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ABSTRACT

Background. Why biodiversity is not uniformly distributed on the Earth is a major
research question of biogeography. One of the most striking patterns of disparity in
species distribution are the biodiversity hotspots, which generally do not fit with the
distribution of relevant components of the Neotropical biota. In this study, we assess
the proximal causes of the species-richness pattern of one of the most conspicuous
groups of Neotropical mammals, the New World monkeys the Platyrrhini. We test two
complementary hypotheses: (1) there is a historical source-sink dynamic (addressed
using macroevolutionary and macroecological approaches); (2) the large number of
species in the Amazon basin is due to the constraints imposed by environmental
variables occurring outside this area.

Methods. We first characterize spatial patterns of species richness and biodiversity
hotspots using a new, objective protocol based on probabilities. Then we evaluate
the source-sink hypothesis using BioGeoBEARS analysis and nestedness analysis of
species richness patterns. Complementarily, to measure how often different species
pairs appear in the same sites, we used null models to estimate the checkerboard score
index (C-score). Finally, we evaluate the relationship between several climatic variables
and species richness through ordinary least squares (OLS) and spatial autoregressive
(SAR) models, and the potential environmental constraints on the pattern.

Results. We found one significant cluster of high values for species richness in the
Amazon basin. Most dispersal events occurred from the Amazonian subregion to other
Neotropical areas. Temperature (T), discrepancy (BR), and NODF indexes show a
significant nesting in the matrix ordered by species richness and available energy. The
C-score observed was significantly smaller than the null expectation for all sites in
the Neotropics where there are records of platyrrhine species. Ten climatic variables
comprised the best-fitting model that explains species richness. OLS and SAR models
show that this set of variables explains 69.9% and 64.2% of species richness, respectively.
Potential of evapotranspiration is the most important variable within this model,
showing a linear positive relationship with species richness, and clear lower and upper
limits to the species richness distribution.

Discussion. We suggest that New World monkeys historically migrated from their
biodiversity hotspot (energetically optimal areas for most platyrrine species) to adjacent,
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energetically suboptimal areas, and that the different dispersal abilities of these species,
the lack of competitive interactions at a macroecological scale, and environmental

constraints (i.e., energy availability, seasonality) are key elements which explain the
non-uniform pattern of species richness for this clade.

Subjects Biodiversity, Biogeography
Keywords Amazonian Basin, Energy-richness hypothesis, Environmental constraints,
Macroecology, Neotropic, Nested matrix, Hotspot

INTRODUCTION

Why biodiversity is not uniformly distributed on the Earth is a major research question
in biogeography and macroecology (Gotelli, 2000). One of the most striking patterns of
this disparity in species’ distributions is the observation of biodiversity hotspots (Myers et
al., 2000; Myers, 2003). The term biodiversity hotspot is now most commonly used with
reference to regions of high species richness (Harcourt, 2000). However, earlier references
considered biodiversity hotspots to be areas with a high proportion of endemic species
facing significant threats due to habitat loss (Myers, 1988) or a particularly species-rich
area with rare or threatened species, or some combination of these attributes (Reid, 1998).
However, no definition has been based on a spatial-probabilistic approach to evaluate
the statistical significance of the hotspot, which could allow us to recognize non-uniform
distributions of biodiversity.

The platyrrhine primates, also called New World monkeys, are one of the more
conspicuous and representative elements of modern Neotropic mammalian fauna. This
is a diverse group, with 150 living species grouped in 20 genera (Rylands, Mittermeier ¢
Silva, 20125 Mittermeier, Rylands ¢ Wilson, 2013), which occur in forested habitats from
the northern border of the tropical forest in southern Mexico (20°N) to subtropical regions
of northern Argentina and southern Brazil (30°S) (Peres ¢ Janson, 1999; Goldani, Carvalho
& Bicca-Marques, 20065 Kay et al., 2012); they have colonized almost every niche available
in the Neotropics (Lynch-Alfaro et al., 2015). This group currently shows a longitudinal
increase of species richness from east to west, and a latitudinal decrease from the Amazonian
Basin to southern South America and to Central America (See Fig. 1) (Voss & Emmons,
1996). However, this distribution pattern is not completely consistent with the biodiversity
hotspots presented by Myers et al. (2000) for the Neotropics. The origins and evolution of
such high Platyrrhine diversity in the Amazonian Forest remain poorly understood ( Tejedor,
2013; Aristide et al., 2015; Bond et al., 2015; Jameson Kiesling et al., 2015; Lynch-Alfaro et al.,
2015), but some hypotheses have been proposed (e.g., the riverine hypothesis; Peres, Patton
& Da Silva, 1996; Boubli et al., 2015; Lecompte et al., 2017). Recently, Jameson Kiesling et
al. (2015) proposed that the origin and initial diversification of the most recent common
ancestor of platyrrine primates occurred in the Amazon, giving rise to existing species
by local diversification in the last 15 Myr, suggesting that many genus- and species-level
divergences within each of the Aotidae, Atelidae, Callitrichidae, Cebidae, and Pithecidae
families occurred first in the Amazon and subsequently spread to the Atlantic Rainforest,
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Figure 1 Spatial distribution of species richness for New World monkeys in the Neotropics.

Cerrado, Caatinga and Central Grasslands, coinciding with the development and expansion
of the Amazonian Rainforest (Pulliam ¢ Danielson, 1991; Lynch Alfaro et al., 2012; Buckner
et al., 2015; Morales-Jimenez, Disotell ¢~ Fiore, 2015).

