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ABSTRACT
Background. Fragmentation of native forests is a highly visible result of human land-
use throughout the world. In this study, we evaluated the effects of landscape frag-
mentation and matrix features on the genetic diversity and structure of Oligoryzomys
longicaudatus, the natural reservoir of Hantavirus in southern South America. We
focused our work in the Valdivian Rainforest where human activities have produced
strong change of natural habitats, with an important number of human cases of
Hantavirus.
Methods. We sampled specimens of O. longicaudatus from five native forest patches
surrounded by silvoagropecuary matrix from Panguipulli, Los Rios Region, Chile.
Using the hypervariable domain I (mtDNA), we characterized the genetic diversity and
evaluated the effect of fragmentation and landscape matrix on the genetic structure of
O. longicaudatus. For the latter, we used three approaches: (i) Isolation by Distance
(IBD) as null model, (ii) Least-cost Path (LCP) where genetic distances between patch
pairs increasewith cost-weighted distances, and (iii) Isolation byResistance (IBR)where
the resistance distance is the average number of steps that is needed to commute between
the patches during a random walk.
Results. We found low values of nucleotide diversity (π) for the five patches surveyed,
ranging from 0.012 to 0.015, revealing that the 73 sampled specimens of this study
belong to two populations but with low values of genetic distance (γST ) ranging from
0.022 to 0.099. Likewise, we found that there are no significant associations between
genetic distance and geographic distance for IBD and IBR. However, we found for the
LCP approach, a significant positive relationship (r = 0.737, p= 0.05), with shortest
least-cost paths traced through native forest and arborescent shrublands.
Discussion. In this workwe found that, at this reduced geographical scale, Oligoryzomys
longicaudatus shows genetic signs of fragmentation. In addition, we found that
connectivity between full growth native forest remnants is mediated by the presence of
dense shrublands and native forest corridors. In this sense, our results are important
because they show how native forest patches and associated routes act as source of
vector species in silvoagropecuary landscape, increasing the infection risk on human
population. This study is the first approach to understand the epidemiological spatial
context of silvoagropecuary risk of Hantavirus emergence. Further studies are needed
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to elucidate the effects of landscape fragmentation in order to generate new predictive
models based on vector intrinsic attributes and landscape features.

Subjects Biodiversity, Genetics, Zoology
Keywords Conservation genetics, Sigmodontinae, Genetic diversity, Genetic structure, Least cost
path, Surrounding matrix

INTRODUCTION
Habitat fragmentation is widely recognized as a major threat to global biodiversity (Brooks
et al., 2002; Secretariat of the Convention on Biological Diversity, 2005). In this process, a
large wild habitat changes into a number of small isolated patches as consequence of
human activities (Wilcove, McLellan & Dobson, 1986; Fahrig, 1997; Fahrig, 2003). Those
changes imply gradual or accelerated reduction of original habitat’s area (Young, Boyle &
Brown, 1996; Lande, 1998; Fahrig, 2003). The main intraspecific consequences of habitat
fragmentation are discontinuities on the distribution of resources and species’ optimal
environmental conditions, leading to a decrease in connectivity among fragmented
populations (Vos & Stumpel, 1995; Lees & Peres, 2008). Thus, fragmentation isolates
population, reduces gene flow, the genetic diversity and the effective population size,
favoring genetic processes such as drift and inbreeding (Allendorf & Luikart, 2007;
Johansson, Primmer & Merilä, 2007; Taylor et al., 2011). In addition, habitat fragmentation
can affect the fitness reducing adaptive responses to local selective environments and may
cause local extinction (Bolger et al., 1997; Frankham, 2005; Johansson, Primmer & Merilä,
2007;Willi et al., 2007; Bijlsma & Loeschcke, 2012).

Recently, it has been proposed that the structure of the landscape matrix is the main
modulator of the consequences of fragmentation on biodiversity (Gascon et al., 1999;
Debinski, 2006). Accordingly, if the surrounding matrix has structural similarity with
the original habitat remnants, the inter-patch migration is granted avoiding important
reduction of patch species richness (Gascon et al., 1999; Ricketts, 2001; Prugh et al., 2008;
Franklin & Lindenmayer, 2009; Driscoll et al., 2013). Although this proposal has strong
support on different fragmented systems, the genetic consequence of the fragmentation
in vertebrates has a strong bias to Tropical Forest species (Radespiel & Bruford, 2014).
Further, the intraspecific consequence of the matrix permeability has been studied mainly
on European vertebrate or insect species (e.g., McRae, 2006; Arens et al., 2007; Emaresi et
al., 2011; Van Strien, Keller & Holderegger, 2012).

