

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready [submit online](#). The manuscript starts on page 4.

Important notes

Editor and deadline

Virginia Abdala / 3 Sep 2017

Files

5 Figure file(s)

1 Table file(s)

Please visit the overview page to [download and review](#) the files not included in this review PDF.

Declarations

No notable declarations are present

Please read in full before you begin

How to review

When ready [submit your review online](#). The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit <https://peerj.com/about/editorial-criteria/>

7 Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging “modern” with “cursorial”.

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander

Jérémie Tissier^{Corresp. 1, 2}, Jean-Claude Rage³, Michel Laurin³

¹ Cenozoic Research Group, JURASSICA Museum, Porrentruy, Switzerland

² Department of Geosciences, University of Fribourg, Fribourg, Switzerland

³ Département Histoire de la Terre, UMR 7207, Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements, Sorbonne Universités, CNRS/MNHN/UPMC, Museum national d'Histoire naturelle, Paris, France

Corresponding Author: Jérémie Tissier

Email address: jeremy.tissier@unifr.ch

Fossils are almost always represented by hard tissues but we present here the exceptional case of a 3-dimensionally preserved specimen that 'mummified' (likely between 40 and 34 million years ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, *Phosphotriton sigei*, whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three-dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that *P. sigei* was likely amphibious or terrestrial, and was probably not neotenic.

1 **Exceptional soft tissues preservation in a mummified frog-**
2 **eating Eocene salamander**

3 Jérémie Tissier^{1,2}, Jean-Claude Rage³ and Michel Laurin³

4 ¹ Cenozoic Research Group, JURASSICA Museum, Porrentruy, Switzerland

5 ² Department of Geosciences, University of Fribourg, Fribourg, Switzerland

6 ³ Département Histoire de la Terre, UMR 7207, Centre de Recherches sur la Paléobiodiversité et les

7 Paléoenvironnements, Sorbonne Universités, CNRS/MNHN/UPMC. Muséum national d'Histoire

8 naturelle, Paris, France

9

10 Corresponding Author:

11 Jérémie Tissier^{1,2}

12 Route de Fontenais 21, Porrentruy, 2900, Switzerland

13 Email address: jeremy.tissier@unifr.ch

14

15

16 ABSTRACT

17 Fossils are almost always represented by hard tissues but we present here the exceptional case of
18 a 3-dimensionally preserved specimen that ‘mummified’ (likely between 40 and 34 million years
19 ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander,
20 *Phosphotriton sigei*, whose skeleton and external morphology are well preserved, as revealed by
21 phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of
22 soft tissues preserved in three-dimensions are now identified: a lung, the spinal cord, a
23 lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal
24 glands. These are among the oldest known cases of three-dimensional preservation of these
25 organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract
26 contains remains of a frog, which represents the only known case of an extinct salamander that
27 fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve
28 our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future
29 biologists and palaeontologists working on urodele evolutionary biology. We also suggest that
30 the presence of bat guano and carcasses represented a close source of phosphorus, favouring
31 preservation of soft tissues. Bone microanatomy indicates that *P. sigei* was likely amphibious or
32 terrestrial, and was probably not neotenic.

33 INTRODUCTION

34 The ‘Phosphorites du Quercy’, in southwestern France, include numerous karstic fissures in-
35 filled by phosphatic sediments rich in vertebrate remains (Legendre et al., 1997; Pélissié & Sigé,
36 2006). Almost all remains appear as classical disarticulated fossil bones, but a few of them (a
37 salamander, anurans and snakes) are spectacular cases of exceptional preservation; the animals
38 are entirely mineralized, including the skin, in three dimensions. Unfortunately, these
39 ‘mummies’ were collected in the 19th century and their precise provenance and geological age
40 are unknown. However, it is suspected that they come from the late middle or late Eocene (Laloy
41 et al., 2013; Tissier et al., 2016).

42 Until recently, only the external morphology of the ‘mummies’ was known. However, recent
43 tomographic studies showed that the skeleton is preserved within the ‘mummies’ of the frog
44 *Thaumastosaurus gezei* (Laloy et al., 2013) and of the salamander *Phosphotriton sigei* (Tissier
45 et al., 2016). The specimen of *P. sigei* includes a large part of the trunk (preserved posterior to
46 the shoulder girdle), the anterior portion of the tail and the proximal portions of the hind limbs
47 (Fig. 1A). The right side of the trunk is crushed. Notable external features include the absence of
48 scales, the presence of costal grooves visible on the left side, and the presence of a longitudinally
49 slit-shaped cloaca.

50 The study of the skeleton of *Phosphotriton* confirmed that this fossil is a urodele amphibian;
51 more precisely, the phylogenetic analysis presented by Tissier et al. (2016) suggested that it is a
52 stem-salamandrid, although they did not definitely discard relationships with the Plethodontidae.

53 The microtomography of *Phosphotriton* clearly suggested also that, in addition to the skeleton,
54 soft tissues were preserved. Subsequent segmentations indeed displayed various soft tissues

55 within this specimen, which are the subject of the present article. We show here that the observed
56 organs are not infills of cavities but are really the organs themselves that were permineralized.

57 MATERIALS AND METHODS

58 The only specimen of *P. sigei* (MNHN.F.QU17755) was investigated with the help of
59 propagation phase contrast synchrotron X-ray microtomography, which gives a better contrast to
60 differentiate tissues from the mineral matrix than traditional absorption based synchrotron X-ray
61 microtomography. The method and parameters of acquisition are described in Tissier et al.
62 (2016). A 3D model is given in Supplementary Information in 3D PDF file format.

63 Several structures composed of soft tissues are preserved and may be identified on the
64 tomograms. They can be distinguished from bones and mineral matrix by their shape, density on
65 tomograms and structure. Their identification is based on comparisons with the literature on
66 urodele soft anatomy because dissecting extant specimens would not have added to what may be
67 drawn from the available literature. Therefore, we use their position in the body, their shape in
68 three dimensions, and their internal structure on tomograms to identify them based on
69 comparisons with existing descriptions. Some remain difficult to identify precisely, for several
70 reasons (incompleteness of the organ, segmentation difficulties, small size, etc.); proposed
71 identifications are therefore tentative in some cases, although some appear to be certain (spinal
72 cord, lumbosacral plexus), whereas others are much more speculative (e.g., an organ of the uro-
73 genital system).