However, while evolutionary studies have explicitly addressed the diversification
processes of this Amazonian species pool (Aristide et al., 2015; Boubli et al., 2015; Buckner et
al., 2015; Jameson Kiesling et al., 2015; Morales-Jimenez, Disotell ¢ Fiore, 2015), little effort
has been made to explain the current spatial pattern of species richness (Kay et al., 1997;
Peres ¢ Janson, 1999; Stevenson, 2001; Mercado ¢ Wallace, 2010). In this sense, Ulrich ¢~
Gotelli (2007) proposed that research efforts should focus on the underlying mechanisms
of species richness patterns, given that these can result from: (1) interspecific interactions
(Ulrich, Jabot & Gotelli, 2017), and (2) physical-climatic variables (Stevenson, 2001). For
the first mechanism, there is scant evidence that predation has a direct effect on reducing
platyrrhine richness. However, changes in population densities and some local extinctions
can occur in areas with a strong human pressure from the hunting of large primates
(Peres, 19905 Stanford, 1995). Also, competition for resources among primate species
explains the distribution of a few parapatric species (Terborgh, 1986). In fact, Fleming
(1979) evaluated the resource overlap and food levels used by Neotropical frugivorous
primates, concluding that there are no significant levels of interspecific competition in
this group. Consequences of species interactions have been documented from local to
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regional scales, but they have not been evaluated in the Neotropics as a whole (Fleming,
Breitwisch & Whitesides, 1987; Peres, 1997). With regard to the second mechanism, many
studies have proposed that the energy available in the environment and its covariation
with climate is a generality, and one of the most important variables for determining the
spatial structure of vertebrate communities, that may restrict the number of coexisting
species (Hutchinson & MacArthur, 1959; Wright, 1983; Hawkins et al., 2003; Currie et al.,
20045 Lomolino et al., 2006). In the Neotropics, the maximum energy available is found in
the Amazon basin and adjacent areas where the species richness of the New World monkeys
also peaks (i.e., energetically optimal habitat for most of platyrrhine species) (Kay et al.,
1997; Rahbek ¢ Graves, 2001). Thus, species with greater tolerance ranges and dispersal
abilities can survive in areas with less energy (i.e., energetically suboptimal habitat), and
less tolerant species become extinct or specialize in lower and upper limits of climatic
and energetic ranges (Pulliam ¢ Danielson, 1991). Given that platyrrhines have diversified
in the Amazon basin, with posterior dispersal to Neotropical areas following a pattern
similar to the energetic gradient, we propose a historical source—sink dynamic as a first
joint macroecological-macroevolutionary hypothesis to explain the current pattern of
species richness for New World monkeys. These historical source—sink dynamics can
be represented by: (1) a macroevolutionary dispersal model from the “center of origin”
or “cradle of diversity” (i.e., the region where the species pool is generated by local
speciation, but not immigration, such as the Amazon basin) to a macroevolutionary sink
area that obtains taxa only through immigration (Goldberg, Lancaster ¢ Ree, 2011); and (2)
a macroecological nested pattern of species richness correlated with available energy and
associated with a higher concentration of species than expected by chance (Pulliam, 1988;
Almeida-Neto, Guimaares ¢ Lewinsohn, 2007). In the latter hypothesis, given that in the
Amazon basin many primate species distributions overlap, producing a maximum species
richness area, we expect that areas outside the Amazon basin should be a nested subset of
the species composition of larger assemblages. Also, as a complementary, non-historical
hypothesis we propose that the large number of species in the Amazon basin is due to
the constraints on the Platyrrhini imposed by climatic conditions (available energy and
correlated variables) occurring outside this area.

In this study we evaluate the proximal causes of the pattern of species richness of New
World monkeys in the Neotropics. First, we characterize spatial patterns of species richness
and biodiversity hotspots using a new, objective protocol based on probabilities. Second,
we conduct several exploratory analyses to identify proxies of energy availability and its
correlated climatic variables that are associated with species richness. Evaluate two main
predictions: (1) that there is a historical source-sink dynamic (i.e., macroevolutionary
source—sink model, nested pattern of species richness, and pattern of species co-occurrence
greater than expected by chance); and (2) that there is a positive and significant correlation
between species richness and available energy, which, imposes marked constraints on
platyrrhine richness outside of the biodiversity hotspot.
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MATERIALS AND METHODS

