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ABSTRACT
Objective. The objective of this study is to conduct a systematic review of multi-scale
HIV immunoepidemiological models to improve our understanding of the synergistic
impact between the HIV viral-immune dynamics at the individual level and HIV
transmission dynamics at the population level.
Background. While within-host and between-host models of HIV dynamics have been
well studied at a single scale, connecting the immunological and epidemiological scales
through multi-scale models is an emerging method to infer the synergistic dynamics of
HIV at the individual and population levels.
Methods. We reviewed nine articles using the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) framework that focused on the synergistic
dynamics of HIV immunoepidemiological models at the individual and population
levels.
Results. HIV immunoepidemiological models simulate viral immune dynamics at the
within-host scale and the epidemiological transmission dynamics at the between-host
scale. They account for longitudinal changes in the immune viral dynamics of HIV+
individuals, and their corresponding impact on the transmission dynamics in the pop-
ulation. They are useful to analyze the dynamics of HIV super-infection, co-infection,
drug resistance, evolution, and treatment in HIV+ individuals, and their impact on
the epidemic pathways in the population. We illustrate the coupling mechanisms of
the within-host and between-host scales, their mathematical implementation, and
the clinical and public health problems that are appropriate for analysis using HIV
immunoepidemiological models.
Conclusion. HIV immunoepidemiological models connect the within-host immune
dynamics at the individual level and the epidemiological transmission dynamics at the
population level. While multi-scale models add complexity over a single-scale model,
they account for the time varying immune viral response of HIV+ individuals, and the
corresponding impact on the time-varying risk of transmission of HIV+ individuals to
other susceptibles in the population.
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INTRODUCTION
HIV prevalence and mortality were 38.8 million and 1.2 million deaths respectively in
2015, with annual incidence being relatively constant at 2.6 million per year from 2005
to 2015 (Wang et al., 2016). Access to big data and emergence of unanswered questions
enable novel methods of mathematical models to connect within-host immune viral
dynamics at the individual level, and the between-host epidemiological transmission
of infectious diseases at the population level (Gog et al., 2015). Mathematical models
of HIV dynamics have been extensively studied using single-scale based models at the
immunological and epidemiological scales (Perelson & Ribeiro, 2013; Akpa & Oyejola,
2010). The immunological models focus on the within-host immune viral dynamics
at the individual level, while the epidemiological models focus on the between-host
transmission dynamics at the population level. Multi-scale immunoepidemiological
modeling is an emerging method to study the synergistic dynamics of HIV at the individual
and population levels (DebRoy & Martcheva, 2008; Yeghiazarian, Cumberland & Yang,
2013; Handel & Rohani, 2015).

Epidemiological models
Epidemiological modeling of HIV infection started in 1985 (Curran et al., 1985).
Epidemiological models of HIV infections assign each individual to one of the following
states: susceptible or infected. Infected individuals may transmit HIV to susceptible hosts
with the same transmission rate over the course of disease, and experience specific duration
of infection (Isham, 1988; Hyman & Ann Stanley, 1988; Haberman, 1990). However, time
since infection, other co-infections, and a host’s biological factors such as age, sex, genetic
susceptibility, and immune status cause variation in infectiousness of HIV+ individuals
(Cassels, Clark & Morris, 2008). Host heterogeneity among different ages, gender and risk
groups is significant due to the multiple routes of transmission—sexual transmission,
intravenous transmission through needle sharing, blood transfusion, and mother-to-child
vertical transmission.

Immunological models
Within-host models of HIV at the individual level study the dynamics of HIV and
target immune cells—CD4+ T cells, macrophages, and dendritic cells. The complexity
of the models vary from molecular level (Reddy & Yin, 1999; Zarrabi et al., 2010; Hosseini
& Mac Gabhann, 2012), cellular level (Anderson & May, 1992; McLean, 1993; Ho et al.,
1995; Perelson et al., 1996; Kirschner, 1996; De Boer & Perelson, 1998; Banks et al., 2008;
Hosseini & Mac Gabhann, 2012; Perelson & Ribeiro, 2013), and tissue level (Spouge, Shrager
& Dimitrov, 1996). The within-host immunological models analyze the mechanisms of
HIV pathogenesis and prognosis from acute, latent and late stages of HIV infection to
AIDS phase.
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Figure 1 Within-host immune-viral dynamics and between-host transmission dynamics of HIV.HIV
spreads in the population from infected individuals to susceptibles through sexual contact, intravenous
drug use, blood transfusion and mother-to-child vertical transmission. HIV immune-viral dynamics de-
termine the time-varying viral load within each infected individual.

Immunoepidemiological models
Figure 1 illustrates that the transmission dynamics of HIV in the population is dependent
on the immune viral dynamics of HIV+ individuals. Immunoepidemiological models
factor the HIV transmission dynamics at the population level as a function of within-host
immune viral responses at the individual level (DebRoy & Martcheva, 2008; Yeghiazarian,
Cumberland & Yang, 2013; Hellriegel, 2001).

Clinical and public health significance
HIV immunoepidemiological models focus on solutions for the following questions of
clinical and public health significance (Feng et al., 2011):

• How does within-host immune-viral dynamics of HIV affect incidence at the population
level?
• How does population level transmission dynamics of HIV affect viral evolution at the
individual level?