The patch’s connectivity is often measured through fixation indexes and isolation by
distance (Manel et al., 2003). However, Arens et al. (2007) use an explicit calculation of
matrix permeability variables for the study of connectivity among Moor frog patches from
Netherlands, highlighting the importance of incorporating the landscape complexity on
the evaluation of genetic connectivity. This implies that a simple isolation by distance
model is insufficient to explain the genetic diversity in a system of patches surrounded
by a matrix of several land-uses. Thus, numerous approaches have been developed in
recent years, accounting for the matrix complexity with different theoretical foundations.
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According to Van Strien, Keller & Holderegger (2012), these approaches can be categorized
into two groups: those using transects and those usingmatrix features to establish landscape
cost/resistance surfaces. For the latter, there are two popular approaches, least-cost distance
model and the circuit theorymodel (e.g.,Walker & Craighead, 1997;Adriaensen et al., 2003;
McRae, 2006). The least-cost distance models minimize the travel distance among habitat
patches and the cost traversed, offering the shortest cumulative cost-weighted distance
(optimal route) between an origin patch to a destination patch. On the other hand,McRae
(2006) proposed a model based on circuit theory that ‘‘predicts a positive relationship
between genetic differentiation and the resistance distance, a distance metric that exploits
precise relationships between random walk times and effective resistances in electronic
networks’’. Thus, these new approaches allow to understand the effecst on the genetic
diversity of the patch-matrix dynamics.

During the last 30 years, the Mediterranean and the Temperate Chilean landscapes
have been strongly modified by silvoagropecuary activities (agricultural, lumbering and
industrial forestry activities), where remnants of native forests are restricted to zones
with difficult access (Bustamante & Grez, 1995; Aguayo et al., 2009). Then, these patches of
natural habitats constitute a highly fragmented environment, where patches are surrounded
by different productive crops, exotic forestry species (mainly Eucalyptus globulus and Pinus
radiata), and secondary regrowth native forest.

A frequent species in the Mediterranean and Temperate Forests of Chile is the long-
tailed pygmy rice rat (‘‘Colilargo’’), Oligoryzomys longicaudatus (Bennett, 1832). This
sigmodontine rodent has a broad distribution in Chile and Argentina. In Chile it occurs
from 27◦S to 54◦S (Belmar-Lucero et al., 2009), whereas in Argentina ranges from 36◦S to
51◦S on the eastern slope of the Andesmountains (Carbajo & Pardiñas, 2007).Oligoryzomys
longicaudatus shows a high vagility and a large home range 320–4,800 m2, with seasonal
fluctuations (Murúa, González & Meserve, 1986). The species is mainly granivorous,
inhabiting microhabitats with dense foliage, which could be related to its saltorial mode
of locomotion and as a mechanism to avoid predators (Murúa, González & Jofre, 1980;
Murúa & González, 1982). Molecular studies based on cytochrome b mitochondrial
DNA (mtDNA) sequences have shown a marked genetic homogeneity along the species
geographic distribution (Palma et al., 2005). However, studies based on hypervariable
domain I (HVI) of the mtDNA recovered a geographical structure of populations in
agreement with the ecoregions and the three recognized subspecies along the species range
(Palma et al., 2012a), and a temporal genetic variability at local scale (Boric-Bargetto et
al., 2012). In addition, O. longicaudatus has been the focus of numerous epidemiological
studies, given that the species is the major reservoir of the Andes strain of Hantavirus that
causes a cardiopulmonary syndrome to human populations with a mortality rate of about
35% (Toro et al., 1998; Martinez-Valdebenito et al., 2014). Thus, to evaluate the effects of
changing landscapes on the migration and connectivity of O. longicaudatus populations,
and the potential effect on infection rates, especially on peri-urban areas, constitute highly
relevant issues to the ecology, the genetics and the epidemiology of this species (Torres-Pérez
et al., 2004). Therefore, in this study we evaluated the effects of landscape fragmentation
and matrix structure on the genetic diversity and genetic structure of O. longicaudatus.
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We focused our work on a portion of the southern Temperate Forest (the Valdivian Rain
Forest) where human activities have produced a strong impact on natural habitats, and
where an important number of human cases of Hantavirus have been reported in Chile
(http://epi.minsal.cl/hantavirus-materiales-relacionados/).

