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Objective: The objective of this study is to conduct a systematic review of multi-scale HIV

immunoepidemiological models to infer the synergistic dynamics of HIV prognoses at the individual level

and the transmission dynamics at the population level.

Background: While within-host and between-host models of HIV dynamics have been well studied at a

single scale, connecting the immunological and epidemiological scales through multi-scale models is an

emerging method to infer the synergistic dynamics of HIV at the individual and population levels.

Methods: We reviewed 9 articles using the PRISMA (Preferred Reporting Items for Systematic Reviews

and Meta-Analyses) framework that focused on the synergistic dynamics of HIV immunoepidemiological

models at the individual and population levels.

Results: HIV immunoepidemiological models simulate viral immune dynamics at the within-host scale

and the epidemiological transmission dynamics at the between-host scale. They account for longitudinal

changes in the immune viral dynamics of HIV+ individuals, and their corresponding impact on the

transmission dynamics in the population. They are useful to analyze the dynamics of HIV super-infection,

co-infection, drug resistance, evolution, and treatment in HIV+ individuals, and their impact on the

epidemic pathways in the population. We illustrate the coupling mechanisms of the within-host and

between-host scales, their mathematical implementation, and the clinical and public health problems

that are appropriate for analysis using HIV immunoepidemiological models.

Conclusion: HIV immunoepidemiological models connect the within-host immune dynamics at the

individual level and the epidemiological transmission dynamics at the population level. While multi-scale

models add complexity over a single-scale model, they account for the time varying immune viral

response of HIV+ individuals, and the corresponding impact on the time-varying risk of transmission of

HIV+ individuals to other susceptibles in the population.
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Abstract6

Objective: The objective of this study is to conduct a systematic review of multi-scale7

HIV immunoepidemiological models to infer the synergistic dynamics of HIV prognoses at8

the individual level and the transmission dynamics at the population level.9

Background: While within-host and between-host models of HIV dynamics have been10

well studied at a single scale, connecting the immunological and epidemiological scales through11

multi-scale models is an emerging method to infer the synergistic dynamics of HIV at the in-12

dividual and population levels.13

Methods: We reviewed 9 articles using the PRISMA (Preferred Reporting Items for Sys-14

tematic Reviews and Meta-Analyses) framework that focused on the synergistic dynamics of15

HIV immunoepidemiological models at the individual and population levels.16

Results: HIV immunoepidemiological models simulate viral immune dynamics at the17

within-host scale and the epidemiological transmission dynamics at the between-host scale.18

They account for longitudinal changes in the immune viral dynamics of HIV+ individuals,19
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and their corresponding impact on the transmission dynamics in the population. They are use-20

ful to analyze the dynamics of HIV super-infection, co-infection, drug resistance, evolution,21

and treatment in HIV+ individuals, and their impact on the epidemic pathways in the popula-22

tion. We illustrate the coupling mechanisms of the within-host and between-host scales, their23

mathematical implementation, and the clinical and public health problems that are appropriate24

for analysis using HIV immunoepidemiological models.25

Conclusion: HIV immunoepidemiological models connect the within-host immune dy-26

namics at the individual level and the epidemiological transmission dynamics at the population27

level. While multi-scale models add complexity over a single-scale model, they account for the28

time varying immune viral response of HIV+ individuals, and the corresponding impact on the29

time-varying risk of transmission of HIV+ individuals to other susceptibles in the population.30

31
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INTRODUCTION32

HIV prevalence and mortality were 38.8 million and 1.2 million deaths respectively in 2015, with33

annual incidence being relatively constant at 2.6 million per year from 2005 to 2015 (Wang et34

al. (2016)). Access to big data and emergence of unanswered questions enable novel methods of35

mathematical models to connect within-host immune viral dynamics at the individual level, and the36

between-host epidemiological transmission of infectious diseases at the population level (Gog et al.37

(2015)). Mathematical models of HIV dynamics have been extensively studied using single-scale38

based models at the immunological and epidemiological scales (Perelson & Ribeiro (2013); Akpa39

& Oyejola (2010)). The immunological models focus on the within-host immune viral dynamics40

at the individual level, while the epidemiological models focus on the between-host transmission41

dynamics at the population level. Multi-scale immunoepidemiological modeling is an emerging42

method to study the synergistic dynamics of HIV at the individual and population levels (DebRoy43

& Martcheva (2008); Yeghiazarian et al. (2013); Handel & Rohani (2015)).44

Epidemiological models45

Epidemiological modeling of HIV infection started in 1985 (Curran et al. (1985)). Epidemiological46

models of HIV infections assign each individual to one of the following states: susceptible or47

infected. Infected individuals may transmit HIV to susceptible hosts with the same transmission48

rate over the course of disease, and experience specific duration of infection (Isham (1988); Hyman49

& Ann Stanley (1988); Haberman (1990)). However, time since infection, other co-infections,50

and a host’s biological factors such as age, sex, genetic susceptibility, and immune status cause51

variation in infectiousness of HIV+ individuals (Cassels et al. (2008)). Host heterogeneity among52

different ages, gender and risk groups is significant due to the multiple routes of transmission53

– sexual transmission, intravenous transmission through needle sharing, blood transfusion, and54

mother-to-child vertical transmission.55
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Immunological models56

Within-host models of HIV at the individual level study the dynamics of HIV and target immune57

cells – CD4+ T cells, macrophages, and dendritic cells. The complexity of the models vary from58

molecular level (Reddy & Yin (1999); Zarrabi et al. (2010); Hosseini & Mac Gabhann (2012)),59

cellular level (Anderson & May (1992); McLean (1993); Ho et al. (1995); Perelson et al. (1996);60

Kirschner (1996); De Boer & Perelson (1998); Banks et al. (2008); Hosseini & Mac Gabhann61

(2012); Perelson & Ribeiro (2013)), and tissue level (Spouge et al. (1996)). The within-host im-62

munological models analyze the mechanisms of HIV pathogenesis and prognosis from acute, latent63

and late stages of HIV infection to AIDS phase.64

Immunoepidemiological models65

Figure 1 illustrates that the transmission dynamics of HIV in the population is dependent on the66

immune viral dynamics of HIV+ individuals. Immunoepidemiological models factor the HIV67

transmission dynamics at the population level as a function of within-host immune viral responses68

at the individual level (DebRoy & Martcheva (2008); Yeghiazarian et al. (2013); Hellriegel (2001)).69

Clinical and public health significance70

HIV immunoepidemiological models focus on solutions for the following questions of clinical and71

public health significance (Feng et al. (2011)):72

• How does within-host immune-viral dynamics of HIV affect incidence at the population73

level?74

• How does population level transmission dynamics of HIV affect viral evolution at the indi-75

vidual level?76

In this study, we review the multi-scale modeling methods that connect the within-host and77

between-host scales of HIV models. Understanding the relation between these two scales is key to78

understand HIV prognosis, transmission risk, and intervention effectiveness (Pepin et al. (2010)).79
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METHODS80