In this study, we review the multi-scale modeling methods that connect the within-host
and between-host scales of HIV models. Understanding the relation between these two
scales is key to understand HIV prognosis, transmission risk, and intervention effectiveness
(Pepin et al., 2010).
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METHODS
Search strategy
We searched the PubMed database for articles published from December 1, 1985 to June
1, 2017 with the terms: (HIV and (‘‘multi-scale’’ or ‘‘immunoepidemiology’’ or ‘‘nested
model’’ or (‘‘within-host’’ and ‘‘between host’’) or (‘‘within-host’’ and ‘‘among host’’) or
(‘‘within-host’’ and (‘‘epidemiology’’ or ‘‘epidemiological’’)))).

Data abstraction and synthesis
The data abstraction and synthesis process was conducted by two authors (ND and
RNB) independently, and includes the following four steps: identification, screening,
eligibility, and inclusion. We resolved discordant decisions through consensus. During
the identification step, articles were identified using the above search strategy. During the
screening step, duplicate articles were removed, and titles and abstract of the remaining
articles were screened to determine their relevance to our study. During the eligibility step,
full texts of the articles were analyzed to determine their relevance to our study.

Inclusion and exclusion criteria
The inclusion criteria were articles focused on multi-scale immunoepidemiological
modeling of HIV dynamics. The exclusion criteria were articles that focused on genetic
epidemiology, molecular epidemiology, parasitology, ecology, evolutionary study, and
experimental studies.

PRISMA process
Figure 2 illustrates the process flow diagram of identification, screening, eligibility, and
inclusion of articles for the systematic review, using the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) framework (Moher et al., 2009). 89
articles were uniquely identified, 66 articles were screened out, and nine articles were
found eligible to be included in this systematic review. This systematic review includes a
qualitative synthesis and does not include the quantitative synthesis of a meta-analysis (not
applicable for this study).

RESULTS
Table 1 illustrates the characteristics of HIV immunoepidemiological modeling
studies included in this systematic review. The objective, model implementation,
immunoepidemiological link between within-host and between-host models, and
significant inferences of these studies are summarized in the table.

Within-host scale of HIV immunoepidemiological models
The within-host scale of HIV immunoepidemiological models simulate the immune-viral
dynamics of HIV, which can later be used to determine the impact on transmission
between hosts. We categorize the within-host models by whether they model a single strain
of HIV, super-infection, drug resistance, evolution, co-infection and therapeutic interfering
particles. The immunological scale includes the primary state variables of uninfected CD4+
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Figure 2 PRISMA flow-diagram. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) flow-diagram of articles’ identification, screening, eligibility and inclusion in the systematic re-
view. A total of nine studies are included in this systematic review of multi-scale immunoepidemiological
modeling of within-host and between-host HIV dynamics.

T cells concentration (T ), infected CD4+ T cells concentration (T ∗) and viral load (V ),
and the corresponding parameters for the immune-viral dynamics between these state
variables (Anderson & May, 1992; Perelson et al., 1996; De Boer & Perelson, 1998).

HIV infection with single strain
In this approach, it is assumed that there is only one strain ofHIV that infects the target cells.
No additional features such as mutation, super-infection, or co-infection are considered
at the within-host scale. We found three models that include only one strain of HIV at the
within-host scale (Shen, Xiao & Rong, 2015; Sun et al., 2016; Yeghiazarian, Cumberland &
Yang, 2013). An example of the basic dynamics are shown in Table 2, which also assumes
that viral shedding rate (s) has negative effect on the viral load (V ) within-host (DebRoy &
Martcheva, 2008). This model can be modified to include the effects of drug therapy, which
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Table 1 Characteristics of HIV immunoepidemiological modeling studies. The study topic, objective, model implementation, immunoepidemio-
logical link between within-host and between-host models, and inferences of the studies included in the systematic review are summarized.

Study Topic Objective Implementation Immunoepidemiological
link

Inferences

Martcheva
& Li
(2013)

Super-
infection

How does HIV super-
infection affect popu-
lation dynamics?

Partial differen-
tial equations

Transmission rate between
hosts and death rate of in-
dividuals depend on viral
load within host over time.

In certain cases, decreasing
viral load can cause higher
prevalence of HIV since in-
fected individuals may live
longer; oscillations at pop-
ulation level do not occur
in superinfection, contrast-
ing previous studies that
did not use linked models.

Saenz &
Bonhoeffer
(2013)

Drug re-
sistance

How do the dynamics
of drug-sensitive and
drug-resistant HIV
strains within hosts
affect the prevalence
of drug-resistant
strains in the popula-
tion?

Partial differen-
tial equations

Transmission rate between
hosts depends on viral load
within host over time.

Increasing early initiation
and coverage decreases to-
tal prevalence upto an op-
timal treatment coverage
level but increases inci-
dence and prevalence of
drug resistant infections;
above the optimal treat-
ment coverage level, num-
ber of infections may not
decrease in the long term
and can even increase.

Lythgoe,
Pellis &
Fraser
(2013)

Evolution How does competi-
tion between strains
within-host affect
evolution of HIV
virulence?

Integro-
differential
equations with
delay

Strain-specific infectivity
rate between hosts depends
on frequency of strains
within-host.

Small rates of within-host
evolution modestly in-
crease HIV virulence while
maximizing transmis-
sion potential; high rates
of within-host evolution
largely increase HIV viru-
lence but lower transmis-
sion potential.

Doekes,
Fraser &
Lythgoe
(2017)

Evolution How does latent
reservoir of infected
CD4+ T cells affect
the types of strains of
HIV that will evolve
within and between
hosts?

Integro-
differential
equations with
delay

Strain-specific infectivity
rate between hosts depends
on frequency of strain in
actively infected CD4+ T
cells within-host.

Relatively large latent reser-
voirs cause delay to within-
host evolutionary pro-
cesses, which select for
moderately virulent strains
that optimize transmis-
sion at the population level;
with no reservoir, highly
virulent strains are selected
for within-host that do not
optimize transmission at
the population level.