74 To assess the lifestyle of *P. sigei*, we analysed the compactness profile of femoral mid-
75 diaphyseal virtual cross-sections. We then used these data to infer the lifestyle with the inference
76 models published by Laurin et al. (2009). These are based on statistical analyses of femoral
77 compactness profiles of 46 extant urodele species. Variables in the models were selected through
78 backward elimination and forward selection procedures, respectively, which led to two models
79 with different combinations of variables.

80 RESULTS

81 **Muscles.** Not all muscles appear to have been fossilized. In addition, most muscles were not
82 segmented, because of their irregular, ill-defined contour; their segmentation would have
83 required too much subjective interpretation and would have been very time-consuming. It has not
84 been possible to precisely identify the preserved muscles, as their position in the specimen is not
85 sufficient for this. Only three of them were segmented: they are recognizable by their fibrous
86 structure and shape (Figs. 1C-D). We suppose that these may be three ventral caudal muscles
87 described by Francis (1934: 102-103), which arise from the fourth caudal vertebra (i.e. *M.*
88 *caudali-pubo-ischio-tibialis*, *M. ischio-caudalis* [the most mesial one, which inserts on the
89 posterior border of the ischium] and *M. caudalifemoralis* [the most lateral one, which inserts on
90 the femur]). Francis (1934) described them as having an ‘oval cross-section’, and being ‘narrow
91 and strap-like’, which fits the muscles disclosed here. Their function is to flex the tail.

92 **Spinal cord.** It is preserved and visible in section in some vertebrae, inside the neural canal
93 (Figs. 1C, 2). In the vertebrae where it is not preserved, only an empty space is visible (black on

94 the tomogram). Unfortunately, that organ could not be segmented because its preservation is too
95 uneven. No bony support of the spinal cord is visible. Spinal cord supports are bony processes
96 that extend in the neural canal of vertebrae (Wake & Lawson, 1973; Skutschas, 2009; Skutschas
97 & Baleeva, 2012). The fact that supports do not appear on the images does not necessarily mean
98 that they were absent. These structures, which occur in various salamanders, are tiny and
99 difficult to detect on tomograms (Skutschas & Baleeva, 2012; Skutschas, pers. com. 2015).

100 It seems clear that in this specimen, the soft tissues are mineralized, even internally, and do not
101 represent cavity filling. Indeed, the structure of the spinal cord is in some rare places well
102 preserved, in three dimensions. Notably, the external surface of the cord is bordered by empty
103 space on tomograms (Fig. 2), which would not happen if this was a case of cavity filling
104 preservation. This 'empty space' was originally occupied by the cerebrospinal fluid, which
105 cannot fossilize. Internal structure is difficult to discern but it is nevertheless reminiscent to what
106 can be observed in extant urodeles, with a central canal (see Davis et al., 1989: fig. 6A for
107 example).

108 **Lumbosacral plexus.** This plexus comprises three nerves that emerge from the spinal cord
109 through the spinal foramina of the last trunk vertebra, the sacral vertebra and the first caudosacral
110 vertebra. These spinal foramina are large (Tissier et al., 2016: figs. 5B and 6B-C). These three
111 nerves merged lateral to the ilia to form the lumbosacral plexus (Figs. 3A-B) and the resulting
112 nerve entered the hind limb; this is similar to the disposition observed in *Necturus* by
113 Wischnitzer (1979). The nerve exiting the last trunk vertebra corresponds to the 'sixteenth spinal
114 nerve' in *Salamandra* (Francis, 1934: 173). The middle nerve of the plexus, emerging from the
115 sacral vertebra, is the thickest, correlatively with the size of the foramen. It is termed
116 'seventeenth spinal nerve' in *Salamandra* by Francis (1934). The nerve exiting from the first
117 caudosacral vertebra, called *nervus spinalis 18* in *Salamandra* (Francis, 1934), is very thin and
118 the preserved part does not meet the other nerves of the plexus, which are much thicker.
119 However, in view of its orientation, we presume that it took part in the plexus and that the
120 missing part results from incomplete fossilization or from an insufficient contrast on tomograms,
121 leading to segmentation artefacts.

122 **Digestive system.** The alimentary canal is particularly easy to identify by its circular outline on
123 the tomograms in transverse section. It is visible in most of the specimen length, up to the level
124 of the pelvic girdle. It is very well preserved and its shape in three dimensions leaves little to no
125 doubt about its identification (Figs. 3F-G). Its diameter is quite variable and no well-defined
126 stomach may be discerned, which is a characteristic of various urodeles (Delsol, Flatin &
127 Exbrayat, 1995).

128 Here, the content of the digestive system is preserved (Figs. 3C-E), a very rare and exceptional
129 phenomenon: a few bones are present in the digestive tract, including a small humerus (five mm
130 long) of an undetermined anuran, recognizable by its typical spherical distal articular condyle.
131 Four vertebrae in connection are also present and could belong to that same young anuran.

132 **Urogenital organ.** Two paired organs are located just posterior to the pelvic girdle: one ventral
133 to the first two caudosacral vertebrae, the other ventral to the second and third caudosacral

134 vertebrae and dorsal to the cloaca (Figs. 4A-B). Each is comprised of two elongate, fusiform
135 elements situated on both sides of the cloaca. On the specimen, the cloaca is an elongate slit
136 located just posterior to the hind limbs (Figs. 1B, 3F and 4A). These paired organs are
137 approximately five mm long. Both parts of the most dorsal organ, ventral to the first two
138 caudosacral vertebrae, are connected by a plate-like structure that is probably an artefact, given
139 that it was difficult to differentiate it from the surrounding matrix and other elements during
140 segmentation. The two parts of the most ventral organ are also connected, but it is very difficult
141 to tell how, because of low contrast on tomograms. Assuming that these two organs are really
142 paired, i.e. that the plate-like element is an artefact, the elongate parts may represent cloacal
143 glands, the testicles, or the kidneys. In urodeles, testicles and kidneys may be similarly elongated
144 (Delsol, Blond-Fayolle & Flatin, 1995; Gipouloux & Cambar, 1995), but they are located more
145 cranially. These structures are thus more likely to represent dorsal and ventral cloacal glands, but
146 this conclusion must remain tentative because the morphology of these glands in extant urodeles
147 remains poorly described, though some histological descriptions have been published (Sever,
148 1981; 1992). According to Francis (1934), the male cloaca is surrounded by ‘a large tubular
149 gland’, which fits the description of the ventral glands preserved here. These glands are not
150 found in females *Salamandra* which would mean that this fossil specimen was a male.