Data collection: climatic variables and distribution maps

We used the distribution maps of 125 species of New World monkeys obtained from
“NatureServe Digital Distribution Maps of the Mammals of the Western Hemisphere
Version 3.0” (Patterson et al., 2007). Range distribution map data provide a wide
geographical coverage of information, often ata 1° cell resolution (roughly 100 x 100 km),
which is fine enough to provide detail about diversity variations, and coarse enough to
not compromise the reliability of the derived biodiversity measures (Carnicer et al., 2007;
Hortal et al., 2008). Information about species richness was obtained by the overlap of
these maps of species’ distributions (Hurlbert ¢ Jetz, 2007; Hortal, 2008; Da Silva, Provete
¢ Hawkins, 2016). Neotropical environmental data were obtained from several databases,
including: proxies of available energy (http://sedac.ciesin.columbia.edu/es/hanpp.html;
Imbhoff et al., 2004); potential of evapotranspiration (PET; Trabucco ¢ Zomer, 2009); and
actual evapotranspiration (AET; Ahn & Tateishi, 1994). River density was obtained by
calculating the density of bodies of water, using a model of the hydrological network
for South America available on HydroSHEDS portal (Hydrological data and maps based
on Shuttle Elevation Derivatives at multiple scales: http://www.hydrosheds.org) at a
resolution of 30 arc-seconds (Lehner, Verdin ¢ Jarvis, 2008). The river density estimations
were performed using the Spatial Analyzer module, subroutine line density of ArcGis 10.2
(ESRI, 2016). The topographic position index (TPI), a proxy of topographic heterogeneity,
was calculated from a Digital Elevation Model (http://srtm.csi.cgiar.org/) using ArcGis
10.2 (ESRI 2016). Altitude (m.a.s.l.) and altitude range (m) data were obtained from the
Wordclim portal (Hijimans et al., 2005) at a resolution of 30 arc-seconds. Also, we obtained
19 contemporary bioclimatic variables that describe the variation in monthly, quarterly and
annual measures of precipitation and temperature from the WorldClim database (Hijmans
et al., 2005), and these variables were analyzed with the goal of exploring other possible
factors associated with the biogeographic pattern of primates. Given that cells can span both
sides of rivers, and thus could overestimate the observed species richness within each cell,
we reanalyzed the data by removing all adjacent cells to the main Amazon river channels.
This procedure was repeated for all predictors of platyrrhine richness: temperature,
precipitation, productivity, etc. Management and exploration of environmental data, as
well as the calculation of Neotropical species richness were done in ArcGIS 10.2 software
(ESRI, 2016). To compare how species richness patterns change or remain the same over
different spatial resolutions (0.5°, 0.6°, 0.7°, 0.8°, 0.9°, and 1°), we used the similarity
measurement, Kappa (Zachwatowicz, 2011). Kappa indicates the spatial distribution based
on concordance between two maps, where a value of 1 indicates total agreement between
the two maps of species richness and —1 indicates that the two maps are completely
different. The analyses were performed using Map Comparison Kit 3.2.3 software (Visser
¢ De Nijs, 2006) (see results in Supplemental Information 1). The final analysis was done
at 1° resolution because: (1) finer grid analyses yielded similar patterns (Supplemental
Information 1); (2) at finer grid sizes range maps overestimate the area of occupancy for
individual species and mischaracterize spatial patterns of species richness, which can result

Vallejos-Garrido et al. (2017), PeerJ, DOI 10.7717/peerj.3850 5/27


https://peerj.com
http://sedac.ciesin.columbia.edu/es/hanpp.html
http://www.hydrosheds.org
http://srtm.csi.cgiar.org/
http://dx.doi.org/10.7717/peerj.3850#supp-1
http://dx.doi.org/10.7717/peerj.3850#supp-1
http://dx.doi.org/10.7717/peerj.3850#supp-1
http://dx.doi.org/10.7717/peerj.3850

Peer

in spurious biodiversity hotspots (Hurlbert ¢~ White, 2005; Hurlbert ¢ Jetz, 2007); and (3)
the main environmental variables in the models are transversal to spatial scales (see below).

Hotspot determination

Several studies have been performed to identify biodiversity hotspots (e.g., Bonn, Rodrigues
& Gaston, 2002; Orme et al., 2005). However, these studies rely on multiple criteria, which
attempt to establish areas where species richness is above an arbitrary cut-off value of
richness (often between 1% and 5%; Orme et al., 2005). Consequently, none of the previous
studies have determined biodiversity hotspots based on spatial-statistical criteria to describe
the patterns of biodiversity, which is fundamental for analyzing raw biodiversity data in
order to extract information and make justified decisions (see Webb ¢ Copsey, 2011). With
the aim of developing an objective protocol based on probabilities to detect biodiversity
hotspots, we used an intuitive measure, which detects cells, or groups of cells (i.e., spatial
clusters), containing greater species richness than expected by chance for a given taxon and
study area. First, we determined if platyrrhine species richness in the Neotropics showed
spatial autocorrelation, using Moran’s I statistic. If the results show positive and significant
autocorrelation, there is clustering of high values of species richness. Alternatively, negative
autocorrelation points to a scenario of greater dispersal than expected by chance. No
evidence of autocorrelation indicates a random pattern. Second, we defined spatial hotspots
using the Gi* statistics (Getis & Ord, 1992). Briefly, Gi* identifies spatial concentrations
of an entity (attributes coded as presence-absence; in this case species richness per cell)
or areas that contain high values. To establish a statistically significant hotspot, an entity
must have high values and be surrounded by other cells with high values. Accordingly, the
local sum for an entity and its neighbors is compared proportionally with the sum of all
entities. If the local sum is extremely different from the random expectation, a significant
Z score is assigned. Significant values of Z > 0 provide evidence for significant hotspots
whereas values of Z < 0 provide evidence for groups of entities that have lower values than
expected by chance. The statistical determination of hotspots was performed in ArcGIS
10.2 software (ESRI, 2016).

Evaluation of the source-sink hypothesis

Macroevolutionary approach

To evaluate a source—sink dynamic in a historical context, we estimated the ancestral
distribution for the pavorder Platyrrhini and the number of dispersal events between the
areas, using the BioGeoBEARS package (Matzke, 2013) implemented in the R language
(R Development Core Team, 2008). BioGeoBEARS allows for the estimation of ancestral
geographic ranges on dated phylogeny, comparing several models of range evolution. We
used the DEC model (Ree ¢ Smith, 2008) with two free parameters: “d” (dispersal rate)
and “e” (extinction rate), and a fixed cladogenetic model (cladogenetic event allowed:
vicariance, sympatric-subset speciation, and sympatric range-copying). We also used a
DEC model with an extra parameter, “j”, which represents the founder-event speciation,
where the new species “jumps” to a range outside of the ancestral range (DEC + j model).
The comparison of these two models was performed using Akaike Information Criterion

(AIC). To perform this analysis, we used a scheme similar to the classification of the areas
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used by Jameson Kiesling et al. (2015), but since their map is not available in GIS format,
we used the biogeographic classification proposed by Morrone (2001): (A) Central Andes
Subregion, (B) Amazonian Subregion, (C) Chacoan Subregion, and (D) Atlantic Forest
Subregion. This analysis was performed based on the time-calibrated maximum clade
credibility (MCC) tree published by Aristide et al. (2015). This time-calibrated tree was
estimated using 15 nuclear genes and four mitochondrial genes selected from Perelman et
al. (2011) based on 78 species, being, to our knowledge, the most complete time-calibrated
phylogenetic tree for this clade.