Search strategy81

We searched the PubMed database for articles published from December 1, 1985 to June 1, 201782

with the terms: (HIV and (”multi-scale” or ”immunoepidemiology” or ”nested model” or (”within-83

host” and ”between host”) or (”within-host” and ”among host”) or (”within-host” and (”epidemi-84

ology” or ”epidemiological”)))).85

Data abstraction and synthesis86

The data abstraction and synthesis process was conducted by two authors (ND and RNB) indepen-87

dently, and includes the following four steps: identification, screening, eligibility, and inclusion.88

We resolved discordant decisions through consensus. During the identification step, articles were89

identified using the above search strategy. During the screening step, duplicate articles were re-90

moved, and titles and abstract of the remaining articles were screened to determine their relevance91

to our study. During the eligibility step, full texts of the articles were analyzed to determine their92

relevance to our study.93

Inclusion and exclusion criteria94

The inclusion criteria were articles focused on multi-scale immunoepidemiological modeling of95

HIV dynamics. The exclusion criteria were articles that focused on genetic epidemiology, molec-96

ular epidemiology, parasitology, ecology, evolutionary study, and experimental studies.97

PRISMA process98

Figure 2 illustrates the process flow diagram of identification, screening, eligibility, and inclusion99

of articles for the systematic review, using the PRISMA (Preferred Reporting Items for System-100

atic Reviews and Meta-Analyses) framework (Moher et al. (2009)). 89 articles were uniquely101

5
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identified, 66 articles were screened out, and 9 articles were found eligible to be included in this102

systematic review. This systematic review includes a qualitative synthesis and does not include the103

quantitative synthesis of a meta-analysis (not applicable for this study).104
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RESULTS105

Table 1 illustrates the characteristics of HIV immunoepidemiological modeling studies included106

in this systematic review. The objective, model implementation, immunoepidemiological link be-107

tween within-host and between-host models, and significant inferences of these studies are sum-108

marized in the table.109

Within-Host Scale of HIV Immunoepidemiological Models110

The within-host scale of HIV immunoepidemiological models simulate the immune-viral dynam-111

ics of HIV, which can later be used to determine the impact on transmission between hosts. We112

categorize the within-host models by whether they model a single strain of HIV, super-infection,113

drug resistance, evolution, co-infection and therapeutic interfering particles. The immunological114

scale includes the primary state variables of uninfected CD4+ T cells concentration (T ), infected115

CD4+ T cells concentration (T ∗) and viral load (V), and the corresponding parameters for the116

immune-viral dynamics between these state variables (Anderson & May (1992); Perelson et al.117

(1996); De Boer & Perelson (1998)).118

HIV infection with single strain119

In this approach, it is assumed that there is only one strain of HIV that infects the target cells. No120

additional features such as mutation, super-infection, or co-infection are considered at the within-121

host scale. We found three models that include only one strain of HIV at the within-host scale (Shen122

et al. (2015); Sun et al. (2016); Yeghiazarian et al. (2013)). An example of the basic dynamics are123

shown in Table 2, which also assumes that viral shedding rate (s) has negative effect on the viral124

load (V) within-host (DebRoy & Martcheva (2008)). This model can be modified to include the125

effects of drug therapy, which affect the viral production rate and the viral infectivity rate (Shen et126

al. (2015); Sun et al. (2016); Yeghiazarian et al. (2013)).127
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HIV super-infection128

HIV super-infection occurs when individuals infected with a single HIV strain are infected with a129

second HIV strain. Martcheva and Li included HIV infection with multiple strains in their model,130

with the assumption of complete competitive exclusion between the strains at the within-host scale.131

In this context, the strain with the larger reproduction rate becomes dominant. They studied the132

impact of virulence of different strains on the equilibrium at the individual and population scales133

(Martcheva & Li (2013)). Table 3 shows the schematic and formulation of this model.134

HIV drug resistance135

Drug resistance can be acquired through mutations of drug-sensitive strains within-host or through136

direct transmission of drug-resistant strains. Saenz and Bonhoeffer included HIV infection with137

drug resistant strains in their model, and studied the effects of antiretroviral treatment (ART) on138

both drug-sensitive and drug-resistant strains (Saenz & Bonhoeffer (2013)). Table 4 shows the139

schematic and formulation of this model.140

HIV evolution141

Studies have modeled HIV viral evolution within-host and its impact on transmission between142

hosts (Lythgoe et al. (2013); Doekes et al. (2017)). They investigate the trade-off between increased143

virus replication and virulence and decrease in virus transmission. Doekes et al also included long-144

lived reservoirs of latently infected CD4+ T cells to determine their impact on HIV within-host145

competition (Doekes et al. (2017)).146

HIV co-infection147

HIV co-infection with sexually transmitted infections among high risk groups (Abu-Raddad et al.148

(2008)), and/or co-infection with endemic infections such as malaria (Cuadros et al. (2011)) have149

direct impact on increasing the transmission rate of both infections. Cuadros and Garcı́a-Ramos150
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incorporated HIV co-infection dynamics in the within-host immune model (Callaway & Perelson151

(2002); Stafford et al. (2000); Nowak & May (2000)) to address increased immune response and152

increased risk of transmission, and evaluated their impact on HIV epidemics (Cuadros & Garcı́a-153

Ramos (2012)). Table 5 shows the schematic and formulation of this model.154

HIV and therapeutic interfering particles155

Therapeutic interfering particles (TIPs) are an emerging drug therapy where therapeutic versions of156

the pathogen are manufactured to attack viral replication processes and can be transmitted between157

hosts (Metzger et al. (2011)). In the within-host model developed by Metzger et al, HIV and TIPs158

are treated as separate viral strains. The model includes CD4+ T cells infected with HIV only,159

CD4+ T cells infected with TIPs only, and CD4+ T cells dually infected with HIV and TIPs160

(Metzger et al. (2011)).161

Between-Host Scale of HIV Immunoepidemiological Models162

Between-host scales of HIV immunoepidemiological models are based on the susceptible-infectious163

(S I) epidemic model, which have been used extensively to study HIV transmission dynamics in a164

homogeneous population and random mixing of susceptibles (S ) and HIV+ individuals (I) (Isham165

(1988)). Table 6 shows the schematic and formulation of the S I epidemic model. Studies have ex-166

tended the homogeneous population structure of the S I model to incorporate different populations167

of infected individuals. We categorize the studies by how they divide the infected population, and168

thus how the transmission rates between these classes differ. We find heterogeneity in HIV trans-169

mission rates depending on the stages of HIV infection (Cuadros & Garcı́a-Ramos (2012); Yeghi-170

azarian et al. (2013); Sun et al. (2016); Shen et al. (2015)), and the dynamics of super-infection171