(continued on next page)
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Table 1 (continued)

Study Topic Objective Implementation Immunoepidemiological
link

Inferences

Cuadros &
García-
Ramos
(2012)

Co-
infection

How does co-
infection affect the
HIV replication
capacity?

Ordinary differ-
ential equations

Transmission rate between
hosts depends on steady-
state of viral load within
host.

Impact of co-infection in-
creases as average set-point
viral load of population in-
creases.

Yeghiazarian,
Cumberland
&
Yang
(2013)

ART How does the timing
of antiretroviral ther-
apy (ART) in individ-
uals affect the spread
of HIV?

Individual-
based model

Transmission rate to each
susceptible partner de-
pends on viral load of in-
fected individual.

Beginning ART during
acute infection is most ef-
fective for reducing spread
of HIV.

Shen,
Xiao &
Rong
(2015)

ART How does antiretrovi-
ral therapy (ART) af-
fect HIV prevalence?

Partial differen-
tial equations

Transmission rate depends
on saturated viral load
within-host, and varies be-
tween stages of infection.

While ART decreases
the viral load and
infectiousness of each
infected host, in certain
cases, this can lead to
higher spread of HIV
throughout the population
because these infected
individuals live longer;
HIV can still be controlled
in these cases if drug
effectiveness is high.

Sun et al.
(2016)

ART How does antiretrovi-
ral therapy (ART) af-
fect HIV prevalence?

Individual-
based model

Transmission rate to each
susceptible partner de-
pends on viral load of in-
fected individual.

Initiating ART early causes
lower transmission of HIV
in population; however,
when ART efficacy de-
creases with emergence of
drug resistance, early treat-
ment leads to higher HIV
spread in the population
because the prevalence of
drug resistant strains in-
creases rapidly.

Metzger,
Lloyd-
Smith &
Weinberger
(2011)

TIPs How does introduc-
tion of therapeutic
interfering particles
(TIPs) affect HIV
prevalence?

Ordinary differ-
ential equations

Transmission rate between
hosts depends on steady-
states of TIP and HIV viral
loads within-host.

Deploying TIPs in even
small numbers of infected
individuals reduces the
prevalence of HIV to low
levels due to TIPs’ ability to
transmit between hosts and
target high-risk groups; us-
ing TIPs reduces challenges
of antiretroviral therapy
and vaccines, and comple-
ments them.

Dorratoltaj et al. (2017), PeerJ, DOI 10.7717/peerj.3877 7/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.3877


Table 2 HIV infection with single strain.Within-host layer of HIV multi-scale model with assumption
of single strain HIV infection. The uninfected CD4+ T cells get infected by the free virions and produce
HIV virus. CD4+ T cells have the constant reproduction and death rates. HIV induces death rate of in-
fected cells. HIV population increases by production of virus by infected cells, and decreases because of the
virus clearance and shedding rate.

Model diagram

Equations
dT
dτ = λ−kTV −dT
dT∗
dτ = kTV − (µ+d)T ∗

dV
dτ =N (µ+d)T ∗− (c+ s)V −kTV

Parameters
λ Reproduction rate of uninfected cells
k Infection rate of uninfected cells
d Natural death rate of uninfected cells
µ HIV induced death rate of infected cells
N HIV production by infected cells
s Shedding rate of virus
c HIV clearance rate

affect the viral production rate and the viral infectivity rate (Shen, Xiao & Rong, 2015; Sun
et al., 2016; Yeghiazarian, Cumberland & Yang, 2013).

HIV super-infection
HIV super-infection occurs when individuals infected with a single HIV strain are infected
with a second HIV strain. Martcheva and Li included HIV infection with multiple strains in
their model, with the assumption of complete competitive exclusion between the strains at
the within-host scale. In this context, the strain with the larger reproduction rate becomes
dominant. They studied the impact of virulence of different strains on the equilibrium at
the individual and population scales (Martcheva & Li, 2013). Table 3 shows the schematic
and formulation of this model.

HIV drug resistance
Drug resistance can be acquired through mutations of drug-sensitive strains within-host or
through direct transmission of drug-resistant strains. Saenz and Bonhoeffer included HIV
infection with drug resistant strains in their model, and studied the effects of antiretroviral
treatment (ART) on both drug-sensitive and drug-resistant strains (Saenz & Bonhoeffer,
2013). Table 4 shows the schematic and formulation of this model.
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Table 3 HIV super-infection. The within-host layer of HIV multi-scale model illustrates the impact of
infection with multiple strains of HIV. This model includes the uninfected, infected target CD4+ T cells
with different strains, and different strains of free HIV virions. An individual may get infected with drug-
resistant and/or drug-susceptible strains. Also, mutations may happen within-host leading to emergence
of drug-resistant strains.

Model diagram

Equations
dT
dτ = λ−kiTVi−dT
dTi
dτ = kiTVi− (µi+d)Ti

dVi
dτ =Ni(µi+d)Ti− (c+ si)Vi−kiTVi

Parameters
λ Reproduction rate of uninfected cells
ki Infection rate of uninfected cells by virus strain i
µi HIV induced death rate of infected cell with strain i
Ni HIV Production of virus i by infected cells
si Shedding rate of virus strain i
d Natural death rate of uninfected cells
c HIV clearance rate

HIV evolution
Studies have modeled HIV viral evolution within-host and its impact on transmission
between hosts (Lythgoe, Pellis & Fraser, 2013; Doekes, Fraser & Lythgoe, 2017). They
investigate the trade-off between increased virus replication and virulence and decrease in
virus transmission. Doekes, Fraser & Lythgoe (2017) also included long-lived reservoirs of
latently infected CD4+ T cells to determine their impact on HIV within-host competition.