Based on the parameters of the best supported biogeographic model (DEC or DEC
+ j), we performed Biogeographic Stochastic Mapping (BSM), as implemented in the
BioGeoBEARS R package (Matzke, 2013). The BSM generates simulated biogeographic
histories, including the time and allocation of all biogeographic events (e.g., within-area
speciation, vicariance and dispersal events) occurring along the branches. The event
frequencies were estimated from the event counts of 1,000 BSM’s. The historical source—
sink dynamic under a phylogenetic-based biogeographic analysis (i.e., DECs models and
BSM) is supported if the main platyrrhine lineages originated in the Amazonian area, and
the dispersal events were more frequent from the Amazon to the rest of the Neotropical
regions. The R script is available in Supplemental Information 2.

Macroecological approach

We performed a nestedness analysis to evaluate our first hypothesis. Nested assemblages are
evident when impoverished sites tend to be simple subsets of the richest ones, suggesting
a highly ordered system in which colonization/extinction dynamics may be actively
shaping species occurrences across sites (Cutler, 1998). Thus this approach corresponds to
an indirect evaluation of a historical hypothesis, implicitly incorporating a temporal
component for large spatial scales (e.g., Neotropics; Allen ¢ Gillooly, 2006). For the
nestedness analysis we considered only areas with species records, generating a grid of
300 cells of 2° for the Neotropics. Then we constructed a presence-absence species richness
matrix, where the columns represent the 300 cells and the rows represent the species.
This matrix was ordered according to the total sum of rows and columns, locating the
most frequent species in the upper rows and the richest sites on the left side of the matrix.
Also, aiming to evaluate if available energy had the same spatial distribution as platyrrhine
species richness, we constructed a matrix for AET values, which was ordered by productivity
following the same logic as the species richness matrix. The T, discrepancy (BR; Brualdi ¢
Sanderson, 1999) and the NODF (Almeida-Neto et al., 2008) indexes were used to estimate
the degree of nestedness. For the latter index, in addition to estimating the overall nestedness
of the matrix, it also allows independent calculation of the degree of nesting of columns
(i.e., species composition) and rows (i.e., species incidence). The statistical significance
of these indexes was evaluated by the generation of a null model using a Monte Carlo
algorithm, contrasting the observed values with a null probability distribution. In our case,
we used a null model with fixed rows and equiprobable columns, where the total number of
rows is maintained but the column totals vary randomly (Patterson ¢» Atmar, 1986; Gotelli,
2000). This null model maintains the frequency of occurrence of species and allows species
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richness to vary equiprobably between sites (Valencia-Pacheco et al., 2011). We selected
this model considering that all sites could be occupied by species, with no effect or bias
derived from geography or species interactions. Previous studies using simulations have
shown that altering the sum of the rows may generate vulnerability to type I statistical
error (Gotelli, 2000). To generate the frequency distribution of null data, a total of 10,000
iterations were performed. All analyses were performed in the NODF software (Ulrich ¢
Gotelli, 2013).

Co-occurrence analysis

Aiming to measure how often different species pairs appear in the same sites, we used
null models to estimate the checkerboard score index (C-score). This is considered one of
the best indexes to determine species co-occurrence patterns (Gotelli, 2000). An observed
C-score was calculated and compared to indexes derived from 50,000 null matrices
(randomly assembled matrices). The model employed to generate null matrices was based
on the row sums fixed and equiprobable columns algorithm, which has low type I error,
good power to detect non-random patterns, and is recommended when the data matrix
has many zeros and sampled communities are homogeneous (Gotelli, 20005 Lopez et al.,
2013). This algorithm considers that the mean number of occurrences for each species in
the null communities is equal to the observed data set, and the sites have equal probability
to be represented in the null communities. Since the matrix was narrowed to sites with
species records (previous section), and the New World monkeys have colonized almost
every niche available in their distribution range (i.e., a continuum), the row sums fixed
and equiprobable columns is an appropriate algorithm to represent the natural pattern.
The C-score in a competitively structured community should be significantly greater
than expected by chance. Because raw C-score values vary depending on co-occurrences
observed at each site, we calculated a standardized effect size (SES) for the matrix in
order to compare results across sites. SES’s were calculated as: (observed C-score—mean
of simulated C-scores)/standard deviation of simulated C-scores. If values are positive
then there are less co-occurrences than expected by chance, whereas if they are negative
then there are more co-occurrences. The first case is indicative of competition, while
more co-occurrence is a sign of facilitation (Lopez et al., 2013; Vaz et al., 2015). Assuming
a normal distribution of deviations, approximately 95% of the SES values should fall
between —2 and 2 if co-occurrences are not different from that expected by chance. This co-
occurrence analysis was performed with EcoSim7.5 software (Gotelli ¢& Entsminger, 2006).

Relationships between climatic variables and species richness

We generated a matrix in which each cell has the following information: longitude, latitude,
species richness, the nineteen climatic variables (Bio1-Bio19) available in WorldClim, PET,
AET, topographic position index (TPI), river densities, altitude, and altitude range.
Multiple linear regressions were performed using the “stepwise forward” method, and
the main variables that contributed to the species richness of New World monkeys were
selected using AICc and R? statistics, in SAM software (Rangel, Diniz-Filho ¢~ Bini, 2010).
The association between environmental factors and species richness was explored by two
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approaches: ordinary least squares (OLS) and the spatial autoregressive (SAR) model; the
latter incorporates spatial autocorrelation in the model structure (Dormann et al., 2007;
Kissling ¢ Carl, 2008). The best model to describe this relationship was selected by AICc
and R? statistics.