(Martcheva & Li (2013)), drug resistance (Saenz & Bonhoeffer (2013)), evolution (Lythgoe et al.172

(2013); Doekes et al. (2017)), and therapeutic interfering particles (Metzger et al. (2011)).173
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Acute, latent and late stages of HIV infection174

Previous studies have shown that transmission rates differ depending on whether the infected pop-175

ulation is in the acute, latent, or AIDS stages (Hollingsworth et al. (2008)). This conclusion can176

be incorporated into immunoepidemiological models by categorizing the infected population into177

different stages (Cuadros & Garcı́a-Ramos (2012); Yeghiazarian et al. (2013); Sun et al. (2016);178

Shen et al. (2015); Saenz & Bonhoeffer (2013)). Cuadros and Garcı́a-Ramos extended the model179

so that the HIV+ sub-populations also differed by sexual-risk activity (Cuadros & Garcı́a-Ramos180

(2012)). Yeghiazarian et al divided the infected population into stages to evaluate the timing of181

treatment initiation at the individual level, and its impact on HIV transmission at the population182

level. They assumed treatment initiation can start during any stage of HIV infection after diagnosis183

(Yeghiazarian et al. (2013)).184

HIV super-infection185

HIV infected individuals are categorized based on the strains of infection. Due to the assumption186

of competitive exclusion at the within-host level in the model developed by Martcheva and Li,187

susceptible individuals only become infected with one of the strains. Thus, only infected individu-188

als having the dominant within-host strain can super-infect individuals with the lesser within-host189

strain (Martcheva & Li (2013)).190

HIV drug resistance191

Drug-resistant strains can emerge during antiretroviral therapy (ART) (Rong et al. (2007)), or can192

be transmitted between individuals who have never been exposed to ART (Hué et al. (2009)), which193

may lead to treatment failure if ART is begun (Hamers et al. (2011)). Saenz and Bonhoeffer thus194

categorize the infected population into those with only drug-sensitive or only drug-resistant strains195

with or without treatment, and those with drug-sensitive strains that develop drug-resistance while196

receiving treatment (Saenz & Bonhoeffer (2013)). Table 7 shows the schematic and formulation of197
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this model.198

HIV evolution199

Depending on virulence of the strain, infected individuals are categorized by the strain with which200

they initially became infected (Doekes et al. (2017); Lythgoe et al. (2013)). Because it is assumed201

that all other strains develop from an initial strain and only the most virulent strain is transmitted,202

infected individuals can end up infecting others with a different strain than they were initially203

infected. Table 8 shows the schematic and formulation of this model.204

HIV and therapeutic interfering particles205

The infected population is divided into classes of those infected with HIV only, those infected with206

Therapeutic Interfering Particles (TIPs) only, and those infected dually with HIV and TIPs. The207

infected population is also divided into these classes during different stages of infection (Metzger208

et al. (2011)). Table 9 shows the schematic and formulation of this model.209

Coupling Within-Host and Between-Host Scales of HIV Immu-210

noepidemiological Models211

The potential for transmission between HIV+ individuals to susceptibles is affected by the viral212

load of infected hosts (Attia et al. (2009)). In all the models that we analyzed in this systematic213

review, the transmission rate between hosts is dependent on the within-host viral load. We catego-214

rize the models into those where the transmission rate is a function of viral load and those where215

the equilibria of the within-host model are used to determine the transmission rate.216
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HIV transmission rate as a function of viral load217

The within-host and between-host scales of HIV immunoepidemiological models are coupled by218

basing the transmission rate on the time-varying viral load since infection. The viral load (and219

thus the transmission rate) is high during the acute and late stages of HIV infection while being220

low during the latent stage (Hollingsworth et al. (2008); DebRoy & Martcheva (2008)). Table 10221

shows the formulation of this model. Unlike the basic S I epidemiological model that assumes222

constant transmission rate (β), the between-host model assigns time-varying transmission rate,223

which is dependent on the non-linear viral immune dynamics of HIV in the within-host model.224

In some models, the transmission rate depends on the viral load continuously over time (Shen225

et al. (2015); Martcheva & Li (2013); Saenz & Bonhoeffer (2013)). Saenz and Bonhoeffer also226

distinguished between drug-resistant and drug-sensitive strains and their corresponding impact on227

the transmission rate (Saenz & Bonhoeffer (2013)). Martcheva and Li made the death of infected228

individuals depend on the viral load over time, since the AIDS stage is associated with high viral229

load (Martcheva & Li (2013)).230

In the context of HIV evolution, while the transmission rate varies through time depending on231

the viral load, the viral load is also modeled to distinguish between different strains (Doekes et al.232

(2017); Lythgoe et al. (2013)). The transmission rate depends on a predefined infectivity profile233

which changes depending on the stage of infection, and the frequency of the different viral strains234

in an infected population. Doekes et al made the transmission rate depend on the frequency of viral235

strains that were only in actively infected CD4+ T cells (Doekes et al. (2017)).236

The within-host viral load can be used to individualize the transmission rate over time (Yeghi-237

azarian et al. (2013); Sun et al. (2016)). The CD4+ T cell count can also be used to determine the238

stage of infection (Yeghiazarian et al. (2013)).239

HIV transmission rate using viral load equilibrium240

Another method of linking the within-host and between-host scales is to use the within-host model241

to determine an equilibrium for the viral load. This equilibrium can then be used as a constant pa-242
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rameter in the between-host model, which can then be analyzed further by differing the parameters243

of the within-host model (Metzger et al. (2011); Cuadros & Garcı́a-Ramos (2012)). Cuadros and244

Garcı́a-Ramos accounted for the amplified viral load due to co-infection and the corresponding245

increase in HIV transmission rate (Cuadros & Garcı́a-Ramos (2012)). Metzger et al determined246

the differing viral loads associated with HIV and TIPs, and their effect on the transmission proba-247

bilities between infected populations (Metzger et al. (2011)).248

Clinical and Public Health Implications249

HIV virulence250

Within-host competition based on virulence affects the prevalence of HIV (Doekes et al. (2017);251

Lythgoe et al. (2013)). There is a moderate level of virulence that optimizes the transmission252

potential of HIV. Lythgoe et al found that a flatter fitness landscape with slow dynamics at the253

within-host level can optimize the transmission potential (Lythgoe et al. (2013)). Doekes et al254

found that a latent reservoir of CD4+ T cells may be responsible for delaying the evolutionary255

dynamics at the within-host level, which leads to the transmission potential being optimized at the256

population level (Doekes et al. (2017)).257

Antiretroviral therapy258

Higher efficacy of antiretroviral therapy, higher coverage levels, and initiating treatment early re-259

duces the prevalence of HIV (Sun et al. (2016); Saenz & Bonhoeffer (2013); Shen et al. (2015);260