HIV co-infection
HIV co-infectionwith sexually transmitted infections among high risk groups (Abu-Raddad
et al., 2008), and/or co-infection with endemic infections such as malaria (Cuadros et al.,
2011) have direct impact on increasing the transmission rate of both infections. Cuadros
and García-Ramos incorporated HIV co-infection dynamics in the within-host immune
model (Callaway & Perelson, 2002; Stafford et al., 2000; Nowak & May, 2000) to address
increased immune response and increased risk of transmission, and evaluated their impact
on HIV epidemics (Cuadros & García-Ramos, 2012). Table 5 shows the schematic and
formulation of this model.
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Table 4 HIV drug resistance. The within-host layer of HIV multi-scale model illustrates the uninfected
and infected target CD4+ T cells, including drug-sensitive and drug-resistant strains. Mutations from
drug-sensitive to drug-resistant or drug-resistant to drug-sensitive strains are studied in this model, and
the impact of treatment is also included.

Model diagram

Equations
dT
dτ = λ− (1−εrt )ksTVs− (1−prt εrt )krTVr−dT
dTs
dτ = (1−msr )(1−εrt )ksTVs+mrs(1−prt εrt )krTVr− (µ+d)Ts

dTr
dτ =msr (1−εrt )ksTVs+ (1−mrs)(1−prt εrt )krTVr− (µ+d)Tr

dVs
dτ = (1−εpi)Ns(µ+d)Ts− cVs

dVr
dτ = (1−ppiεpi)Nr (µ+d)Tr− cVr

Parameters
λ Reproduction rate of uninfected cells
ks Infection rate of uninfected cells by drug-sensitive strain
kr Infection rate of uninfected cells by drug-resistant strain
d Natural death rate of uninfected cells
µ HIV induced death rate of infected cells
c HIV clearance rate
εrt Efficacy of reverse transcriptase inhibitor treatment
εpi Efficacy of protease inhibitor treatment
Vs Drug sensitive strain of HIV
Vr Drug resistant strain of HIV
msr A proportion of infected cells with drug-sensitive strain that produce drug resistant virions
mrs A proportion of infected cell with drug-resistant strain that produce drug sensitive virions
prt Relative rate of reverse transcriptase inhibitor efficacy for drug resistant strain
ppi Relative rate of protease inhibitor efficacy for drug resistant strain
Ns Reproduction of HIV virus by drug-sensitive strain
Nr Reproduction of HIV virus by drug-resistant strain
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Table 5 HIV co-infection. The within-host layer of HIV multi-scale model illustrates the impact of
co-infection. This model includes the uninfected and infected target CD4+ T cells, and free virions.
Co-infection increases immune response and the infection rate of immune cells. Therefore, the set-point
viral load is higher compared to the case of no co-infection.

Model diagram

Equations

dT
dτ = λ−kTV −dT+[1−

Tm+T+T∗

Tmax
]rTT

dT∗
dτ = kTV − (µ+d)T ∗+kTmVTm

dV
dτ =N (µ+d)T ∗− cV

Parameters
λ Reproduction rate of uninfected cells
k Infection rate of uninfected cells
d Natural death rate of uninfected cells
µ HIV induced death rate of infected cells
N HIV production by infected cells
c HIV clearance rate
Tm Activated immune cells against co-infection
Tmax Maximum number of immune cells
rT Growth rate of non-specific immune cells
kTm Infection rate of co-infection

HIV and therapeutic interfering particles
Therapeutic interfering particles (TIPs) are an emerging drug therapy where therapeutic
versions of the pathogen are manufactured to attack viral replication processes and
can be transmitted between hosts (Metzger, Lloyd-Smith & Weinberger, 2011). In the
within-host model developed by Metzger et al. HIV and TIPs are treated as separate
viral strains. The model includes CD4+ T cells infected with HIV only, CD4+ T
cells infected with TIPs only, and CD4+ T cells dually infected with HIV and TIPs
(Metzger, Lloyd-Smith & Weinberger, 2011).

Between-host scale of HIV immunoepidemiological models
Between-host scales of HIV immunoepidemiological models are based on the susceptible-
infectious (SI ) epidemic model, which have been used extensively to study HIV
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Table 6 Susceptible-Infected (SI ) epidemic model. The between-host layer of HIV multi-scale model
illustrates the random mixing of susceptibles and infected individuals. Susceptibles get infected by the in-
fected individuals. HIV transmission rate (β) depends on the HIV viral load at the within-host scale.

Model diagram

Equations
dS
dt = b−βSI−δS
dI
dt =βSI− (α+δ)I

Parameters
S Number of individuals in the susceptible class
I Number of individuals in the infected class
b Natural birth rate in the population
β HIV transmission rate in the population
α Disease induced mortality rate
δ Natural death rate in the population

transmission dynamics in a homogeneous population and random mixing of susceptibles
(S) and HIV+ individuals (I ) (Isham, 1988). Table 6 shows the schematic and formulation
of the SI epidemic model. Studies have extended the homogeneous population structure
of the SI model to incorporate different populations of infected individuals. We categorize
the studies by how they divide the infected population, and thus how the transmission rates
between these classes differ. We find heterogeneity in HIV transmission rates depending on
the stages of HIV infection (Cuadros & García-Ramos, 2012; Yeghiazarian, Cumberland &
Yang, 2013; Sun et al., 2016; Shen, Xiao & Rong, 2015), and the dynamics of super-infection
(Martcheva & Li, 2013), drug resistance (Saenz & Bonhoeffer, 2013), evolution (Lythgoe,
Pellis & Fraser, 2013; Doekes, Fraser & Lythgoe, 2017), and therapeutic interfering particles
(Metzger, Lloyd-Smith & Weinberger, 2011).