The interaction between environmental factors and species richness at very large
geographic scales can shed light on some environmental constraints to the distribution of
species richness (in this case energy constraints; Hawkins et al., 2003). Thus, we estimated
the Pearson correlation coefficient (p) as measure of the linear relationship between
species richness and environmental variables, and we evaluated the upper and/or lower
limit in the “species richness—climatic variable” space, determining the linear regression
of the highest (99th quantile) and lowest (1st quantile) significant quantiles using the
“Quantreg” package (Koenker, 2013) in the R software (R Development Core Team, 2008).
This approach establishes the significance of the slope (with the null hypothesis of slope
= 0) using the rank score test for quantile regression, and evaluates the probability (p)
of a Chi-square distribution using a bootstrap approach (for this analysis we used 10,000
randomizations). The R script is available in Supplemental Information 2.

RESULTS

Hotspot determination

The spatial statistics analyses proposed to identify hotspots for New World monkeys
indicated that there is an area where species richness peaks. Values of species richness
were positively autocorrelated (Moran’s Index: obs = 0.88; Z score = 40.7, p < 0.05); the
Getis-Ord Gi* statistic indicated that there is one cluster of high values for species richness
(Z =24.73; p < 0.01) (Fig. 2). This hotspot is composed of 140 cells with higher species
richness than expected by chance (Fig. 1). The hotspot follows the course of the Amazon
River from the eastern Andean flanks to the Atlantic Ocean (Fig. 2).

Evaluation of the source-sink hypothesis and co-occurrence
analyses
The AIC model selection on the biogeographic model implemented in BioGeoBEARS
indicated that a DEC model is the best-supported (Table 1). Based on this model, the
estimation of ancestral areas for the extant diversity of the Platyrrhini placed the most
probable ancestral area in the Amazonian biogeographic subregion (Fig. 3). Furthermore,
the main lineages (families) belonging to the clade, also probably originated in the
Amazonian subregion (Fig. 3). The dispersal summary extracted from the 1,000 BSM’s
maps reveals that most of the dispersal events occurred from the Amazonian subregion to
the other biogeographic areas considered in this work (Table 2). The results of the ancestral
area estimation and number of dispersal events suggest that Amazonia is the center of
origin for this clade, from which the species colonized the rest of the Neotropical region.
These results also support the historical source—sink dynamic for the origin of platyrrhine
biogeographic pattern.

Our results also show a significant matrix nestedness, with values for the T and BR
indexes smaller than expected by chance, and the value of the NODF index greater than
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Figure 2 Comparison of biodiversity hotspots for New World monkeys determined by statistical anal-
ysis (green) and the Neotropical Biodiversity Hotspots proposed by Myers et al. (2000).

Table 1 Biogeographic Stochastic Mapping (BSM). Models are dispersal—extinction—cladogenesis
(DEC), dispersal-extinction—cladogenesis allowing for founder-event speciation (DEC +- j).

Models ML DF d e j AIC

DEC —150.2872457 2 0.026677605 2.001E-09 0 304.5744914

DEC +j —149.2852047 3 0.024613064 1E-12 0.012945479 304.5704095
Notes.

ML, Maximum-likelihood; DF, degrees of freedom; d, rate of dispersal; e, rate of extinction; j, relative probability of
founder-event speciation at cladogenesis; AIC, Akaike’s information criterion; AIC,, corrected Akaike’s information
criterion.

expected by chance (P < 0.0001, Table 3). In addition, we found independent significant
nesting between rows (i.e., incidence of species) and columns (i.e., species composition) for
species richness, with NODF values greater than expected by chance (P < 0.0001, Table 3).
Similar results were found for the species richness matrix ordered by available energy in the
Neotropics (measured by AET), which also showed significant nesting with index values
lower than expected by chance for the T, BR and NODF columns, and a larger row NODF
index than expected by chance (P < 0.0001, Table 3). The C-score observed for the data
using the analysis of co-occurrence was significantly smaller than the average of the 50,000
simulations for all sites in the Neotropics where there are records of platyrrhine species.
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Figure 3 Biogeographical analysis of New World Monkeys using BioGeoBEARS. The four biogeo-
graphical areas are: (A) Central Andes (in blue); (B) Amazonian Subregion (in green); (C) Chacoan Sub-
region (in yellow); and (D) Atlantic Forest (in red). Outgroups are not shown. Pie charts at nodes indicate
support for respective areas. Tips are labelled with present-day species distributions. The secondary colors
indicate range combinations of the tip ranges.

The Standardized Effect Size was negative and significant (C-score = 331.73 < simulated
mean C-score = 351.39; variance = 1.43; SES = —16.46).

Relationships between climatic variables and species richness
At 1° resolution, the analysis of multiple linear regressions showed that the best-fitting
model (AICc = 19821.037 and R?> = 0.699) contained ten climatic variables (Table 4).
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Table2 The dispersal summary extracted from 1,000 BSM’s maps.