Yeghiazarian et al. (2013)). However, in certain cases, even improving these factors may increase261

the prevalence of HIV. This effect may be caused by the emergence of drug-resistant strains, which262

increase in prevalence as ART coverage increases (Saenz & Bonhoeffer (2013)). The increased263

prevalence of HIV can also occur if drug efficacy decreases significantly after the emergence of264

drug-resistant strains (Sun et al. (2016)). This suggests there may be an optimal therapy coverage265

13

PeerJ reviewing PDF | (2017:06:18779:1:1:NEW 7 Aug 2017)

Manuscript to be reviewed



level that will minimize the number of infections. Therefore, efforts to decrease risk of drug resis-266

tance emergence may be better suited to reduce prevalence under certain circumstances (Saenz &267

Bonhoeffer (2013)).268

Another reason for the effect of increased HIV prevalence may be due to antiretroviral therapy269

reducing viral load in the infected population (Shen et al. (2015)). A similar effect is also found270

with super-infection, where decreasing the viral load leads to higher HIV prevalence in certain271

cases (Martcheva & Li (2013)). This occurs because patients are able to live longer and thus have272

the ability to infect more people (Martcheva & Li (2013); Shen et al. (2015)). If drug effectiveness273

is high enough, this effect will be minimized (Shen et al. (2015)).274

Therapeutic interfering particles275

Deploying therapeutic interfering particles (TIPs) in even a small proportion of infected individuals276

reduces the prevalence of HIV to low levels due to TIPs’ ability to transmit between hosts and target277

high-risk groups (Metzger et al. (2011)). Using TIPs may reduce the challenges of ART therapy278

and vaccines, and can be complementary to both.279

HIV co-infection280

In populations with high average set-point viral load (spVL), there is a greater chance of co-281

infection increasing the prevalence of HIV than in populations with low spVL, where co-infection282

is not an important driver of HIV epidemics (Cuadros & Garcı́a-Ramos (2012)).283
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DISCUSSION284

Mathematical implementation of HIV immunoepidemiological models285

We conducted this systematic review of HIV immunoepidemiological models to improve our un-286

derstanding and analysis of the synergistic dynamics of HIV prognoses at the individual level and287

the transmission dynamics at the population level. With respect to mathematical implementation,288

within-host models are implemented using ordinary differential equations which determine the289

HIV transmission rate for the between-host model. If the within-host model is used at equilib-290

rium to determine constant parameters for the between-host model, ordinary differential equations291

are used for the between-host model as well (Cuadros & Garcı́a-Ramos (2012); Metzger et al.292

(2011)). Integro-differential equations with delay are used in the between-host scales of HIV im-293

munoepidemiological models to study HIV evolution dynamics (Lythgoe et al. (2013); Doekes et294

al. (2017)). Partial differential equations are used for the between-host model if the transmission295

rate changes continuously with the within-host viral load over time (Shen et al. (2015); Martcheva296

& Li (2013); Saenz & Bonhoeffer (2013)). Individual or agent-based based models analyze the297

HIV transmission dynamics between individual agents in a population, wherein the HIV transmis-298

sion rates of each individual is determined by their specific within-host immune-viral dynamics299

(Sun et al. (2016); Yeghiazarian et al. (2013)).300

Complexity of multi-scale models301

Multi-scale HIV immunoepidemiological models have higher complexity in comparison to single-302

scale immune or epidemiology models (Mideo et al. (2008)). Thereby, the choice of immunoepi-303

demiological models should be determined by problems with significant public health and clinical304

implications that can be addressed better by multi-scale models compared to single-scale models.305
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Clinical and public health relevant problems of HIV dynamics306

Table 11 illustrates the clinical and public health relevant problems of HIV virulence, co-infection,307

super infection, drug resistance and treatment dynamics that can be potentially addressed using308

multi-scale models. Since the viral load among infected individuals varies with time during the309

acute, latent and late stages of HIV infection, immunoepidemiological models account for the time-310

varying viral load within host and their impact on transmission between hosts. Co-infection among311

HIV-infected individuals increases the average set-point of viral load in the population (Cuadros312

& Garcı́a-Ramos (2012)). Super-infection of multiple HIV strains leads to oscillations in the pop-313

ulation level which do not occur in the absence of super-infection; this effect is only observed314

using the multi-scale immunoepidemiological model (Martcheva & Li (2013)). The emergence of315

drug resistance within hosts impacts the optimal coverage levels of drug-sensitive treatment at the316

population level (Saenz & Bonhoeffer (2013)). Immunoepidemiological models can account for317

treatment initiation, compliance and interruption behavior among HIV-positive individuals as well318

as pre-exposure prophylaxis of high-risk HIV-negative individuals, and their impact on emergence319

of drug resistance in the population. The new knowledge gained from analysis of HIV immu-320

noepidemiological dynamics add value in improving clinical and public health interventions for321

prevention and control of HIV epidemics.322

Limitations323

We reviewed English language articles on HIV immunoepidemiological models that were refer-324

enced in the PubMed database. The dynamics of the HIV immunoepidemiological models are de-325

pendent on the selection of parameters, and the coupling mechanisms of within-host immune-viral326

dynamics and between-host transmission dynamics. Verification and validation of HIV immu-327

noepidemiological models (and multi-scale models in general) with empirical data is a challenge328

to be addressed in future studies. Also, the selection of optimal layers from the genomic, molec-329

ular, cellular, and organ levels at the micro-biological scale to the individual, family, community,330

national, and global levels at the macro-social scale is a challenge that need be addressed well in331
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future studies.332

Conclusion333

HIV immunoepidemiological models combine the immune-viral dynamics at the within-host im-334

munological scale with the transmission dynamics at the between-host epidemiological scale to335

analyze HIV dynamics of a single strain infection, co-infection, super-infection, evolution, drug336

resistance, and treatment protocols in heterogeneous populations. Based on our understanding of337

synergistic dynamics of HIV at the individual and population scales, we should select the optimal338

layers of analysis from micro-biological to macro-social levels for multi-scale models to identify339

and improve solutions to clinical and public health relevant problems of HIV dynamics.340

17

PeerJ reviewing PDF | (2017:06:18779:1:1:NEW 7 Aug 2017)

Manuscript to be reviewed



References341

Abu-Raddad, L. J., Magaret, A. S., Celum, C., Wald, A., Longini, I. M., Jr., Self, S. G., & Corey,342

L. (2008). Genital herpes has played a more important role than any other sexually transmit-343

ted infection in driving HIV prevalence in Africa. PLoS ONE, 3(5), e2230. Retrieved 2015-344

06-27, from http://dx.plos.org/10.1371/journal.pone.0002230 doi: 10.1371/jour-345

nal.pone.0002230346

Akpa, O. M., & Oyejola, B. A. (2010). Modeling the transmission dynamics of HIV/AIDS347

epidemics: An introduction and a review. J. Infect. Dev. Ctries., 4(10), 597–608.348