MATERIALS & METHODS
Study site and specimens analyzed
The Valdivian Temperate Forest—southern Chile and nearby Argentina—is one of the
25 biodiversity hotspots of the world threatened by anthropogenic activities (Olson, 1998;
Myers et al., 2000). This biome/ecoregion has been considered a biogeographic island that
harbors a quite diverse assemblage of mammals where native species are mostly restricted
to national parks and rural areas with fragmented landscapes (Echeverría et al., 2007). For
this study, we took samples of O. longicaudatus from five different patches of dense native,
full growth, temperate forests in a total area of 3.5 km2. The specimens were trapped with
standard Sherman traps (8×9×23 cm; H. B. Sherman Traps, Inc., Tallahassee, FL, USA).
The field trapping procedure was conducted through a regular grid sampling design, setting
450 traps night for three nights, and we used oat and vanilla as bait.

The study was conducted during the autumn and winter of 2007 in the locality of
Curirruca, Panguipulli province, Los Rios region southern Chile (39◦48′30

′′

S, 73◦14′30
′′

W;
Fig. 1). The captures were conducted under the Chilean Government authorization:
Resolución Exenta No 7325 (December 30, 2005; from Servicio Agrícola y Ganadero,
Ministerio de Agricultura, Gobierno de Chile). We selected this temporal window because
it did not match with the reproductive period of the species and the mobility among
patches should be reduced (Murúa, González & Meserve, 1986). The patches sampled
were surrounded by a matrix—the rest of landscape after exclusion of habitat patches—
characterized by recent adult and/or harvested plantations, grasslands and shrublands areas,
agricultural fields, and/or adjacent to forest roads (Table S1). The appropriate landscape
soil uses for the sampling year were obtained from the Chilean Government National
Environmental Information System—SINIA (http://ide.mma.gob.cl/).

The present study was conducted using blood samples and liver tissue from 73 specimens
of O. longicaudatus, collected in this area (Table S2). All specimens were handled following
the standard bioethical and biosafety protocols proposed by the American Society of
Mammalogists (ASM; Sikes & Gannon, 2011), and the Center for Diseases Control and
Prevention (CDC;Mills et al., 1995), respectively.

Laboratory methods
DNA was extracted using the Wizard R© Genomic DNA Purification Kit (PROMEGA,
Madison,WI, USA). Through the polymerase chain reaction (PCR) we amplified∼1100 bp
from mtDNA from which we used 527 bp corresponding to the hypervariable subunit I
(HVI) and part of the conservative domain of the Control Region. The mammalian
mtDNA hypervariable regions are included within the extended terminal associated
sequences (ETAS) and conserved sequence block (CSB; Vigilant et al., 1991; Sbisà et al.,
1997; Pesole et al., 1999). The evolution of D-loop region in mammals is characterized by
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Figure 1 GIS representation and satellite image of the study site. (A) Land uses, roads, and native for-
est patches (fragments ‘‘FRX’’) where individuals of Oligoryzomys longicaudatus were sampled. (B) Google
Earth image of the study site depicting the fragments and the high heterogeneity of the land uses. Map
Data: Google Earth, DigitalGlobe.

a strong rate heterogeneity among sites, tandem repeated elements and high frequency
of insertion/deletion events (Saccone, Pesole & Sbisà, 1991; Wakeley, 1993; Sbisà et al.,
1997; Pesole et al., 1999). The ETAS and CSB domains evolve fast enough to be used for
population genetics studies (Wakeley, 1993; Sbisà et al., 1997; Pesole et al., 1999; Rosel et al.,
1999; Kerth, Mayer & König, 2000; Matson et al., 2000).