Caribbean subregion Amazonian Chacoan Atlantic

+ North Andes subregion subregion forest
Caribbean subregion + North Andes 0 2.257 1.043 0.527
Amazonian subregion 8.455 0 9.11 4.894
Chacoan subregion 0.996 2.268 0 2.063
Atlantic forest 0.492 1.397 4.508 0

The OLS and SAR models showed that this set of climatic variables explained 69.9% and
64.2% of platyrrhine richness, respectively. Multiple regression analysis revealed that PET
was the most important environmental variable that predicts the species richness of New
World monkeys. According to correlation and regression tests, PET showed a significant
positive relationship with species richness (o = 0.23; p <0.01), with a significant upper
and lower limit (p < 0.01) that shows a constraint on the number of species, given the
low available environmental energy, and the maximum number of species exhibited by a
geographic cell tended to increase at medium values of PET (Fig. 4A). Similarly, a positive
relationship was found for AET (p = 0.66; p < 0.01). In this case, the lower limit does
not allow the presence of few species in areas with higher available energy (above 1500
mm evapotranspiration), i.e., the minimum and maximum number of species found

in a geographic cell tended to increase with AET (Fig. 4B). Mean temperature diurnal
range (p = —0.28; p < 0.01) and temperature seasonality (p = —0.54; p < 0.01) showed a
significant negative relationship with species richness, describing a triangular polygon that
constrain species number to sites with high values of these variables, i.e., platyrrhines are
absent in sites where the mean diurnal temperature range exceeded 18 °C (Fig. 4C). Only
low temperature seasonality (<10%) allows high species richness (Fig. 4D). Other variables
that describe temperature variation in the Neotropics behaved differently; isothermality
(p=0.52; p <0.01), the minimum temperature of the coldest month (p =0.51; p < 0.01),
and the maximum temperature of the warmest month (p =0.22; p < 0.01), also describe a
triangular polygon, where sites with higher values of these variables allow the co-occurrence
of 1 to 14 species (Figs. 4E—4G). Altitude also shows a negative and significant relationship
(p=—0.34; p < 0.01), where the maximum species number is found from 0 to 1,000 m.a.s.l.
with a marked decrease at higher altitudes (Fig. 4H). Precipitation in the coldest quarter
shows a significant positive relationship (p =0.38; p < 0.01), but does not show a clear
geometric constrains on species richness. Finally, river density does not show a significant
relationship (p = —0.015; p = 0.59), and neither a geometric pattern, despite influencing
the multiple regression model (Figs. 41 and 4]). PET, AET and Temperature Seasonality,
are transversal variables at all spatial scales (i.e., 0.5°, 0.6°, 0.7°, 0.8°, 0.9°, 1°) and explain
the major portion of species’ richness, while river density is absent in only one spatial
scale, but their contribution to species’ richness is very low and independently is null (see
Tables 4 and 5).
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Table 3 Nestedness pattern based on the species richness matrix of the New World monkeys ordered
by (A) species number and by (B) energy availability. The table shows the T, BR, and NODF indices for
the group, and the degree of nestedness for columns and rows, independently, using the NODF index.

A T index BR index NODF index NODFc index NODFr index
Metric obs 420 1,037 14.05 15.29° 6.86
Metric sim 5.69 1097.40 15.08 16.77 5.29
(CI) (5.24-6.15) (1,083-1,112) (14.49-15.70) (16.10-17.47) (5.04-5.56)
B T index BR index NODF index NODFc index NODFr index
Metric obs 8.82° 1,602 19.76 20.91 13.12°
Metric sim 12.56 1734.87 18.21 19.65 9.88
(CI) (11.93-13.19) (1,718-1,751) (17.72-18.71) (19.11-20.20) (9.59-10.18)
Notes.
CI, 95% Confidence Interval.
*P <0.0001.

Table 4 OLS and SAR models for the relationship between species richness and environmental predictors of the best model given a respective
spatial scale.

Species Best model (Variables ordered by partial cofficient in absolute value) OLS R? SAR R? AICc

richness scale

0.5 PET-Bio3-Bio7-Bio5-Biol-Bio10-Bio16-Bio13—AET-Bio4 —Bio6-Biol7-Bio19—Range ~ 0.689 0.677 19821.037

altitude—Altitude—River density

0.6 Range altitude—River density—Altitude—AET-Bio3-Bio4-Bio2-Bio19-Biol7 0.527 0.49 15231.003

0.7 PET-Bio2-Bio1-Bio5-Bio3—AET—-Bio4—Biol7—Range altitude—Altitude 0.681 0.676 10178.837

0.8 PET-Bio2-Biol-AET-Bio6-Biol7-Bio4-Bio19 — Range altitude—Altitude—River density ~ 0.664 0.677 7796.842

0.9 PET-Bio6—AET-Bio4-Bio19-Altitude—River density 0.673 0.679 6210.117

1.0 PET-Bio2-Bio5-Bio3-Bio6—AET—-Bio4-Bio19-Altitude—River density 0.699 0.642 5157.685
Notes.

PET, Potential of evapotranspiration; AET, Actual evotranspiration; Biol, Annual Mean Temperature; Bio2, Mean Diurnal Range; Bio3, Isothermality; Bio4, Tempera-
ture Seasonality; Bio5, Max Temperature of Warmest Month; Bio6, Min Temperature of Coldest Month; Bio7, Annual Temperature Range; Biol0, Mean Temperature of
Warmest Quarter; Biol3, Precipitation of Wettest Month; Biol5, Precipitation Seasonality; Biol6, Precipitation of Wettest Quarter; Biol7, Precipitation of Warmest Quar-
ter; Biol9, Precipitation of Coldest Quarter; AICc, corrected Akaike Information Criterion.

In red, environmental variables transversal to all scales.