Anderson, R. M., & May, R. M. (1992). Infectious diseases of humans: Dynamics and control.349

OUP Oxford.350

Attia, S., Egger, M., Müller, M., Zwahlen, M., & Low, N. (2009). Sex-351

ual transmission of HIV according to viral load and antiretroviral therapy: Sys-352

tematic review and meta-analysis. AIDS, 23(11), 1397–1404. Retrieved353

2015-09-02, from http://www.ncbi.nlm.nih.gov/pubmed/19381076 doi:354

10.1097/QAD.0b013e32832b7dca355

Banks, H. T., Davidian, M., Hu, S., Kepler, G. M., & Rosenberg, E. (2008). Modeling HIV immune356

response and validation with clinical data. Journal of Biological Dynamics, 2(4), 357–385. Re-357

trieved 2015-08-06, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689816/358

doi: 10.1080/17513750701813184359

Callaway, D. S., & Perelson, A. S. (2002). HIV-1 infection and low steady state360

viral loads. Bulletin of Mathematical Biology, 64(1), 29–64. Retrieved 2015-361

06-21, from http://link.springer.com/article/10.1006/bulm.2001.0266 doi:362

10.1006/bulm.2001.0266363

18

PeerJ reviewing PDF | (2017:06:18779:1:1:NEW 7 Aug 2017)

Manuscript to be reviewed



Cassels, S., Clark, S. J., & Morris, M. (2008). Mathematical models for HIV transmission dynam-364

ics: Tools for social and behavioral science research. Journal of Acquired Immune Deficiency365

Syndromes, 47(Suppl 1), S34-39. doi: 10.1097/QAI.0b013e3181605da3366

Cuadros, D. F., Crowley, P. H., Augustine, B., Stewart, S. L., & Garcı́a-Ramos, G. (2011). Effect367

of variable transmission rate on the dynamics of HIV in sub-saharan Africa. BMC Infectious368

Diseases, 11, 216. doi: 10.1186/1471-2334-11-216369

Cuadros, D. F., & Garcı́a-Ramos, G. (2012). Variable effect of co-infection on370

the HIV infectivity: Within-host dynamics and epidemiological significance. The-371

oretical Biology and Medical Modelling, 9(1), 9. Retrieved 2014-09-19, from372

http://www.tbiomed.com/content/9/1/9/abstract doi: 10.1186/1742-4682-9-9373

Curran, J. W., Morgan, W. M., Hardy, A. M., Jaffe, H. W., Darrow, W. W., & Dowdle, W. R.374

(1985). The epidemiology of AIDS: Current status and future prospects. Science, 229(4720),375

1352–1357. Retrieved 2015-06-13, from http://www.jstor.org/stable/1695452376

De Boer, R. J., & Perelson, A. S. (1998). Target cell limited and immune control models of HIV in-377

fection: A comparison. Journal of Theoretical Biology, 190(3), 201–214. Retrieved 2015-08-06,378

from http://www.sciencedirect.com/science/article/pii/S0022519397905488379

doi: 10.1006/jtbi.1997.0548380

DebRoy, S., & Martcheva, M. (2008). Immuni-epidemiology and HIV-AIDS: A modeling per-381

spective. In Mathematical Biology Research Trends (pp. 175–192). Nova Science Publishers.382

Doekes, H. M., Fraser, C., & Lythgoe, K. A. (2017, 01). Effect of the latent reservoir on the evolu-383

tion of HIV at the within- and between-host levels. PLOS Computational Biology, 13(1), 1-27.384

Retrieved from https://doi.org/10.1371/journal.pcbi.1005228 doi: 10.1371/jour-385

nal.pcbi.1005228386

Feng, Z., Velasco-Hernandez, J., Tapia-Santos, B., & Leite, M. C. A. (2011).387

A model for coupling within-host and between-host dynamics in an infec-388

19

PeerJ reviewing PDF | (2017:06:18779:1:1:NEW 7 Aug 2017)

Manuscript to be reviewed



tious disease. Nonlinear Dyn, 68(3), 401–411. Retrieved 2015-02-11, from389

http://link.springer.com/article/10.1007/s11071-011-0291-0 doi:390

10.1007/s11071-011-0291-0391

Gog, J. R., Pellis, L., Wood, J. L. N., McLean, A. R., Arinaminpathy, N., &392

Lloyd-Smith, J. O. (2015). Seven challenges in modeling pathogen dynamics393

within-host and across scales. Epidemics, 10, 45–48. Retrieved 2015-08-08, from394

http://www.sciencedirect.com/science/article/pii/S1755436514000589 doi:395

10.1016/j.epidem.2014.09.009396

Haberman, S. (1990). Actuarial review of models for describing and predicting the spread of397

HIV infection and AIDS. Journal of the Institute of Actuaries (1886-1994), 117(2), 319–405.398

Retrieved 2015-08-06, from http://www.jstor.org/stable/41140975399

Hamers, R. L., Wallis, C. L., Kityo, C., Siwale, M., Mandaliya, K., Conradie, F., . . . others (2011).400

Hiv-1 drug resistance in antiretroviral-naive individuals in sub-saharan africa after rollout of401

antiretroviral therapy: a multicentre observational study. The Lancet infectious diseases, 11(10),402

750–759.403

Handel, A., & Rohani, P. (2015). Crossing the scale from within-host in-404

fection dynamics to between-host transmission fitness: A discussion of cur-405

rent assumptions and knowledge. Philosophical Transactions of the Royal406

Society of London B: Biological Sciences, 370(1675). Retrieved from407

http://rstb.royalsocietypublishing.org/content/370/1675/20140302 doi:408

10.1098/rstb.2014.0302409

Hellriegel, B. (2001). Immunoepidemiology–bridging the gap between immunology and epidemi-410

ology. Trends in Parasitology, 17(2), 102–106.411

20

PeerJ reviewing PDF | (2017:06:18779:1:1:NEW 7 Aug 2017)

Manuscript to be reviewed



Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., & Markowitz, M. (1995).412

Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 373(6510),413

123–126. doi: 10.1038/373123a0414

Hollingsworth, T. D., Anderson, R. M., & Fraser, C. (2008). HIV-1 transmission, by stage of415

infection. J. Infect. Dis., 198(5), 687–693. doi: 10.1086/590501416

Hosseini, I., & Mac Gabhann, F. (2012). Multi-scale modeling of HIV infection in vitro and417

APOBEC3g-based anti-retroviral therapy. PLoS Comput Biol, 8(2), e1002371. Retrieved 2015-418

08-06, from http://dx.doi.org/10.1371/journal.pcbi.1002371 doi: 10.1371/jour-419

nal.pcbi.1002371420
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FIGURE LEGENDS508

Figure 1509

Within-host immune-viral dynamics and between-host transmission dynamics of HIV. HIV510

spreads in the population from infected individuals to susceptibles through sexual contact, intra-511

venous drug use, blood transfusion and mother-to-child vertical transmission. HIV immune-viral512

dynamics determine the time-varying viral load within each infected individual.513

Figure 2514

PRISMA flow-diagram. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-515

Analyses) flow-diagram of articles’ identification, screening, eligibility and inclusion in the sys-516

tematic review. A total of 9 studies are included in this systematic review of multi-scale immu-517

noepidemiological modeling of within-host and between-host HIV dynamics.518
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Figure 1

Figure 1: Within-host immune-viral dynamics and between-host transmission dynamics

of HIV.

