimicrobials  in  their  standalone  form,  but  also  when

combined with standard antibiotics,  suggesting that  these peptides can be used as supporting

compounds  to  reduce  the  therapeutic  dose  of  antibiotics,  thus  reducing  potential  resistance.
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Although RN7-IN8 showed promising  therapeutic  outcome,  there  are  some limitations  in  its

efficacy.  Primarily,  the  peptide  had  no  effect  on  the  pneumonia  model,  where  the  bacterial

inoculum was administered directly into the thoracic cavity to infect the lungs, while the peptide

was given at distant sites, indicating that the peptide could not diffuse effectively to the site of

infection. This could possibly be due to the degradation by blood or cellular components. On the

other hand, the effectiveness of the peptide in the bacteremia model is  probably due to both

infection and treatment being carried out at the same site. Hence, AMPs have a huge potential to

play  a  crucial  role  in  combating  resistant  bacteria,  either  as  standalone  therapeutics  or  in

combination with other drugs.
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Fig 1. Transmission esectron micrographs of  S. pneumoniae after treatment with hybrid

peptides. (A) Control cells without treatment appeared with normal shape (Fig1A, arrow a). Fig

B – F display the damage of pneumococcal cells after 1hr incubation in presence of (B) RN7-

IN10, (C) RN7-IN9, (D) RN7-IN8, (E) RN7-IN7 and (F) RN7-IN6.  (Arrow b) Breakage and loss

of cell wall/membrane fragments. (Arrow c) Leakage of cytoplasm and halos formation. (Arrow

d) detachment of cytoplasmic membrane from pneumococcal cell wall. Bar indicates 200 nm.

 
 

 

  200 nm  200 nm

4

3

E F

3

4

22

11

2

B A 

D C 

2

2

789

790

791

792

793

794

795

PeerJ reviewing PDF | (2017:05:18224:1:1:REVIEW 19 Jul 2017)

Manuscript to be reviewed



 
Fig  2. Scanning  esectron  micrographs  of  S.  pneumoniae after  treatment  with  hybrid

peptides. (A) Control cells without treatment appeared with normal shape and smooth surface
(arrow a). Fig B – F show the severe morphological changes and surface disruption (arrow b) of
pneumococcal cells following 1hr incubation in presence of (B) RN7-IN10, (C) RN7-IN9, (D)
RN7-IN8, (E) RN7-IN7, and (F) RN7-IN6. Bar indicates 2 µm.  
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arrow b? In the images the arrows are pointed with numbers, 2 and 11. The authors should be careful and please indicate approriately.
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Fig 3. The infsuence of peptides on ATP resease. All Hybrid peptides presented stronger ATP efflux activity than
erythromycin  and  ceftriaxone.  Two-way ANOVA  with  Bonferroni  post-test was  used  to  perform the  statistical
analysis. An asterisk (*) adjacent to peptide name directs statistical  significance (P <0.0001). Fig 3A shows the
amount of ATP released upon treatment with RN7-IN10, RN7-IN9 and RN7-IN8. Fig 3B shows the amount of ATP
released upon treatment with RN7-IN7 and RN7-IN6. The experiment was done in triplicate.
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Fig 4.  The impact of  the hybrid peptides on the migration of  genomic DNA. All  hybrid
peptides prevented the migration of the DNA through the gel at 62.5µg/ml. RN7-IN10 (A), RN7-
IN9 (B), RN7-IN8 (C), RN7-IN7 (D), and RN7-IN6 (E). While ceftriaxone (F) and erythromycin
(G) failed to stop the migration of genomic DNA up to a concentration of 500µg/ml. 
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Fig 5. Survivas curve of infected mice treated with RN7-IN10 and RN7-IN8. Kaplan-Meier

with log-rank test (Mantel-Cox) was used to perform the statistical for all treated groups and the

untreated control using. Treatment with RN7-IN8 at 20mg/kg displayed the highest survival rate

of 50% up to 7 days post-infection (p < 0.001). 
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Fig 6. Survivas curve of infected mice treated with ceftriaxone (CTX).  Kaplan-Meier with

log-rank test (Mantel-Cox) was used to perform the statistical analysis for all treated group and

the untreated control.
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Fig 7. Survivas curve of infected mice treated with combinations of RN7-IN10 and RN7-