DISCUSSION

The origin and diversification of the extant platyrrhine species occurred in the Amazonian
forest during the Late Oligocene and Early Miocene (Jameson Kiesling et al., 2015). These
species have extended and contracted their ranges in parallel with the expansion and
fragmentation of the Amazonian tropical forests, which provided a rich and complex
ecosystem, where the diversification of the major platyrrhine clades occurred in
sympatry (Hoorn & Wesselingh, 2010; Jameson Kiesling et al., 2015). Our results based

on macroecological (i.e., nestedness analysis and co-occurrence) and macroevolutionary
(i.e., BioGeoBEARS) approaches support this historical proposal according to: (1) the
significant species-richness cluster associated with the Amazonian Basin (Fig. 2); (2) strong
nested and co-occurrence patterns in species richness; and (3) the historical origin of this
clade in the Amazonian region, associated with posterior high frequency dispersal out of
this area, which constitutes the source of diversity for the rest of the Neotropical region.
Thus, the current pattern shows us that impoverished areas (outside the biodiversity
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Table 5 OLS and SAR models for the relationship between species richness and environmental predictors at 1° of resolution

Variable OLS coeff.  AICc OLSR?> SARcoeff. AICc SARR?  Std.coeff.  Std.error P value
4951.127 0.699 5157.685 0.642

Constant —115.208 —110.103 0 12.501 <0.001

Potential of 160.319 130.869 1.386 13.154 <0.001

evapotranspiration

Mean diurnal range —67.725 —57.367 —1.049 6.057 <0.001

Max temperature of —73.524 —53.485 —0.503 13.257 <0.001

warmest month

Isothermality —30.822 —22.858 —0.372 4.331 <0.001

Min temperature of —13.391 —10.958 —0.408 1.679 <0.001

coldest month

Actual evapotranspiration 7.379 6.8 0.224 0.928 <0.001

Temperature seasonality —4.581 —3.811 —0.33 0.655 <0.001

Precipitation of —1.954 —1.541 —0.221 0.235 <0.001

coldest quarter

Altitude 1.592 1.415 0.163 0.318 <0.001

River density —0.89 —0.779 —0.059 0.227 <0.001

hotspot) tend to be simple subsets of the richest ones, suggesting a highly ordered system in
which colonization/extinction dynamics may be actively shaping species occurrences across
areas. In this case, the dynamic is dominated by dispersal events from the Amazon basin.
In fact, based on nesting analysis and null models of species occurrence, the existence
of a marked nested pattern in species richness distribution for the Platyrrhini suggests
that the distribution of species is not determined by chance. Significant nesting also
occurred independently in rows and columns within the species matrix of the Platyrrhini,
indicating that incidence of species and species composition for each site have been due to
colonization ability and extinction susceptibility (Ulrich ¢ Gotelli, 2013). This is especially
valid for non-island systems such as the Neotropics (Mendez, 2004). Interestingly, strong
support for this comes from the scarce but important fossil record found in areas which
platyrrhine species do not inhabit today (Hoffstetter, 1969; Flynn et al., 1995; Takai et al.,
20005 Tejedor, 2013). For example, {Chilecebus carrascoensis (20 Mya) was found in the
Mediterranean of Chile (35°S; Flynn et al., 1995); which is far from the current distribution
of the Platyrrhini (Fig. 1). This fossil species lived in this region when the Andes had a
mean elevation of 1,000 m, allowing the tropical forest to reach southern latitudes. After
the most recent Andean uplift during the Late Miocene, the tropical forest was replaced by
the semiarid Mediterranean sclerophyll forest which does not support any extant primate
species (Fig. 15 Hinojosa, Armesto ¢ Villagrdan, 2006). Thus, historical emigration from the
Amazon basin, associated with a gradient in available energy, seems to be the dominant
process that generated the nested pattern in species richness. Since habitats are usually
connected by migration, some generalist species that originated in productive habitats
colonized the adjacent energetically suboptimal range, expanding the spatial distributions.
The expansion started during the mid-Miocene when Amazonia underwent considerable
changes beginning with a northward continental drift, resulting in increased temperature
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and the presence of a humid tropical setting (Pardo-Casas ¢ Molnar, 1987; Jaramillo,
Rueda & Mora, 2006). By the beginning of the Late Miocene, Amazonia looked much as
it does today (Hoorn ¢ Wesselingh, 2010), and nearly all of the extant platyrrhine genera
had diversified, some in sympatry (changing the species composition in the source area),
others expanding their ranges (changing the species composition in sink areas), and others
migrating to subproductive areas in the Neotropics (changing the species composition
in source and sink areas). Species that have limited dispersal can often be absent in an
energetically suboptimal habitat, due to the difficulty of reaching these areas (e.g., Saguinus
imperator, Alouatta seniculus). In contrast, active dispersal of species from the Amazon basin
could maintain large sink populations, and such dispersal could be evolutionarily stable,
developing a nested structure of species richness. Therefore, we emphasize the importance
of dispersal ability and extinction processes in generating the source—sink dynamics and the
observed richness pattern, especially considering that some species can be very vagile and
have a wide range of distribution that covers areas with low and high available energy (Ayres
& Clutton-Brock, 1992; Jablonski, Roy ¢ Valentine, 2006; Lecompte et al., 2017). Also, our
results show that in the Neotropics there is higher species co-occurrence than expected by
chance, and the significant nestedness score indicates that interspecific competition may be
not a factor that determines the nature of the species richness pattern. Traditionally, many
authors have interpreted this positive, non-random association (aggregation) in terms of
habitat filtering and facilitation (e.g., Gotzenberger et al., 2012; Vaz et al., 2015). However,
Ulrich, Jabot ¢ Gotelli (2017), using birth-death community models, identified a trade-off
between the type of competitive interactions and the degree of dispersal. Intraspecific
competitive interactions can generate species aggregation, and segregation may arise from
dispersal limitation alone; thus, some reported effects of competition on the geometry of
species occurrences might require reassessment. In our case, the high co-occurrence appears
to be related to the high dispersal rate of this group, and the lack of competitive interactions
at a macroecological scale. Recently, Araiijo ¢» Rozenfeld (2014) based on extensive model
simulations support the view that the spatial signature of negative interactions is sensitive
to scale, i.e., exclusion by competitors at local scales of resolution tends not manifest at
coarser scales (Greig-Smith, 1979; Woodward, 1987; Gotelli, Graves & Rahbek, 2010). They
also demonstrate that interactions involving positive dependencies between species, such
as mutualism (+/4) and commensalism (4-/0), are more likely to be manifested across
different scales of resolution.