HIV spreads in the population from infected individuals to susceptibles through sexual

contact, intravenous drug use, blood transfusion and mother-to-child vertical transmission.

HIV immune-viral dynamics determine the time-varying viral load within each infected

individual.
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Figure 2

Figure 2: PRISMA flow-diagram.

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow-diagram

of articles’ identification, screening, eligibility and inclusion in the systematic review. A total

of 9 studies are included in this systematic review of multi-scale immunoepidemiological

modeling of within-host and between-host HIV dynamics.
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Table 1(on next page)

Table 1: Characteristics of HIV immunoepidemiological modeling studies.

The study topic, objective, model implementation, immunoepidemiological link between

within-host and between-host models, and inferences of the studies included in the

systematic review are summarized.
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Table 1: Characteristics of HIV immunoepidemiological modeling studies. The study topic, objective, model implementation, immunoepidemio-

logical link between within-host and between-host models, and inferences of the studies included in the systematic review are summarized.

Study Topic Objective Implementation Immunoepidemiological link Inferences

Martcheva

& Li

(2013)

Super-

infection

How does HIV

super-infection

affect population

dynamics?

Partial differen-

tial equations

Transmission rate between hosts

and death rate of individuals de-

pend on viral load within host

over time.

In certain cases, decreasing viral load can cause

higher prevalence of HIV since infected indi-

viduals may live longer; oscillations at popula-

tion level do not occur in superinfection, con-

trasting previous studies that did not use linked

models.

Saenz &

Bonhoeffer

(2013)

Drug re-

sistance

How do the

dynamics of

drug-sensitive

and drug-resistant

HIV strains within

hosts affect the

prevalence of

drug-resistant

strains in the

population?

Partial differen-

tial equations

Transmission rate between hosts

depends on viral load within host

over time.

Increasing early initiation and coverage de-

creases total prevalence upto an optimal treat-

ment coverage level but increases incidence and

prevalence of drug resistant infections; above

the optimal treatment coverage level, number of

infections may not decrease in the long term and

can even increase.

Lythgoe et

al. (2013)

Evolution How does com-

petition between

strains within-host

affect evolution of

HIV virulence?

Integro-

differential

equations with

delay

Strain-specific infectivity rate be-

tween hosts depends on frequency

of strains within-host.

Small rates of within-host evolution mod-

estly increase HIV virulence while maximiz-

ing transmission potential; high rates of within-

host evolution largely increase HIV virulence

but lower transmission potential.

Doekes et

al. (2017)

Evolution How does latent

reservoir of in-

fected CD4+ T

cells affect the

types of strains

of HIV that will

evolve within and

between hosts?

Integro-

differential

equations with

delay

Strain-specific infectivity rate be-

tween hosts depends on frequency

of strain in actively infected

CD4+ T cells within-host.

Relatively large latent reservoirs cause delay to

within-host evolutionary processes, which se-

lect for moderately virulent strains that opti-

mize transmission at the population level; with

no reservoir, highly virulent strains are selected

for within-host that do not optimize transmis-

sion at the population level.

2
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Study Topic Objective Implementation Immunoepidemiological link Inferences

Cuadros

& Garcı́a-

Ramos

(2012)

Co-

infection

How does co-

infection affect the

HIV replication

capacity?

Ordinary differ-

ential equations

Transmission rate between hosts

depends on steady-state of viral

load within host.

Impact of co-infection increases as average set-

point viral load of population increases.

Yeghiazarian

et al.

(2013)

ART How does the tim-

ing of antiretrovi-

ral therapy (ART)

in individuals af-

fect the spread of

HIV?

Individual-

based model

Transmission rate to each suscep-

tible partner depends on viral load

of infected individual.

Beginning ART during acute infection is most

effective for reducing spread of HIV.

Shen et al.

(2015)

ART How does an-

tiretroviral therapy

(ART) affect HIV

prevalence?

Partial differen-

tial equations

Transmission rate depends on sat-

urated viral load within-host, and

varies between stages of infec-

tion.

While ART decreases the viral load and infec-

tiousness of each infected host, in certain cases,

this can lead to higher spread of HIV through-

out the population because these infected indi-

viduals live longer; HIV can still be controlled

in these cases if drug effectiveness is high.

Sun et al.

(2016)

ART How does an-

tiretroviral therapy

(ART) affect HIV

prevalence?

Individual-

based model

Transmission rate to each suscep-

tible partner depends on viral load

of infected individual.

Initiating ART early causes lower transmission

of HIV in population; however, when ART ef-

ficacy decreases with emergence of drug re-

sistance, early treatment leads to higher HIV

spread in the population because the prevalence

of drug resistant strains increases rapidly.

Metzger et

al. (2011)

TIPs How does intro-

duction of thera-

peutic interfering

particles (TIPs) af-

fect HIV preva-

lence?

Ordinary differ-

ential equations

Transmission rate between hosts

depends on steady-states of TIP

and HIV viral loads within-host.

Deploying TIPs in even small numbers of in-

fected individuals reduces the prevalence of

HIV to low levels due to TIPs’ ability to trans-

mit between hosts and target high-risk groups;

using TIPs reduces challenges of antiretroviral

therapy and vaccines, and complements them.

2
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Table 2(on next page)

Table 2: HIV infection with single strain.

Within-host layer of HIV multi-scale model with assumption of single strain HIV infection. The

uninfected CD4+ T cells get infected by the free virions and produce HIV virus. CD4+ T cells

have the constant reproduction and death rates. HIV induces death rate of infected cells. HIV

population increases by production of virus by infected cells, and decreases because of the

virus clearance and shedding rate.
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Model diagram

Equations

dT

dτ
= λ - kTV - dT

dT
∗

dτ
= kTV - (µ + d)T ∗

dV

dτ
= N(µ + d)T ∗ − (c + s)V − kTV

Parameters

λ Reproduction rate of uninfected cells

k Infection rate of uninfected cells

d Natural death rate of uninfected cells

µ HIV induced death rate of infected cells

N HIV production by infected cells

s Shedding rate of virus

c HIV clearance rate

Table 2: HIV infection with single strain. Within-host layer of HIV multi-scale model with

assumption of single strain HIV infection. The uninfected CD4+ T cells get infected by the free

virions and produce HIV virus. CD4+ T cells have the constant reproduction and death rates. HIV

induces death rate of infected cells. HIV population increases by production of virus by infected

cells, and decreases because of the virus clearance and shedding rate.
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Table 3(on next page)

Table 3: HIV super-infection.