151 **Lung.** It was briefly described by Tissier et al. (2016), but a new description is given here,
152 nevertheless. This organ is observable at the anterior part of the specimen, on the left side (Fig.
153 4C). The anterior portion is missing. The preserved part is triangular in dorsal or ventral view, its
154 tip being directed caudally, and flattened in cross section (Fig. 4D). The section shows a vacuolar
155 structure. Despite the absence of the anterior portion, the position of that organ in the body,
156 ventral to the ribs (i.e. within the rib cage), its shape and its vacuolar internal structure suggest
157 that it is a lung (Francis, 1934; ML, pers. Obs). Within Caudata, the presence of a lung is
158 primitive but remains useful to exclude some taxonomic affinities (i.e. within Plethodontidae).

159 DISCUSSION

160 **Ecology.** The presence of anuran bones in the digestive tract of the fossil (Figs. 3C-E) is
161 evidence of a type of predation that is very rare in urodeles. Preying on frogs was reported in
162 *Amphiuma* (Montaña, Ceneviva-Bastos & Schalk, 2014), a large and especially voracious extant
163 urodele. Another voracious urodele, *Necturus*, has been reported (Hamilton, 1932) to have eaten
164 other urodeles (*Desmognathus* and *Eurycea*), but not frogs. *P. sigei* was relatively small and the
165 swallowed anuran, although small, was likely a metamorphosed individual, as shown by the
166 well-shaped humeral condyle, but not a fully grown adult, as shown by the broad neural canal,
167 assuming that the vertebrae belong to the same individual as the humerus. The straight diaphysis
168 of the humerus and the position of the humeral condyle in line with the diaphysis suggest that the
169 prey was a ranoid. Ranoids were already reported from the Phosphorites (Rage, 1984; 2016). The
170 length of the humerus (five mm) suggests that the individual measured about 18–20 mm in
171 snout-vent length.

172 To further investigate the ecology of the animal, we studied the microanatomy of the femur,
173 through a transverse virtual section of the diaphysis on tomograms, and calculated its
174 compactness profile with the software Bone Profiler (Girondot & Laurin, 2003). Without much

175 surprise, both inference models (based on backward elimination and forward selection
176 procedures, respectively) presented by Laurin et al. (2009) suggest an amphibious or terrestrial
177 lifestyle (see Supplemental Information). This would suggest that *P. sigei* was not neotenic
178 because all extant neotenic urodeles are strictly aquatic.

179 **Exceptional preservation.** The three-dimensionally preserved organs described here rank
180 among the oldest known in vertebrates (even though the geological age of the studied fossil
181 could only be determined indirectly). Putative lungs were described from the Devonian
182 *Bothriolepis* (Denison, 1941), but this interpretation has recently been refuted by Goujet (2011).
183 A probable ‘lung’ has also been observed in the actinian sarcopterygian *Axelrodichthys*
184 *arariensis* from the Cretaceous (Brito et al., 2010), but it is structurally very different from the
185 regular lung of other vertebrates; it is geologically older than the lung of *Phosphotriton sigei*, but
186 its fossilization is linked to the fact that it was originally mineralized (in vivo). The spinal cord,
187 although we have not segmented it and it is not visible on all original virtual sections, is partly
188 preserved. It is, to our knowledge, the only case of three-dimensional fossil preservation of that
189 structure. The spinal cord is quite infrequent in the fossil record. It is known in the tadpoles of
190 the Miocene frog *Rana pueyoi*; in fact, in the latter fossils, McNamara et al. (2010) described
191 more precisely the nerve chord, which is the embryonic antecedent of the spinal cord. In these
192 fossils, the cord is preserved in two dimensions. To our knowledge, the specimen of
193 *Phosphotriton* is the only example of a fossilized nerve plexus in **Vertebrates**. The three-
194 dimensional preservation of the digestive tract documented here is also particularly exceptional.
195 In fossils, this tract is generally two-dimensionally preserved, with even sometimes its content
196 (Dal Sasso & Signore, 1998; McNamara et al., 2010), or the tract content may be preserved
197 without impression of the tract itself (e.g. Piñeiro et al., 2012), but never to our knowledge have
198 a three-dimensional fossilized tract and its content been reported in vertebrates; however, three-
199 dimensional tracts, with perhaps remnants of the content, have recently been described in
200 fossilized arthropods, which also come from the ‘Phosphorites du Quercy’ (Schwermann et al.,
201 2016a). *Phosphotriton* may also be the only case of fossilization of an organ of the urogenital
202 system (likely cloacal glands) among vertebrates (even though our interpretation of this structure
203 is tentative) and it is the first known instance of an extinct salamander taxon and of a putative
204 salamandrid (extinct or not) that fed on an adult anuran. Muscles reported here, on the contrary,
205 are not the oldest known, as they have been reported in *Eastmanosteus calliaspis*, a Late
206 Devonian placoderm (Trinajstic et al., 2007) and in the actinian sarcopterygian *Wenzia*
207 *latimerae* from the Late Oxfordian (Clément, 2005), for example.

208 This case of exceptional preservation is difficult to explain, more specifically as the fossiliferous
209 locality that produced the fossil is unknown. It is suspected, but cannot be demonstrated, that all
210 mummies from the ‘Phosphorites du Quercy’ come from a single, lost locality. It is striking that
211 none of the numerous fossiliferous sites of the Phosphorites du Quercy investigated during the
212 last five decades or so did not produce ‘mummies’. Equally strange is that none of the mummies
213 pertain to Mammalia, as most skeletal remains found in the Phosphorites du Quercy are
214 mammals. Instead, all belong to ectothermic tetrapods (lissamphibians and snakes; Rage, 2006)
215 and to arthropods (Schwermann et al., 2016a; Schwermann et al., 2016b). Might this result from
216 a taphonomic filter? Was the environment in which these fossils formed (only for the lost