On the other hand, energy availability for primate species mainly takes the form of food
availability (Kay et al., 1997; Peres ¢ Janson, 1999; Stevenson, 2001). The Amazon basin is
the Neotropical area with most energy flowing into a community system, and thus a site with
high food availability. However, beyond the high available energy, constant temperatures
and the correlated variables in Amazon basin also allow for the coexistence of a high number
of sympatric species (Fig. 4). The variation of these variables throughout the Neotropics is
the main determinant of the low number of species and the simple composition of species
in areas outside of the biodiversity hotspot (i.e., Chaco, Atlantic Forest, Central Andes),
with increasing extinction susceptibility towards the observed environmental constraints
(Fig. 4). For example, if the annual precipitation is <1,000 mm/year, only 5 sympatric
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species can be found in a given area of 100 km?. A similar relationship was found between
available environmental energy and primate species richness. Both increase with rainfall up
to a maximum of 3,000 mm/year and then fall off at higher rainfall levels. In the biodiversity
hotspot (Amazon basin) we found medium values of rainfall (between 2,300 and 3,000
mm/year; Fig. 4). Aiming to explain this relationship, we searched for causes of the decline
of the AET and PET due to high levels of rainfall. Defler (2013) found that in the moist,
tropical forest heavy rains (above 3,000 mm/year) leach soils of calcium, magnesium and
potassium, causing a decrease in phosphorus availability and creating more acidic soil, all
of which affect primary production and, by extension, platyrrhine richness (Myers, 1988;
Pastor-Nieto ¢~ Williamson, 1998; Peres, 2008).

The platyrrhine biodiversity hotspot is characterized by high isothermality values
between 76% and 92.16% (Fig. 4E) and the lowest temperature seasonality values (Fig. 4D).
Strong seasonality negatively affects the density of frugivorous animals due to the seasonal
food shortages. For example, in most temperate forests no fruits are available for several
months of the year (Stevenson, 2001). Although the Atlantic coast of South America is not
a temperate forest, this region has two well-defined seasons, (one dry and cold season and
the one wet and warm season; Myers, 1988). This seasonality influences species richness
because some species may not be able to tolerate the harsh dry season. Also, since in the
Atlantic forest and Brazil’s Cerrado rainfall does not exceed 2,300 mm/year, the availability
of environmental energy is considerably smaller than in the Amazon basin, so a maximum
of eight sympatric species can coexist in 100 km?, including two endemic genera, Brachyteles
and Leontopithecus (Rylands, Mittermeier ¢ Silva, 2012). Related to the above variables,
altitudinal gradient shows a marked decrease in species richness over 1,000 m.a.s.l. This
pattern agrees with the traditional view of the relationship between diversity and elevation
in tropical forests (Lieberman et al., 1996; Givnish, 1999), and the classic ecological theory
that diversity and temperature decline with elevation due to the lowering of productivity
and an increase in biotic interactions (Ruggiero, Lawton & Blackburn, 1998; Geise et al.,
2004). For example, the most commonly found primates at high altitudes in Peru is the
Atelidae, with species commonly occurring at elevations of 2,000 m.a.s.l. (Shanee et al.,
2014). On the other hand, river density is a transversal explanatory variable at all spatial
scales used in this study, but its contribution to the multiple regression model is very
low, and independently, as a predictor variable its contribution is not significant. The
geometric form in which Amazonian rivers configure the general species’ richness pattern
is unclear. Ayres ¢» Clutton-Brock (1992) first suggested that Amazonian rivers are effective
barriers to primate species dispersal, largely related to their width, seasonal and annual
stability, rate of flow, and the ability of species to cross these environmental barriers.
However, despite the long-term stability of some of these watercourses, recent studies
found no evidence that rivers acts as an effective barrier (Boubli et al., 2015; Lecompte et
al., 2017). Thus, from a macroecological perspective, these lower and upper boundaries
are the most important feature of the relationships between species richness and climatic
variables, because they appear to represent a limit to the number of species for a given
geographic area and a given combination of habitat properties. In this sense, we continue
to provide evidence that that the limits of species ranges often match with combinations of
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climate variables (Woodward, 1987; Root, 1988), and that these limits shift through time in
synchrony with changes in climate (Walther, Beifsner ¢ Burga, 2005; Hickling et al., 2006;
Lenoir et al., 2010). It seems likely that species lying along these boundaries would have the
highest probability of extinction as a result of any change in their environmental habitat
conditions. At large scales, habitat selection and community processes are less important,
and richness gradients and species replacement are more the outcome of the environmental
limitations and dispersal ability of the group of species studied. Therefore, range map data
can provide a sharp picture of these large-scale dynamics (Hortal, 2008).

In conclusion, we found evidence that New World monkeys historically migrated
from their biodiversity hotspot (energetically optimal habitat) to adjacent, energetically
suboptimal areas, and that the different dispersal abilities of these species, the lack of
competitive interactions at a macroecological scale, and environmental constraints (i.e.,
energy availability, seasonality) are key elements which explain the non-uniform pattern
of species richness for this clade.
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