Acute, latent and late stages of HIV infection
Previous studies have shown that transmission rates differ depending on whether the
infected population is in the acute, latent, or AIDS stages (Hollingsworth, Anderson &
Fraser, 2008). This conclusion can be incorporated into immunoepidemiological models
by categorizing the infected population into different stages (Cuadros & García-Ramos,
2012; Yeghiazarian, Cumberland & Yang, 2013; Sun et al., 2016; Shen, Xiao & Rong, 2015;
Saenz & Bonhoeffer, 2013). Cuadros and García-Ramos extended the model so that the
HIV+ sub-populations also differed by sexual-risk activity (Cuadros & García-Ramos,
2012). Yeghiazarian et al. divided the infected population into stages to evaluate the timing
of treatment initiation at the individual level, and its impact on HIV transmission at the
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population level. They assumed treatment initiation can start during any stage of HIV
infection after diagnosis (Yeghiazarian, Cumberland & Yang, 2013).

HIV super-infection
HIV infected individuals are categorized based on the strains of infection. Due to the
assumption of competitive exclusion at the within-host level in the model developed by
Martcheva and Li, susceptible individuals only become infected with one of the strains.
Thus, only infected individuals having the dominant within-host strain can super-infect
individuals with the lesser within-host strain (Martcheva & Li, 2013).

HIV drug resistance
Drug-resistant strains can emerge during antiretroviral therapy (ART) (Rong, Feng &
Perelson, 2007), or can be transmitted between individuals who have never been exposed
to ART (Hué et al., 2009), which may lead to treatment failure if ART is begun (Hamers et
al., 2011). Saenz and Bonhoeffer thus categorize the infected population into those with
only drug-sensitive or only drug-resistant strains with or without treatment, and those
with drug-sensitive strains that develop drug-resistance while receiving treatment (Saenz
& Bonhoeffer, 2013). Table 7 shows the schematic and formulation of this model.

HIV evolution
Depending on virulence of the strain, infected individuals are categorized by the strain
with which they initially became infected (Doekes, Fraser & Lythgoe, 2017; Lythgoe, Pellis
& Fraser, 2013). Because it is assumed that all other strains develop from an initial strain
and only the most virulent strain is transmitted, infected individuals can end up infecting
others with a different strain than they were initially infected. Table 8 shows the schematic
and formulation of this model.

HIV and therapeutic interfering particles
The infected population is divided into classes of those infected with HIV only, those
infected with Therapeutic Interfering Particles (TIPs) only, and those infected dually with
HIV and TIPs. The infected population is also divided into these classes during different
stages of infection (Metzger, Lloyd-Smith & Weinberger, 2011). Table 9 shows the schematic
and formulation of this model.

Coupling within-host and between-host scales of HIV
immunoepidemiological models
The potential for transmission between HIV+ individuals to susceptibles is affected by the
viral load of infected hosts (Attia et al., 2009). In all the models that we analyzed in this
systematic review, the transmission rate between hosts is dependent on the within-host
viral load. We categorize the models into those where the transmission rate is a function of
viral load and those where the equilibria of the within-host model are used to determine
the transmission rate.

HIV transmission rate as a function of viral load
The within-host and between-host scales of HIV immunoepidemiological models are
coupled by basing the transmission rate on the time-varying viral load since infection. The
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Table 7 HIV drug resistance and treatment impact.HIV transmission dynamics between drug-sensitive
and drug-resistant infected individuals are illustrated. Infected individuals may get infected by the drug-
sensitive or drug-resistant strains. A proportion p of infected individuals get treatment, and among the in-
fected individuals with drug-sensitive strains, a proportion q of them develop drug resistance.

Model diagram

Equations
dS
dt = b−βDRSIDR−βDSSIDS−δS
dIDR0
dt = (1−p)βDRSIDR− (α+δ)IDR0

dIDRT
dt = pβDRSIDR− (α+δ)IDRT

dIDS0
dt = (1−p)βDSSIDS− (α+δ)IDS0

dIDST
dt = p(1−q)βDSSIDS− (α+δ)IDST

dIDSTr
dt = pqβDSSIDS− (α+δ)IDSTr

Parameters
b Natural birth rate in the population
IDR0 Number of individuals infected with drug-resistant strain and do not receive treatment
IDRT Number of individuals infected with drug-resistant strain and receive treatment
IDS0 Number of individuals infected with drug-sensitive strain and do not receive treatment
IDST Number of individuals infected with drug-sensitive strain and receive treatment
IDSTr Number of individuals infected with drug-sensitive strain, receive treatment, and

develop resistance
βDR Drug-resistant HIV transmission rate in the population
βDS Drug-sensitive HIV transmission rate in the population
α HIV induced mortality rate
δ Natural death rate in the population
p Proportion of infected individuals who receive treatment
q Proportion of infected individuals who receive treatment and develop resistance
IDR IDR0+ IDRT
IDS IDS0+ IDST + IDSTr
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Table 8 HIV evolution.HIV transmission dynamics between infected individuals with different strains
are illustrated. Infected individuals with strains imay get infected with another strain j and transmit the
dominant strain of HIV.