217 locality that yielded mummies) more suitable for lissamphibians and snakes than for mammals?
218 The fact that this locality is now lost prevents us from answering the questions raised above, for
219 now. However, Schwermann et al. (2016a) suggested that such fossils (i.e., arthropods in that
220 case) formed by rapid permineralization of phosphate transported by water that circulated in the
221 fissures and fillings. They suggested that the source of phosphate might have been the numerous
222 bones that accumulated in the fissures. However, another origin deserves consideration. Bats are
223 very numerous in the localities of the Phosphorites (Sigé & Hugueney, 2006) and they likely
224 produced a large amount of guano. Bat guano, which is very rich in phosphate, is known to
225 facilitate preservation in the presence of calcite (Shahack-Gross et al., 2004). Permineralization
226 of soft tissues by phosphorus leading to exceptional preservation was already observed in a few
227 other cases, for embryophytes, arthropods and gastropods (Arena, 2008), ostracod sperm
228 (Matzke-Karasz et al., 2014), and annelids (Wilson et al., 2016). Schwermann et al. (2016a) also
229 showed that air-dried specimens (as can be observed nowadays in lissamphibians after post-
230 mortem desiccation) do not accurately preserve soft tissues. This suggests that dead animals were
231 rapidly buried in the sediment, a prerequisite for phosphatization of soft tissues (Wilson et al.,
232 2016), where they were infiltrated by percolating water and thus permineralized. In any case,
233 given the amazing three-dimensional preservation of soft tissues, we believe that it is appropriate
234 to classify the lost locality of the 'Phosphorites du Quercy' that produced the vertebrate
235 mummies (and the locality that yielded the arthropod mummies) as a Fossil Konservat-
236 Lagerstätte.

237 CONCLUSIONS

238 The only specimen of *Phosphotriton sigei* represents a peculiar case of exceptional preservation,
239 in which several organs are preserved in three dimensions, in addition to the skeleton: lung,
240 spinal cord, lumbosacral plexus, digestive tract, muscles, and an unidentified urogenital organ. In
241 addition, the alimentary tract contains skeletal remains of a frog, which is a very rare prey for
242 salamanders. Contrary to the above-cited case of arthropods (Schwermann et al., 2016a), we do
243 not believe that the new data on soft anatomy will revolutionize our understanding of
244 lissamphibian evolution, particularly because such characters have played a modest role in
245 phylogenetic studies of lissamphibians. However, these data, such as the presence of a lung,
246 proved critical to place the mummy in the phylogeny, and these data document the oldest known
247 occurrence of anurophagy in urodeles.

248 ACKNOWLEDGMENTS

249 We thank Patrick Orr for suggesting helpful references during the writing of the manuscript. We
250 are grateful to Pavel P. Skutschas, Renaud Boistel and Vincent Fernandez for their help. We
251 thank the staff of the Centre de microscopie de Fluorescence et d'IMagerie numérique (CeMIM)
252 facilities of the MNHN, and particularly Marc Gèze and Cyril Willig for providing access to
253 computers during the segmentation of the data. The synchrotron microtomography experiments
254 were performed on the ID19 (proposal MD727) beamline at the European Synchrotron Radiation
255 Facility (ESRF), Grenoble, France.

256 **REFERENCES**

257 **Arena DA.** 2008. Exceptional preservation of plants and invertebrates by phosphatization,
258 Riversleigh, Australia. *Palaios* **23**: 495-502. (doi:10.2110/palo.2006.p06-142r)

259 **Brito PM, Meunier FJ, Clément G, Geffard-Kuriyama D.** 2010. The histological structure of
260 the calcified lung of the fossil coelacanth *Axelrodichthys araripensis* (Actinistia: Mawsoniidae).
261 *Palaeontology* **53**: 1281-1290. (doi:10.1111/j.1475-4983.2010.01015.x)

262 **Clément G.** 2005. A new coelacanth (Actinistia, Sarcopterygii) from the Jurassic of France, and
263 the question of the closest relative fossil to *Latimeria*. *Journal of Vertebrate Paleontology* **25**:
264 481-491. (doi:10.1671/0272-4634(2005)025[0481:ANCASF]2.0.CO;2)

265 **Dal Sasso C, Signore M.** 1998. Exceptional soft-tissue preservation in a theropod dinosaur from
266 Italy. *Nature* **392**: 383-387. (doi:10.1038/32884)

267 **Davis BM, Duffy MT, Simpson SB.** 1989. Bulbospinal and intraspinal connections in normal
268 and regenerated salamander spinal cord. *Experimental neurology* **103**: 41-51.

269 **Delsol M, Flatin J, Exbrayat JM.** 1995. Le tube digestif des amphibiens adultes. In: Grassé PP,
270 ed. *Traité de Zoologie XIV*. Paris: Masson.

271 **Delsol M, Blond-Fayolle C, Flatin J.** 1995. Appareil génital mâle. Anatomie-histologie,
272 déterminisme du cycle sexuel. In: Grassé PP, ed. *Traité de Zoologie XIV*. Paris: Masson.

273 **Denison RH.** 1941. The soft anatomy of *Bothriolepis*. *Journal of Paleontology* **15**: 553-561.

274 **Francis ETB.** 1934. *The anatomy of the salamander*. Oxford: The Clarendon Press.

275 **Gipouloux JD, Cambar R.** 1995. Anatomie du rein. In: Grassé PP, ed. *Traité de Zoologie XIV*.
276 Paris: Masson.

277 **Goujet D.** 2011. “Lungs” in Placoderms, a persistent palaeobiological myth related to
278 environmental preconceived interpretations. *Comptes-Rendus Palevol* **10**: 323-329.
279 (doi:10.1016/j.crpv.2011.03.008)

280 **Girondot M, Laurin M.** 2003. Bone Profiler: a tool to quantify, model, and statistically
281 compare bone-section compactness profiles. *Journal of Vertebrate Paleontology* **23**: 458-461.