We used primers DLO-L (5′ CGG AGG CCA ACC AGT AGA 3′) and DLO-H (5′ TAA
GGC CAG GAC CAA ACC 3′; Belmar-Lucero et al., 2009; Palma et al., 2012a) according
to the following thermal profile: an initial denaturation of 5 min at 94 ◦C, followed by 25
or 30 cycles of denaturation for 30 s at 94 ◦C, annealing for 30 s at 57 ◦C and extension
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for 1 min 30 s at 72 ◦C, and a final extension of 5 min at 72 ◦C. The PCR products were
sent to Macrogen (http://dna.macrogen.com/) for purification and sequencing (Applied
Biosystems 3730XL sequencer; Applied Biosystems, Foster City, CA, USA). Sequences were
edited with BioEdit v 7.2.5 (Hall, 1999) and aligned using ClustalW (Thompson, Higgins &
Gibson, 1994).

Data analyses
Genetic diversity
To describe the genetic diversity in all the patches studied we used the DnaSP Software v
5.10.01 (Librado & Rozas, 2009) to estimate the number of haplotypes (Nh), segregating
sites (S), the haplotype diversity (Hd) and the nucleotide diversity (π). The same
software was used to calculate the GammaST (γST; Nei, 1982) a statistical index of genetic
differentiation that represents an unbiased estimate of the population subdivision fixation
index (FST) and its use is more appropriate for haplotype data. Statistical significance of
genetic differentiation was tested using Hudson’s nearest neighbor statistics (Snn) with
1,000 permutations in DnaSP. Snn statistics indicates the frequency with which nearest
neighbor sequences are found in the same group (Hudson, 2000).

Fragmentation effect
To evaluate the fragmentation effects on the genetic structure of O. longicaudatus we
estimated the number of panmictic units in the landscape surveyed using the package
GENELAND v 3.2.2 (Guillot, Mortier & Estoup, 2005) in the R software (R Core Team,
2016). For this, we follow the proposal of Guillot et al. (2012) codding the data in such a
way that the various haplotypes of mtDNA are recoded as alleles of a single locus. This
package implements a statistical model with Bayesian inference and uses geo-referenced
data of the sequenced individuals, inferring and locating genetic discontinuities between
populations. The number of clusters was determined by running MCMC (Markov chain
Monte Carlo) iterations to estimate K (i.e., the most probable number of populations).
The analysis was performed in both non-correlated and correlated model, allowing values
of K to vary from 1 to 5, running MCMC with 10,000,000 iterations sampling each 1,000.
To choose the best model that fits the data, a log10 Bayes Factor (BF) with 1,000 bootstrap
replicates was performed in Tracer v 1.5 (http://tree.bio.ed.ac.uk/software/tracer/). The
model that better fitted our data was the correlated allele frequency model, which assumes
that rare alleles in a certain populations are also rare in other populations (Guillot, Mortier
& Estoup, 2005).

Landscape matrix effect
For the identification of landscapematrix effects on the genetic structure ofO. longicaudatus
we followed three approaches. First, we performed isolation by distance test (IBD) as a
null model, because this model contains no information about landscape features, where
dispersal occurs in homogenous geographic spaces (Nowakowski et al., 2015). IBD was
performed using vegan package 2.4-1 package (Oksanen et al., 2016) implemented in R (R
Core Team, 2016). IBD was tested using a mantel test with 119 permutations between a
matrix of genetic distances (γST) and a matrix of geographic distances between the five
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patches. Second, we used Least-Cost Path (LCP) analysis. In LCP, genetic distances between
patch pairs increase with cost-weighted distances, taking into account the friction effects
of the landscape on the individual movement process (Adriaensen et al., 2003; Epps et al.,
2007). Third, we used isolation by resistance (IBR) analysis, where dispersal occurs in
heterogeneous landscapes and the resistance distance is the average number of steps that
is needed to commute between the patches during a random walk that is calculated using
the circuit theory (McRae, 2006).