Model diagram

Equations
S(t )= b−

∑n
i=1

∫ Ti
0 Hi(t−τ )e−δτdτ

Ii(t )=
∫ Ti
0 Hi(t−τ )e−δτdτ− (α+δ)Ii

Hi(t )= S(t )
N (t )

∑n
j=1

∫ Ti
0 βij(τ )Hj(t−τ )e−δτdτ

Parameters
b Natural birth rate in the population
Ti Time of death after initiation of infection
Hi The rate at which new type-i infection occurs
δ Natural mortality rate
Ii Number of individuals infected with strain i
βij Infectivity of strain i in a host originally infected with strain j at time τ since infection.

viral load (and thus the transmission rate) is high during the acute and late stages of HIV
infection while being low during the latent stage (Hollingsworth, Anderson & Fraser, 2008;
DebRoy & Martcheva, 2008). Table 10 shows the formulation of thismodel. Unlike the basic
SI epidemiological model that assumes constant transmission rate (β), the between-host
model assigns time-varying transmission rate, which is dependent on the non-linear viral
immune dynamics of HIV in the within-host model.

In some models, the transmission rate depends on the viral load continuously over time
(Shen, Xiao & Rong, 2015; Martcheva & Li, 2013; Saenz & Bonhoeffer, 2013). Saenz and
Bonhoeffer also distinguished between drug-resistant and drug-sensitive strains and their
corresponding impact on the transmission rate (Saenz & Bonhoeffer, 2013). Martcheva and
Li made the death of infected individuals depend on the viral load over time, since the
AIDS stage is associated with high viral load (Martcheva & Li, 2013).

In the context of HIV evolution, while the transmission rate varies through time
depending on the viral load, the viral load is also modeled to distinguish between different
strains (Doekes, Fraser & Lythgoe, 2017; Lythgoe, Pellis & Fraser, 2013). The transmission
rate depends on a predefined infectivity profile which changes depending on the stage of
infection, and the frequency of the different viral strains in an infected population. Doekes
et al. made the transmission rate depend on the frequency of viral strains that were only in
actively infected CD4+ T cells (Doekes, Fraser & Lythgoe, 2017).
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Table 9 HIV and therapeutic interfering particles (TIPs).HIV transmission dynamics between infected
individuals with wild type of HIV and TIPs are illustrated. Individuals can get infected with wild type of
HIV, TIPS, or both. Infected individuals can get reinfected with both types.

Model diagram

Equations

dS
dt = b−β I

W SI−β Id
W (1−β Id

T )SId−β
Id
Wβ

Id
T SId−β

Id
T (1−β Id

W )SId−δS
dI
dt =β

I
W SI+β Id

W (1−β Id
T )SId−β

Id
T IId− (α+δ)I

dId
dt =β

Id
Wβ

Id
T SId+β I

W ST I+β
Id
W ST Id+β

Id
T IId− (α+δ)Id

dST
dt =β

Id
T (1−β Id

W )SId−β I
W ST I−β

Id
W ST Id− (α+δ)ST

Parameters
b Natural birth rate in the population
I Number of infected individuals with only the wild type of HIV
Id Individuals infected with both HIV and TIPs
ST Individuals infected with only TIPs
β I
W Transmission rate of wild type HIV from HIV infected individuals
β
Id
W Transmission rate of wild type HIV from dually infected individuals
β
Id
T Transmission rate of TIPs from dually infected individuals

The within-host viral load can be used to individualize the transmission rate over time
(Yeghiazarian, Cumberland & Yang, 2013; Sun et al., 2016). The CD4+ T cell count can also
be used to determine the stage of infection (Yeghiazarian, Cumberland & Yang, 2013).

HIV transmission rate using viral load equilibrium
Anothermethod of linking the within-host and between-host scales is to use the within-host
model to determine an equilibrium for the viral load. This equilibrium can then be used
as a constant parameter in the between-host model, which can then be analyzed further
by differing the parameters of the within-host model (Metzger, Lloyd-Smith & Weinberger,
2011; Cuadros & García-Ramos, 2012). Cuadros & García-Ramos (2012) accounted for
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Table 10 Coupling mechanism of within-host and between-host scales of HIV dynamics. The within-
host and between-host layers of HIV multi-scale model are linked using partial differential equations.
The HIV viral immune dynamics model (see Table 2) determines the time-varying within-host viral load,
which impacts the transmission rate (β(τ )= r .V (τ ); r is a constant coefficient). Another method to deter-
mine the HIV transmission rate is based on the viral load equilibrium.

Equations
dS
dt = b−S

∫
∞

0 β(τ )I (τ ,t )dτ−δS
∂I
∂t +

∂I
∂τ
=−m(V (τ ))I (τ ,t )

I (0,t )= S
∫
∞

0 β(τ )I (τ ,t )dτ

Parameters
S Number of individuals in the susceptible class
I (τ ,t ) Number of infected individuals structured by time since infection (τ )
b Natural birth rate in the population
β(τ ) HIV transmission rate (r .V (τ ))
m Coefficient on dependence of induced mortality due to disease on the host viral load.

the amplified viral load due to co-infection and the corresponding increase in HIV
transmission rate. Metzger, Lloyd-Smith & Weinberger (2011) determined the differing
viral loads associated with HIV and TIPs, and their effect on the transmission probabilities
between infected populations.