IN8. Kaplan-Meier with log-rank test (Mantel-Cox) was used to perform the statistical analysis

for all treated group versus the untreated control.  
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Fig  8.  Survivas  curve  of  infected  mice  treated  with  combinations  of  RN7-IN8  and

ceftriaxone (CTX).  Kaplan-Meier  with  log-rank test  (Mantel-Cox)  was  used  to  perform the

statistical analysis for all treated group and the untreated control. Combination of RN7-IN and

ceftriaxone at (20mg/kg – 20mg/kg) showed 100% survival (P < 0.0001). 
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Fig  9.  Histosogy  of  sungs  harvested  from  mice  infected  with  S.  pneumoniae  receiving

treatments.  (A) infected mice, (B) uninfected mice (control), (C) mice treated with RN7-IN8
(20mg/kg),  (D)  mice  treated  with  combination  of  RN7-IN10  and  RN7-IN8  (10mg/kg  +
10mg/kg), (E) mice treated with combination of RN7-IN8 and CTX (5mg/kg + 5mg/kg), (F) mice
treated with combination of RN7-IN8 and CTX (10mg/kg + 10mg/kg), (G) mice treated with
combination of RN7-IN8 and CTX (20mg/kg + 20mg/kg).  Hematoxylin and eosin stain.  Bar
indicates 500 µM.
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Fig 10. Histosogy of  spseens harvested from mice infected with  S. pneumoniae  receiving

treatments.  (A) infected mice, (B) uninfected mice (control), (C) mice treated with RN7-IN8
(20mg/kg),  (D)  mice  treated  with  combination  of  RN7-IN10  and  RN7-IN8  (10mg/kg  +
10mg/kg), (E) mice treated with combination of RN7-IN8 and CTX (5mg/kg + 5mg/kg), (F) mice
treated with combination of RN7-IN8 and CTX (10mg/kg + 10mg/kg), (G) mice treated with
combination of RN7-IN8 and CTX (20mg/kg + 20mg/kg).  Hematoxylin and eosin stain.  Bar
indicates 500 µM.

Peptide Sequence MICa aab MWc Qd Pho%e

Indosicidin ILPWKWPWWPWRR-NH2 15.62-31.25 13 1907.30 +4 53%

Ranasexin FLGGLIKIVPAMICAVTKKC-OH 62.5 20 2105.70 +3 65%

RN7-IN10 FLGGLIKWKWPWWPWRR-NH2 7.81-15.62 17 2300.791 +5 52 %

RN7-IN9 FLGGLIKKWPWWPWRR-NH2 7.81-15.62 16 2114.578 +5 50 %

RN7-IN8 FLGGLIKWPWWPWRR-NH2 7.81-15.62 15 1986.408 +4 53 %

RN7-IN7 FLGGLIKPWWPWRR-NH2 62.5 14 1800.195 +4 50 %

RN7-IN6 FLGGLIKWWPWRR-NH2 7.81-15.62 13 1709.078 +4 53 %
Tabse 1: Sequences and physicochemical properties of the template and hybrid AMPs.
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                  a Minimum inhibitory concentration (µg/ml).
                  b Number of amino acids.

                  c Molecular weight.
                  d Net charge. Lys (K), Arg (R), and C-terminal amidation (NH2) was assigned with +1 charge.
                  e hydrophobic residues%.

                 

Tabse 2: FIC index of various combinations of hybrid peptides with each other and with standard 

antibiotics against susceptible and resistant S. pneutoniae.

Combination Susceptibse S. pneumoniae       Resistant S. pneumoniae

Drug A Drug B FIC indexa Interpretation FIC indexa Interpretation

RN7-IN10 RN7-IN9 0.50 Synergism 0.37 Synergism

RN7-IN8 0.28 Synergism 0.28 Synergism

RN7-IN7 0.37 Synergism 0.50 Synergism

RN7-IN6 0.26 Synergism 0.31 Synergism

Ceftriaxone 0.37 Synergism 0.31 Synergism

Erythromycin 0.26 Synergism 0.28 Synergism

RN7-IN9 RN7-IN8 0.37 Synergism 0.50 Synergism

RN7-IN7 0.50 Synergism 0.50 Synergism

RN7-IN6 0.28 Synergism 0.37 Synergism

841

842

843

844

845

846

847

848

PeerJ reviewing PDF | (2017:05:18224:1:1:REVIEW 19 Jul 2017)

Manuscript to be reviewed



Ceftriaxone 0.31 Synergism 0.37 Synergism

Erythromycin 0.28 Synergism 0.26 Synergism

RN7-IN8 RN7-IN7 0.50 Synergism 0.50 Synergism

RN7-IN6 0.31 Synergism 0.37 Synergism

Ceftriaxone 0.31 Synergism 0.37 Synergism

Erythromycin 0.28 Synergism 0.26 Synergism

RN7-IN7 RN7-IN6 0.50 Synergism 0.50 Synergism

Ceftriaxone 0.50 Synergism 0.50 Synergism

Erythromycin 0.37 Synergism 0.37 Synergism

RN7-IN6 Ceftriaxone 0.37 Synergism 0.31 Synergism

Erythromycin 0.28 Synergism 0.28 Synergism

 aFIC index ≤ 0.5 represents synergy; > 0.5 – ≤4.0 represents indifference; > 4.0 represents antagonism.
 Highlighted in bold: peptide-antibiotic combination with synergistic effect.
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