282 **Hamilton WJ.** 1932. The food and feeding habits of some eastern salamanders. *Copeia* **1932**:
283 83-86. (doi:10.2307/1435891)

284 **Laloy F, Rage JC, Evans SE, Boistel R, Lenoir N, Laurin M.** 2013. A Re-Interpretation of the
285 Eocene Anuran *Thaumastosaurus* Based on MicroCT Examination of a ‘Mummified’ Specimen.
286 *PLoS One* **8**: e74874. (doi:10.1371/journal.pone.0074874)

287 **Laurin M, Canoville A, Quilhac A.** 2009. Use of paleontological and molecular data in supertrees for
288 comparative studies: the example of lissamphibian femoral microanatomy. *J Anat* **215**: 110–123. (doi:
289 10.1111/j.1469-7580.2009.01104.x)

290 **Legendre S, Sigé B, Astruc JG, Bonis L, Crochet JY, Denys C, Godinot M, Hartenberger**
291 **JL, Lévêque F, Marandat B, Mourer-Chauviré C, Rage JC, Rémy JA, Sudre J, Vianey-**
292 **Liaud M. 1997.** Les phosphorites du Quercy: 30 ans de recherche. Bilan et perspectives. *Geobios*
293 **30:** 331–345. (doi:10.1016/s0016-6995(97)80038-1)

294 **Matzke-Karasz R, Neil JV, Smith RJ, Symonová R, Mořkovský L, Archer M, Hand SJ,**
295 **Cloetens P, Tafforeau P. 2014.** Subcellular preservation in giant ostracod sperm from an early
296 Miocene cave deposit in Australia. *Proceedings of the Royal Society of London B* **281:**
297 20140394. (doi:10.1098/rspb.2014.0394)

298 **McNamara ME, Orr PJ, Kearns SL, Alcala L, Anadon P, Peñalver-Mollá E. 2010.**
299 Exceptionally preserved tadpoles from the Miocene of Libros, Spain: ecomorphological
300 reconstruction and the impact of ontogeny upon taphonomy. *Lethaia* **43:** 290-306. (doi:
301 10.1111/j.1502-3931.2009.00192.x)

302 **Montaña CG, Ceneviva-Bastos M, Schalk CM. 2014.** New vertebrate prey for the aquatic
303 salamander *Amphiuma means* (Caudata: Amphiumidae). *Herpetology Notes* **7:** 755-756.

304 **Pélissié T, Sigé B. 2006.** 30 millions d'années de biodiversité dynamique dans le paléokarst du
305 Quercy. *Strata* **13:** 3-284.

306 **Piñeiro G, Ramos A, Goso C, Scarabino FS, Laurin M. 2012.** Unusual environmental
307 conditions preserve a Permian mesosaur-bearing Konservat-Lagerstätte from Uruguay. *Acta*
308 *Palaeontologica Polonica* **57:** 299-318. (doi:10.4202/app.2010.0113)

309 **Rage JC. 1984.** Are the Ranidae (Anura, Amphibia) known prior to the Oligocene? *Amphibia-*
310 *Reptilia* **5:** 281-288.

311 **Rage JC. 2006.** The lower vertebrates from the Eocene and Oligocene of the Phosphorites du
312 Quercy (France): An overview. *Strata* **13:** 161-173.

313 **Rage JC. 2016.** Frogs (Amphibia, Anura) from the Eocene and Oligocene of the Phosphorites du
314 Quercy (France). An overview. *Fossil Imprint* **72:** 53-66. (doi:10.14446/FI.2016.53)

315 **Schwermann AH, dos Santos Rolo T, Caterino MS, Bechly G, Schmied H, Baumbach T,**
316 **van de Kamp T. 2016a.** Preservation of three-dimensional anatomy in phosphatized fossil
317 arthropods enriches evolutionary inference. *eLife* **5:** e12129. (doi:10.7554/eLife.12129)

318 **Schwermann AH, Wuttke M, dos Santos Rolo T, Caterino MS, Bechly G, Schmied H,**
319 **Baumbach T, van de Kamp T. 2016b.** The Fossil Insects of the Quercy Region: A Historical
320 Review. *Entomologie heute* **28:** 127-142.

321 **Sever DM. 1981.** Cloacal anatomy of male salamanders in the families Ambystomatidae,
322 Salamandridae, and Plethodontidae. *Herpetologica* **37:** 142-155.

323 **Sever DM. 1992.** Comparative anatomy and phylogeny of the cloacae of salamanders
324 (Amphibia: Caudata). IV. Salamandridae. *The Anatomical Record* **233:** 229-244.
325 (doi:10.1002/ar.1092330206)

326 **Shahack-Gross R, Berna F, Karkanas P, Weiner S. 2004.** Bat guano and preservation of
327 archaeological remains in cave sites. *Journal of Archeological Science* **31**: 1259-1272.
328 (doi:10.1016/j.jas.2004.02.004)

329 **Sigé B, Hugueney M. 2006.** Les micromammifères des gisements à phosphate du Quercy (SW
330 France). *Strata* **13**: 207-227.

331 **Skutschas PP. 2009.** Re-Evaluation of *Mynbulakia* (Lissamphibia: Caudata) and Description of
332 a New Salamander Genus from the Late Cretaceous of Uzbekistan. *Journal of Vertebrate
333 Paleontology* **29**: 659–664. (doi:10.1671/039.029.0326)

334 **Skutschas PP, Baleeva N V. 2012.** The spinal cord supports of vertebrae in the crown-group
335 salamanders (Caudata, Urodela). *Journal of Morphology* **273**: 1031–1041.
336 (doi:10.1002/jmor.20041)