Clinical and public health implications
HIV virulence
Clinical studies have shown that HIV has evolved an intermediate level of virulence at the
within-host level that optimizes the transmission potential of the virus at the population
level (Fraser et al., 2007). However, at the within-host level, HIV can evolve quickly (Lemey,
Rambaut & Pybus, 2006), virulence increases during the course of the infection (Kouyos et
al., 2011), and infections with higher replicative capacities have higher virulence (Kouyos
et al., 2011). Replicative capacities also increase over the course of infection, albeit slowly
(Kouyos et al., 2011). Because of this behavior of HIV at the within-host level, it might be
expected that HIV would evolve a high virulence at the within-host level, even if it did not
optimize the transmission potential at the population level. To understand these seemingly
contradictory results, immunoepidemiologicalmodels were used, which incorporated these
behaviors of HIV at the within-host level (Lythgoe, Pellis & Fraser, 2013; Doekes, Fraser &
Lythgoe, 2017). The model developed by Lythgoe, Pellis & Fraser (2013) found that small
rates of within-host evolution optimize the transmission potential at the population level,
whereas higher rates of within-host evolution lead to high levels of virulence, but lower
transmission potential. Lythgoe, Pellis & Fraser (2013) suggest that the clinical observations
seen in HIV may be a result of a within-host fitness landscape that is complex to traverse,
since this leads to smaller rates of within-host evolution. They also suggest the effect
of the adaptive immune response may play a role in explaining the observed behavior
(Lythgoe, Pellis & Fraser, 2013). Based off the results from Lythgoe et al., a similar model
was constructed by Doekes, Fraser & Lythgoe (2017), which included a latent reservoir
of CD4+ T cells at the within-host level. They found that this latent reservoir may be
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responsible for delaying the evolutionary dynamics at the within-host level, which then
leads to the transmission potential being optimized (Doekes, Fraser & Lythgoe, 2017).

Antiretroviral therapy
While there is uncertainty over the timing of initiating antiretroviral therapy, some
studies have suggested there may be benefits to beginning treatment early (When To Start
Consortium et al., 2009; Cohen, 2011). Experimental studies also suggest that because
ART reduces transmissibility, increasing coverage levels may reduce the prevalence
of HIV (Cohen, 2011). However, drug-resistant strains can emerge, which can lead to
treatment failure (Hué et al., 2009; Hamers et al., 2011). Immunoepidemiological models
were used to understand these effects of ART, focusing on treatment timing (Sun et
al., 2016; Yeghiazarian, Cumberland & Yang, 2013), coverage levels (Shen, Xiao & Rong,
2015), and drug resistance (Saenz & Bonhoeffer, 2013; Sun et al., 2016). The models showed
that, in general, initiating treatment early (Yeghiazarian, Cumberland & Yang, 2013; Sun
et al., 2016), increasing coverage (Shen, Xiao & Rong, 2015; Saenz & Bonhoeffer, 2013),
and increasing effectiveness of ART (Shen, Xiao & Rong, 2015; Saenz & Bonhoeffer, 2013)
reduces the prevalence of HIV.

However, in certain cases, increases in the prevalence of HIV may occur even with
early treatment initiation, increased coverage, and increased effectiveness of ART to
drug-sensitive strains. Models showed that as ART coverage levels increase, the prevalence
of drug-resistant strains increase, which cause an increase in HIV prevalence (Saenz &
Bonhoeffer, 2013). Prevalence can also increase if drug-resistant strains cause the drug
efficacy to decrease significantly (Sun et al., 2016). These results imply that there may be
an optimal therapy coverage level that will minimize the number of infections (Saenz &
Bonhoeffer, 2013). Therefore, in these cases, the models suggest that HIV prevalence can be
reduced by focusing efforts on decreasing the risk of drug resistance emergence (Saenz &
Bonhoeffer, 2013).

Clinical studies have observed that under certain conditions, the prevalence of HIV
increases when ART coverage levels increase (Zaidi et al., 2013). Zaidi et al. (2013)
hypothesize that since ART reduces viral load, patients may live longer, and thus have
the ability to infect more people. Immunoepidemiolgical models also observed this effect
(Shen, Xiao & Rong, 2015), including a model of super-infection (Martcheva & Li, 2013).
Both model outcomes are consistent with the hypothesis of Zaidi et al., since the models
find that the increased prevalence is due solely to decreases in viral load (Shen, Xiao &
Rong, 2015; Martcheva & Li, 2013). The model developed by Shen, Xiao & Rong (2015)
found that this effect can be minimized if drug effectiveness is high.

Therapeutic interfering particles
Clinical trials have shown that therapeutic interfering particles (TIPs) have the potential
to reduce within-host viral load (Levine et al., 2006) and transmit between hosts (Aaskov et
al., 2006). Experimental studies have also shown that HIV transmission rates between hosts
depend on the within-host viral load (Fraser et al., 2007). Based on these assumptions, an
immunoepidemiological model is developed, which deploys TIPs to a small proportion
(1%) of the population (Metzger, Lloyd-Smith & Weinberger, 2011). The effect on HIV
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prevalence due to deploying TIPs is compared to deploying ART and to deploying a
hypothetical HIV vaccine. When TIPs have the ability to transmit between hosts, the
model shows deploying TIPs reduces HIV prevalence to lower levels than deploying ART
therapy or deploying vaccines. However, themodel shows that if TIPs do not have the ability
to transmit between hosts, then there is minimal effect on the reduction of HIV prevalence
(Metzger, Lloyd-Smith & Weinberger, 2011). While more study of TIPs is needed, TIPs have
the potential to be an effective therapy than either ART or vaccines.

HIV co-infection
Experimental studies suggest that co-infection may be responsible for increases seen in
set-point viral load (spVL) at the within-host level over time (Modjarrad & Vermund,
2010). These increases due to co-infection vary substantially within-host (Kublin et al.,
2005). Also, the concentrations of co-infection in high-risk groups versus low-risk groups
may affect how HIV spreads in the general population (Abu-Raddad et al., 2008). To study
the mechanisms responsible for these effects of co-infection, an immunoepidemiological
model was developed (Cuadros & García-Ramos, 2012). They found that populations with
higher spVL lead to higher increases in viral load due to co-infection, whereas populations
with lower spVL leads to lower increases in viral load due to co-infection. This leads to a
greater chance of co-infection increasing the prevalence of HIV in populations with high
average spVL (Cuadros & García-Ramos, 2012). Therefore, the effects of co-infection may
be mitigated by identifying the viral factors that can reduce the spVL in the population.