The within-host layer of HIV multi-scale model illustrates the impact of infection with multiple

strains of HIV. This model includes the uninfected, infected target CD4+ T cells with different

strains, and different strains of free HIV virions. An individual may get infected with drug-

resistant and/or drug-susceptible strains. Also, mutations may happen within-host leading to

emergence of drug-resistant strains.

PeerJ reviewing PDF | (2017:06:18779:1:1:NEW 7 Aug 2017)

Manuscript to be reviewed



Model diagram

Equations

dT

dτ
= λ − kiTVi − dT

dTi

dτ
= kiTVi − (µi + d)Ti

dVi

dτ
= Ni(µi + d)Ti − (c + si)Vi − kiTVi

Parameters

λ Reproduction rate of uninfected cells

ki Infection rate of uninfected cells by virus strain i

µi HIV induced death rate of infected cell with strain i

Ni HIV Production of virus i by infected cells

si Shedding rate of virus strain i

d Natural death rate of uninfected cells

c HIV clearance rate

Table 3: HIV super-infection. The within-host layer of HIV multi-scale model illustrates the

impact of infection with multiple strains of HIV. This model includes the uninfected, infected

target CD4+ T cells with different strains, and different strains of free HIV virions. An individual

may get infected with drug-resistant and/or drug-susceptible strains. Also, mutations may happen

within-host leading to emergence of drug-resistant strains.
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Table 4(on next page)

Table 4: HIV drug resistance.

The within-host layer of HIV multi-scale model illustrates the uninfected and infected target

CD4+ T cells, including drug-sensitive and drug-resistant strains. Mutations from drug-

sensitive to drug-resistant or drug-resistant to drug-sensitive strains are studied in this

model, and the impact of treatment is also included.
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Model diagram

Equations

dT
dτ

= λ − (1 − ǫrt)ksTVs − (1 − prtǫrt)krTVr − dT

dTs

dτ
= (1 − msr)(1 − ǫrt)ksTVs + mrs(1 − prtǫrt)krTVr − (µ + d)Ts

dTr

dτ
= msr(1 − ǫrt)ksTVs + (1 − mrs)(1 − prtǫrt)krTVr − (µ + d)Tr

dVs

dτ
= (1 − ǫpi)Ns(µ + d)Ts − cVs

dVr

dτ
= (1 − ppiǫpi)Nr(µ + d)Tr − cVr

Parameters

λ Reproduction rate of uninfected cells

ks infection rate of uninfected cells by drug-sensitive strain

kr infection rate of uninfected cells by drug-resistant strain

d Natural death rate of uninfected cells

µ HIV induced death rate of infected cells

c HIV clearance rate

ǫrt Efficacy of reverse transcriptase inhibitor treatment

ǫpi Efficacy of protease inhibitor treatment

Vs Drug sensitive strain of HIV

Vr Drug resistant strain of HIV

msr A proportion of infected cells with drug-sensitive strain that produce drug resistant virions

mrs A proportion of infected cell with drug-resistant strain that produce drug sensitive virions

prt Relative rate of reverse transcriptase inhibitor efficacy for drug resistant strain

ppi Relative rate of protease inhibitor efficacy for drug resistant strain

Ns Reproduction of HIV virus by drug-sensitive strain

Nr Reproduction of HIV virus by drug-resistant strain

Table 4: HIV drug resistance. The within-host layer of HIV multi-scale model illustrates the

uninfected and infected target CD4+ T cells, including drug-sensitive and drug-resistant strains.

Mutations from drug-sensitive to drug-resistant or drug-resistant to drug-sensitive strains are stud-

ied in this model, and the impact of treatment is also included.
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Table 5(on next page)

Table 5: HIV co-infection.

The within-host layer of HIV multi-scale model illustrates the impact of co-infection. This

model includes the uninfected and infected target CD4+ T cells, and free virions. Co-infection

increases immune response and the infection rate of immune cells. Therefore, the set-point

viral load is higher compared to the case of no co-infection.
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Model diagram

Equations

dT

dτ
= λ − kTV − dT + [1 − Tm+T+T

∗

Tmax

]rT T

dT
∗

dτ
= kTV − (µ + d)T ∗ + kTmVTm

dV

dτ
= N(µ + d)T ∗ − cV

Parameters

λ Reproduction rate of uninfected cells

k Infection rate of uninfected cells

d Natural death rate of uninfected cells

µ HIV induced death rate of infected cells

N HIV production by infected cells

c HIV clearance rate

Tm Activated immune cells against co-infection

Tmax Maximum number of immune cells

rT Growth rate of non-specific immune cells

kTm Infection rate of co-infection

Table 5: HIV co-infection. The within-host layer of HIV multi-scale model illustrates the impact

of co-infection. This model includes the uninfected and infected target CD4+ T cells, and free

virions. Co-infection increases immune response and the infection rate of immune cells. Therefore,

the set-point viral load is higher compared to the case of no co-infection.
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Table 6(on next page)

Table 6: Susceptible-Infected (S I) epidemic model.

The between-host layer of HIV multi-scale model illustrates the random mixing of

susceptibles and infected individuals. Susceptibles get infected by the infected individuals.

HIV transmission rate depends on the HIV viral load at the within-host scale.
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Model diagram

Equations

dS

dt
= b − βS I − δS

dI

dt
= βS I − (α + δ)I

Parameters

S Number of individuals in the susceptible class

I Number of individuals in the infected class

b Natural birth rate in the population

β HIV transmission rate in the population

α Disease induced mortality rate

δ Natural death rate in the population

Table 6: Susceptible-Infected (S I) epidemic model. The between-host layer of HIV multi-scale

model illustrates the random mixing of susceptibles and infected individuals. Susceptibles get

infected by the infected individuals. HIV transmission rate (β) depends on the HIV viral load at

the within-host scale.
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Table 7(on next page)

Table 7: HIV drug resistance and treatment impact.