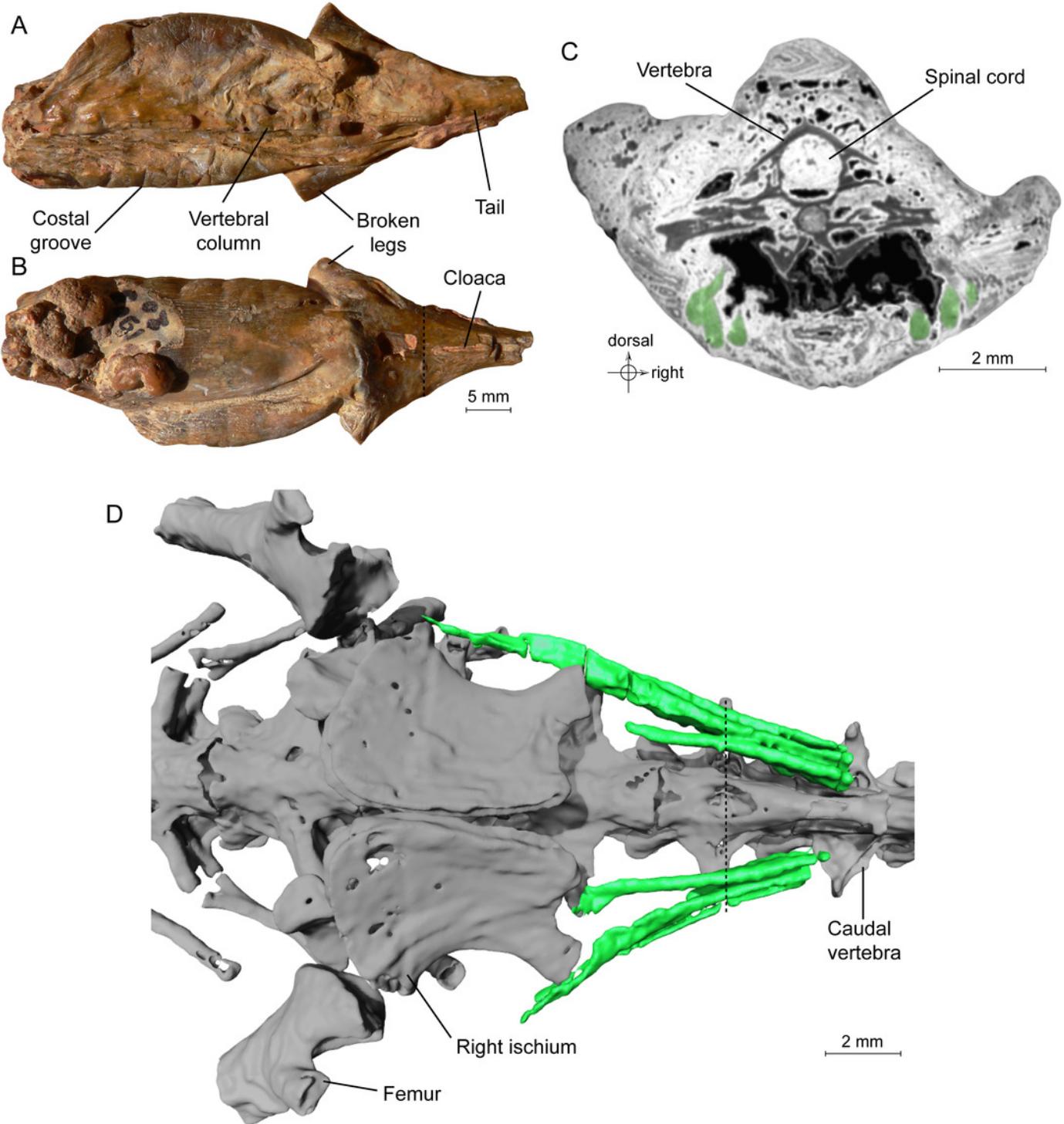
337 **Tissier J, Rage J-C, Boistel R, Fernandez V, Pollet N, Garcia G, Laurin, M. 2015.**
338 Synchrotron analysis of a ‘mummified’ salamander (Vertebrata: Caudata) from the Eocene of
339 Quercy, France. *Zoological Journal of the Linnean Society* **177**: 147-164.
340 (doi:10.1111/zoj.12341)

341 **Trinajstic K, Marshall C, Long J, Bifield K. 2007.** Exceptional preservation of nerve and
342 muscle tissues in Late Devonian placoderm fish and their evolutionary implications. *Biology
343 Letters* **3**: 197-200. (doi:10.1098/rsbl.2006.0604)

344 **Wake DB, Lawson R. 1973.** Developmental and adult morphology of the vertebral column in
345 the plethodontid salamander *Eurycea bislineata*, with comments on vertebral evolution in the
346 amphibia. *Journal of Morphology* **139**: 251-299. (doi:10.1002/jmor.1051390302)

347 **Wilson P, Parry LA, Winther J, Edgecombe GD. 2016.** Unveiling biases in soft-tissue
348 phosphatization: extensive preservation of musculature in the Cretaceous (Cenomanian)
349 polychaete *Rollinschaeta myoplena* (Annelida: Amphinomidae). *Palaeontology* **59**: 463-479.
350 (doi:10.1111/pala.12237)

351 **Wischnitzer S. 1979.** *Atlas and dissection guide for comparative anatomy, Third Edition.* San
352 Francisco: W.H. Freeman and Co.


Figure 1

Specimen MNHN.F.QU17755, holotype of *Phosphotriton sigei*.

(A and B) Fossil in dorsal and ventral views. Some characteristics of urodeles, such as costal grooves or scaleless skin, are observable on the external aspect of the specimen. The cloaca and vertebral column are visible. The dotted line represents the position of the tomogram illustrated in Fig. 1C.

(C) Tomogram of the tail part of the animal showing the muscles, in green, ventral and lateral to the vertebrae, and the spinal cord preserved inside the neural canal of a vertebra. Bony material is characterized by a dark grey shade, because of its light density, compared to the mineral matrix (grey or white) and void (black). Soft-tissues are also mostly darker than the mineral matrix, but are mainly recognizable by their structure and shape, on tomograms or in 3D.