DISCUSSION
Mathematical implementation of HIV immunoepidemiological models
We conducted this systematic review of HIV immunoepidemiological models to improve
our understanding and analysis of the synergistic dynamics of HIV prognoses at the
individual level and the transmission dynamics at the population level. With respect
to mathematical implementation, within-host models are implemented using ordinary
differential equations which determine the HIV transmission rate for the between-host
model. If the within-host model is used at equilibrium to determine constant parameters
for the between-host model, ordinary differential equations are used for the between-
host model as well (Cuadros & García-Ramos, 2012; Metzger, Lloyd-Smith & Weinberger,
2011). Integro-differential equations with delay are used in the between-host scales of
HIV immunoepidemiological models to study HIV evolution dynamics (Lythgoe, Pellis &
Fraser, 2013; Doekes, Fraser & Lythgoe, 2017). Partial differential equations are used for the
between-host model if the transmission rate changes continuously with the within-host
viral load over time (Shen, Xiao & Rong, 2015; Martcheva & Li, 2013; Saenz & Bonhoeffer,
2013). Individual or agent-based based models analyze the HIV transmission dynamics
between individual agents in a population, wherein the HIV transmission rates of each
individual is determined by their specific within-host immune-viral dynamics (Sun et al.,
2016; Yeghiazarian, Cumberland & Yang, 2013).
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Table 11 Clinical and public health relevant problems of HIV dynamics. Clinical and public health rel-
evant problems of HIV dynamics that can be potentially addressed using multi-scale models.

•How does the time-varying viral load and shedding rate since HIV infection impact the transmission
rate between hosts?
•How does co-infection among HIV-infected individuals impact the HIV dynamics in the popula-
tion?
•How does super-infection of multiple HIV strains among infected individuals impact the HIV dy-
namics in the population?
•How does within-host mutations of drug-sensitive and drug-resistant strains impact the HIV evolu-
tion in the population?
•How does timing of treatment initiation among infected individuals impact the HIV dynamics in the
population?
•How does treatment compliance and interruption behavior of HIV-positive individuals impact HIV
dynamics in the population?
•What is the impact of pre-exposure prophylaxis of high-risk HIV-negative individuals on HIV dy-
namics in the population?
•How can multi-scale HIV models be verified and validated with empirical data?
•How can the optimal layers from micro-biological (genomic, molecular, cellular, organ) to macro-
social (individual, family, community, national, global) levels for multi-scale models of HIV dynamics
be selected appropriately?

Complexity of multi-scale models
Multi-scale HIV immunoepidemiological models have higher complexity in comparison
to single-scale immune or epidemiology models (Mideo, Alizon & Day, 2008). Thereby,
the choice of immunoepidemiological models should be determined by problems with
significant public health and clinical implications that can be addressed better bymulti-scale
models compared to single-scale models.

Clinical and public health relevant problems of HIV dynamics
Table 11 illustrates the clinical and public health relevant problems of HIV virulence,
co-infection, super infection, drug resistance and treatment dynamics that can be
potentially addressed using multi-scale models. Since the viral load among infected
individuals varies with time during the acute, latent and late stages of HIV infection,
immunoepidemiological models account for the time-varying viral load within host and
their impact on transmission between hosts. Co-infection among HIV-infected individuals
increases the average set-point of viral load in the population (Cuadros & García-Ramos,
2012). Super-infection of multiple HIV strains leads to oscillations in the population level
which do not occur in the absence of super-infection; this effect is only observed using
the multi-scale immunoepidemiological model (Martcheva & Li, 2013). The emergence
of drug resistance within hosts impacts the optimal coverage levels of drug-sensitive
treatment at the population level (Saenz & Bonhoeffer, 2013). Immunoepidemiological
models can account for treatment initiation, compliance and interruption behavior among
HIV-positive individuals as well as pre-exposure prophylaxis of high-risk HIV-negative
individuals, and their impact on emergence of drug resistance in the population. The new
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knowledge gained from analysis of HIV immunoepidemiological dynamics add value in
improving clinical and public health interventions for prevention and control of HIV
epidemics.

Limitations
We reviewed English language articles on HIV immunoepidemiological models that were
referenced in the PubMed database. The dynamics of the HIV immunoepidemiological
models are dependent on the selection of parameters, and the coupling mechanisms of
within-host immune-viral dynamics and between-host transmission dynamics. Verification
and validation of HIV immunoepidemiological models (andmulti-scale models in general)
with empirical data is a challenge to be addressed in future studies. Also, the selection of
optimal layers from the genomic, molecular, cellular, and organ levels at the micro-
biological scale to the individual, family, community, national, and global levels at the
macro-social scale is a challenge that need be addressed well in future studies.

CONCLUSION
HIV immunoepidemiological models combine the immune-viral dynamics at the
within-host immunological scale with the transmission dynamics at the between-host
epidemiological scale to analyze HIV dynamics of a single strain infection, co-infection,
super-infection, evolution, drug resistance, and treatment protocols in heterogeneous
populations. Based on our understanding of synergistic dynamics of HIV at the individual
and population scales, we should select the optimal layers of analysis frommicro-biological
to macro-social levels for multi-scale models to identify and improve solutions to clinical
and public health relevant problems of HIV dynamics.
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