HIV transmission dynamics between drug-sensitive and drug-resistant infected individuals

are illustrated. Infected individuals may get infected by the drug-sensitive or drug-resistant

strains. A proportion p of infected individuals get treatment, and among the infected

individuals with drug-sensitive strains, a proportion q of them develop drug resistance.
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Model diagram

Equations

dS
dt

= b − βDRS IDR − βDS S IDS − δS

dIDR0

dt
= (1 − p)βDRS IDR − (α + δ)IDR0

dIDRT

dt
= pβDRS IDR − (α + δ)IDRT

dIDS 0

dt
= (1 − p)βDS S IDS − (α + δ)IDS 0

dIDS T

dt
= p(1 − q)βDS S IDS − (α + δ)IDS T

dIDS Tr

dt
= pqβDS S IDS − (α + δ)IDS Tr

Parameters

b Natural birth rate in the population

IDR0 Number of individuals infected with drug-resistant strain and do not receive treatment

IDRT Number of individuals infected with drug-resistant strain and receive treatment

IDS 0 Number of individuals infected with drug-sensitive strain and do not receive treatment

IDS T Number of individuals infected with drug-sensitive strain and receive treatment

IDS Tr Number of individuals infected with drug-sensitive strain, receive treatment, and develop resistance

βDR Drug-resistant HIV transmission rate in the population

βDS Drug-sensitive HIV transmission rate in the population

α HIV induced mortality rate

δ Natural death rate in the population

p Proportion of infected individuals who receive treatment

q Proportion of infected individuals who receive treatment and develop resistance

IDR IDR0 + IDRT

IDS IDS 0 + IDS T + IDS Tr

Table 7: HIV drug resistance and treatment impact. HIV transmission dynamics between drug-

sensitive and drug-resistant infected individuals are illustrated. Infected individuals may get in-

fected by the drug-sensitive or drug-resistant strains. A proportion p of infected individuals get

treatment, and among the infected individuals with drug-sensitive strains, a proportion q of them

develop drug resistance.
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Table 8(on next page)

Table 8: HIV evolution.

HIV transmission dynamics between infected individuals with different strains are illustrated.

Infected individuals with strains i may get infected with another strain j and transmit the

dominant strain of HIV.
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Model diagram

Equations

S (t) = b −
∑n

i=1

∫ Ti

0
Hi(t − τ)e

−δτdτ

Ii(t) =

∫ Ti

0
Hi(t − τ)e

−δτdτ − (α + δ)Ii

Hi(t) =
S (t)

N(t)

∑n
j=1

∫ Ti

0
βi j(τ)H j(t − τ)e

−δτdτ

Parameters

b Natural birth rate in the population

Ti Time of death after initiation of infection

Hi The rate at which new type-i infection occur

δ Natural mortality rate

Ii Number of individuals infected with strain i

βi j Infectivity of strain i in a host originally infected with strain j at time τ since infection.

Table 8: HIV evolution. HIV transmission dynamics between infected individuals with different

strains are illustrated. Infected individuals with strains i may get infected with another strain j and

transmit the dominant strain of HIV.
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Table 9(on next page)

Table 9: HIV and therapeutic interfering particles (TIPs).

HIV transmission dynamics between infected individuals with wild type of HIV and TIPs are

illustrated. Individuals can get infected with wild type of HIV, TIPS, or both. Infected

individuals can get reinfected with both types.
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Model diagram

Equations

dS

dt
= b − βI

W
S I − β

Id

W
(1 − β

Id

T
)S Id − β

Id

W
β

Id

T
S Id − β

Id

T
(1 − β

Id

W
)S Id − δS

dI

dt
= βI

W
S I + β

Id

W
(1 − β

Id

T
)S Id − β

Id

T
IId − (α + δ)I

dId

dt
= β

Id

W
β

Id

T
S Id + β

I

W
S T I + β

Id

W
S T Id + β

Id

T
IId − (α + δ)Id

dS T

dt
= β

Id

T
(1 − β

Id

W
)S Id − β

I

W
S T I − β

Id

W
S T Id − (α + δ)S T

Parameters

b Natural birth rate in the population

I Number of infected individuals with only the wild type of HIV

Id Individuals infected with both HIV and TIPs

S T Individuals infected with only TIPs

βI

W
Transmission rate of wild type HIV from HIV infected individuals

β
Id

W
Transmission rate of wild type HIV from dually infected individuals

β
Id

T
Transmission rate of TIPs from dually infected individuals

Table 9: HIV and therapeutic interfering particles (TIPs). HIV transmission dynamics between

infected individuals with wild type of HIV and TIPs are illustrated. Individuals can get infected

with wild type of HIV, TIPS, or both. Infected individuals can get reinfected with both types.
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Table 10(on next page)

Table 10: Coupling mechanism of within-host and between-host scales of HIV dynamics.

The within-host and between-host layers of HIV multi-scale model are linked using partial

differential equations. The HIV viral immune dynamics model (see Table 2) determines the

time-varying within-host viral load, which impacts the transmission rate. Another method to

determine the HIV transmission rate is based on the viral load equilibrium.
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Equations

dS

dt
= b − S

∫
∞

0
β(τ)I(τ, t)dτ − δS

∂I
∂t
+
∂I
∂τ
= −m(V(τ))I(τ, t)

I(0, t) = S

∫
∞

0
β(τ)I(τ, t)dτ

Parameters

S Number of individuals in the susceptible class

I(τ, t) Number of infected individuals structured by time since infection (τ)

b Natural birth rate in the population

β(τ) HIV transmission rate (r.V(τ))

m Coefficient on dependence of induced mortality due to disease on the host viral load.

Table 10: Coupling mechanism of within-host and between-host scales of HIV dynamics. The

within-host and between-host layers of HIV multi-scale model are linked using partial differen-

tial equations. The HIV viral immune dynamics model (see Table 2) determines the time-varying

within-host viral load, which impacts the transmission rate (β(τ) = r.V(τ); r is a constant coeffi-

cient). Another method to determine the HIV transmission rate is based on the viral load equilib-

rium.
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Table 11(on next page)

Table 11: Clinical and public health relevant problems of HIV dynamics.

Clinical and public health relevant problems of HIV dynamics that can be potentially

addressed using multi-scale models.
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• How does the time-varying viral load and shedding rate since HIV infection impact the

transmission rate between hosts?

• How does co-infection among HIV-infected individuals impact the HIV dynamics in the

population?

• How does super-infection of multiple HIV strains among infected individuals impact the

HIV dynamics in the population?

• How does within-host mutations of drug-sensitive and drug-resistant strains impact the HIV

evolution in the population?

• How does timing of treatment initiation among infected individuals impact the HIV dynam-

ics in the population?

• How does treatment compliance and interruption behavior of HIV-positive individuals im-

pact HIV dynamics in the population?

• What is the impact of pre-exposure prophylaxis of high-risk HIV-negative individuals on

HIV dynamics in the population?

• How can multi-scale HIV models be verified and validated with empirical data?

• How can the optimal layers from micro-biological (genomic, molecular, cellular, organ) to

macro-social (individual, family, community, national, global) levels for multi-scale models

of HIV dynamics be selected appropriately?

Table 11: Clinical and public health relevant problems of HIV dynamics. Clinical and public

health relevant problems of HIV dynamics that can be potentially addressed using multi-scale

models.
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