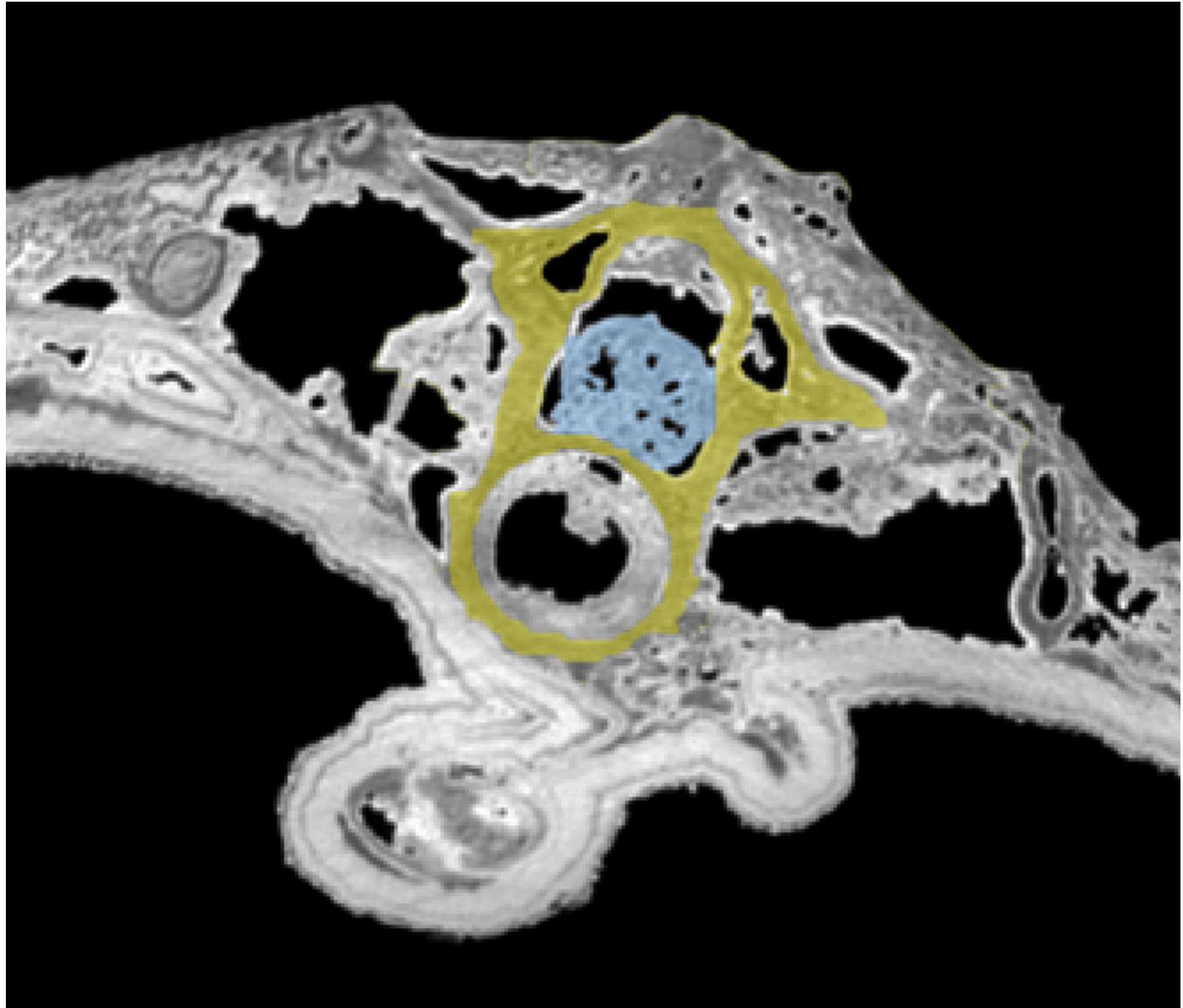

(D) 3D reconstruction of undetermined tail muscles, in green, which could attach to the ischium or femur. Dotted line represents the position of the tomogram illustrated in Fig. 1C.

Figure 2

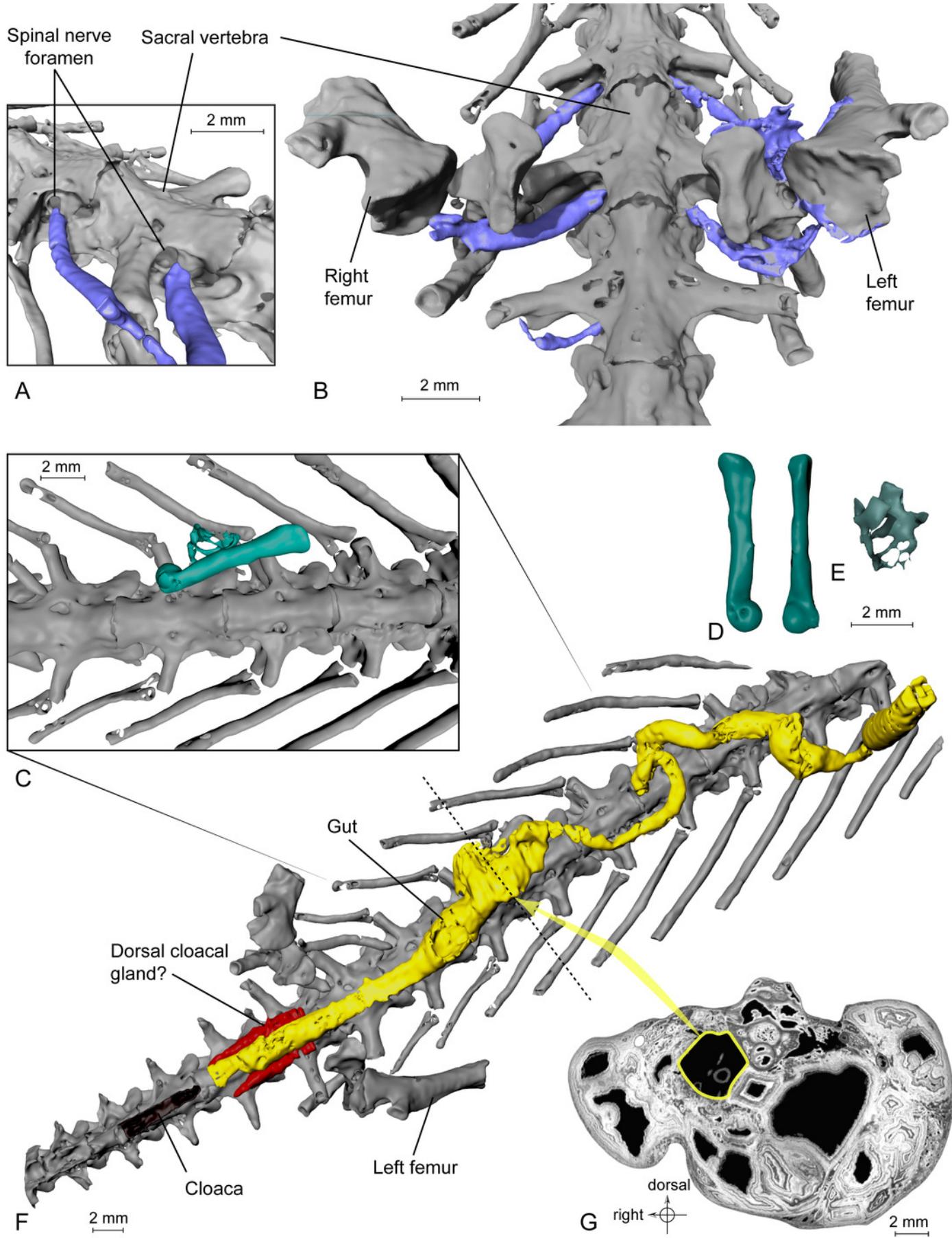
Tomogram of the trunk portion of the specimen MNHN.F.QU17755.

Spinal cord is in blue, within the neural canal of a trunk vertebra (in yellow).

Figure 3

Exceptional preservation of nerves, digestive tract and stomachal content.

(A and B) 3D reconstructions of the pelvic section of MNHN.F.QU17755, in laterodorsal (A) and ventral (B) views. The lumbosacral plexus (in blue) is partly preserved. Nerves exit the last trunk, the sacral and the first caudosacral vertebrae through the spinal nerve foramina.


(C) Preserved bones of an anuran frog (ranoid?), in green, inside the digestive tract (not shown, to better reveal its content; see Fig. 3F) of MNHN.F.QU17755.

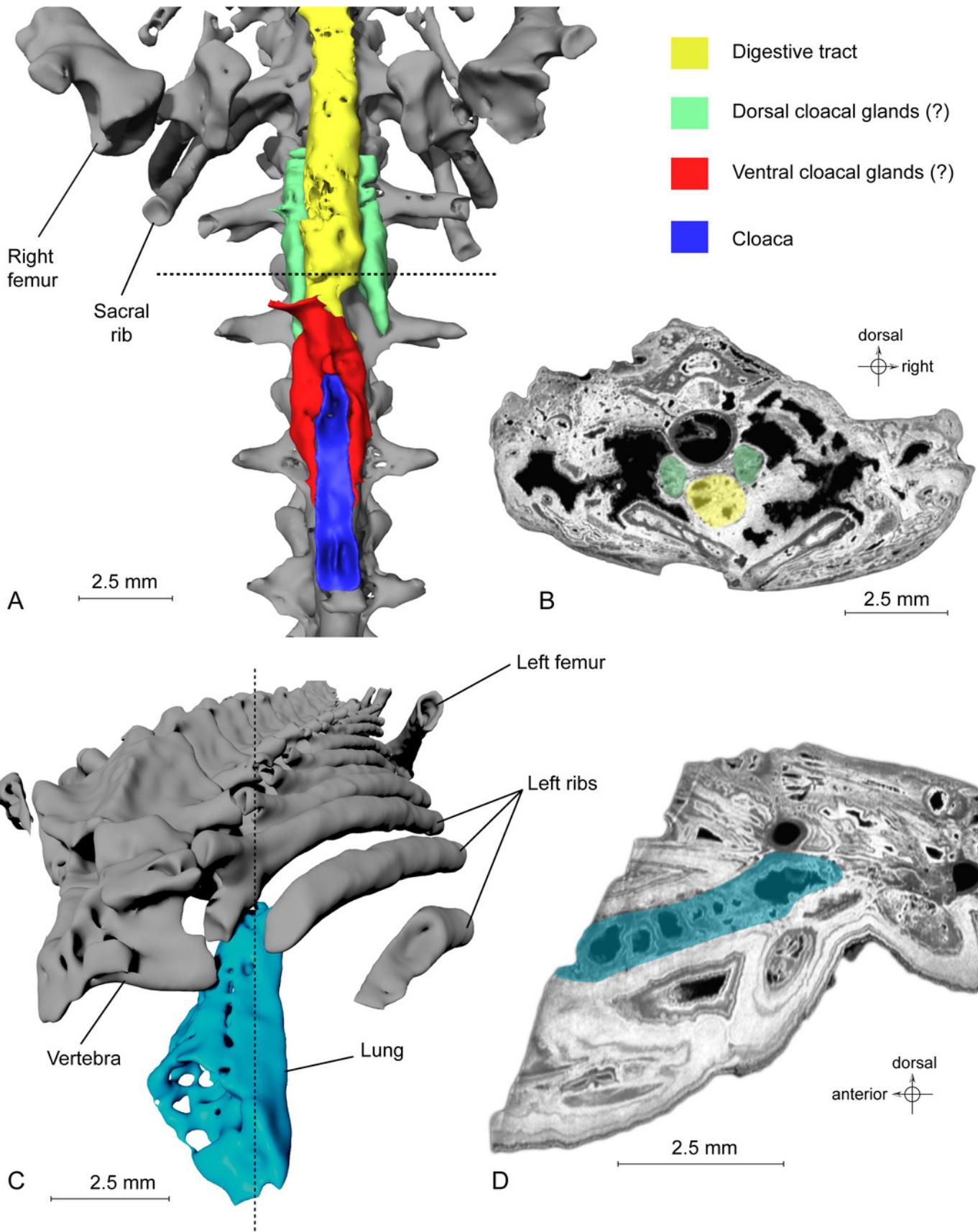
(D) Anuran humerus found inside digestive tract of MNHN.F.QU17755, in lateral and ventral views.

(E) Anuran vertebrae found inside digestive tract of MNHN.F.QU17755. The centrum is very thin; the holes may represent segmentation artifacts.

(F) 3D reconstruction of MNHN.F.QU17755 in ventral view, showing the nearly complete digestive tract. The caudal end is very close to the cloaca, and is bordered near the pelvic girdle by presumed dorsal cloacal glands (see Fig. 4A). The dotted line represents the position of the virtual section illustrated in Fig. 3G.

(G) Virtual section of the trunk, showing the digestive tract (in yellow) and its content (frog bones).

Figure 4


Exceptional preservation of cloacal glands (?) and lung.

(A) 3D reconstruction of supposed dorsal and ventral cloacal glands, in ventral view, under the two ischia (not shown). The dorsal cloacal glands are located between the first and second caudosacral vertebrae and the digestive tract (see Fig. 4B). The ventral cloacal glands are located under the digestive tract and anterodorsal to the cloaca. The dotted line represents the position of the virtual section illustrated in Fig. 4B.

(B) Virtual section of the pelvic girdle, illustrating the digestive tract and the dorsal cloacal glands, between a caudal vertebra and the two ischia.

(C) 3D reconstruction of the incomplete lung (in blue), inside the specimen MNHN.F.QU17755, in oblique anterior view. It is located lateroventrally to the trunk vertebrae, in the anteriormost preserved part of the fossil. The dotted line represents the position of the tomogram illustrated in Fig. 4D.

(D) Virtual section of the anteriormost preserved part of MNHN.F.QU17755, showing the inside of the lung in lateral view.