To estimate the distances under LCP and IBR models we used the package gdistance
(Van Etten, 2017). For this, we first fed the gdistance package with a raster file containing
the landscape features of the study area classified in five classes: native forest (all age
classes), grassland and shrublands (with/out arborescent elements), farm (agricultural
use), plantation forestry (monoculture of exotic species, eg. Pinus radiata) and mix forest
(zone with both native and introduced trees). The raster resolution was 0.008×0.0006
pixels, but for technical feasibility we created a raster layer with larger cells (0.048×0.0034
pixels of resolution) using raster package 2.5-8 (Hijmans, 2015; Hijmans, 2016) in R (R
Core Team, 2016). Second, we used transition function of gdistance to create a transitions
matrix which represents the transition from one cell to another on a grid where each cell
is connected to its 8 neightbours. In short, this function calculates the conductance values
from the values of each pair of cells to be connected (Van Etten, 2017). However, there are
two distance distortions that need to be corrected; diagonal neighbors are more remote
from each other than orthogonal neighbours, and on a longitude-latitude grids, West–East
connections are longer at the equator and shorter towards the poles. To solve these
distortions, we used the geoCorrection function. For the transition matrix used in LCP,
this function divides each value from thematrix by distance between cell centers (Van Etten,
2017). On the other hand, for the transition matrix used in IBR, the function weights the
probability of reaching an adjacent cell in a random walk by making it proportional to the
surface covered by the cell, multiplying the North–South transition values with the cosine
of the average latitude of the two cell centers that are being connected (Van Etten, 2017). To
calculate least-cost distances between patches, we used costDistance function that computes
the cost units as the reciprocal of the values in the transition matrix using the Djkstra’s
algorithm (Dijkstra, 1959). To calculate the resistance distances between patches, we used
commuteDistance function, this function uses the algorithm implemented by Fouss et al.
(2007) to calculate the expected random walk commute time between patches, resulting in
the average number of steps needed to commute between the locations (Van Etten, 2017).

To perform the correlation between genetic distances (γST) with both, LCP and IBR
distances, we used vegan package 2.4-1 package (Oksanen et al., 2016) in R (R Core Team,
2016) performing a mantel test with 119 permutations. This number of permutations is
the maximum number allowed to avoid duplication due the size of matrix distance (i.e.,
5×5). Finally, we used gdistance 1.1-9 package (Van Etten, 2015) to trace the quickest path
among pairs of patches for LCP model applying shortestPath function which calculates the
shortest path from one patch to another. This allowed us to know if there were specific
types of soil use (the surrounding matrix) that the ‘‘Colilargo’’ uses as a corridor.
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Table 1 Descriptive statistics of the genetic variation ofO. longicaudatus sequences for each sampled
patch.

Patches N S Nh Hd± SD π± SD

FR1 12 22 9 0.939± 0.058 0.015± 0.002
FR2 18 33 16 0.987± 0.023 0.014± 0.001
FR3 9 20 8 0.972± 0.064 0.013± 0.002
FR4 24 28 13 0.880± 0.056 0.012± 0.002
FR5 10 21 7 0.867± 0.107 0.013± 0.002
Total 73 43 36 0.954± 0.012 0.014± 0.001

Notes.
N, Number of individuals; S, segregating sites; Nh, haplotype number; Hd, haplotype diversity; π, nucleotide diversity;
SD, standard deviation.

RESULTS
Genetic diversity
We found a total of 43 segregating sites and 36 haplotypes out from 73 sequences (Table 1).
All patches showed a high haplotype diversity (Hd), although FR5 showed the lowest value
(0.867) whereas FR2 exhibited the highest values (0.987) (Table 1). Regarding nucleotide
diversity (π), it was low, ranging from 0.012 (FR4) to 0.015 (FR1) (Table 1).

Genetic structure
Results of GENELAND v 3.2.2 (Fig. 2) for population genetic structure inferred that the
most probable number of clusters of individuals was two (K = 2). The first cluster grouped
sequences from FR3 and FR4 (Fig. 2A). The second cluster joined the patches FR1, FR2 and
FR5 (Fig. 2B). We found high posterior probabilities (0.9) for cluster assignation (Fig. 2).

Pairwise γST values (Table 2) revealed the occurrence of genetic differentiation recorded
for FR3 and FR5 (γST = 0.099, p= 0.046), and between FR4 and FR5 (γST = 0.085,
p= 0.044). The remaining patches showed γST values ranging from 0.022 to 0.096 (not
significantly different from 0).

Landscape matrix effects
We found that O. longicaudatus did not exhibit significant isolation-by-distance, γST
was not correlated with geographic distance (r = 0.694, p= 0.075, Fig. 3A). However,
we found for the least cost path approach a significant positive relationship (r = 0.737,
p= 0.05, Fig. 3B). But, the long-tailed pygmy rice rat did not exhibit a significant isolation
by resistance relationship for genetic differentiation (r = 0.740, p= 0.058, Fig. 3C). The
shortest paths traced for LCP shows that individuals of O. longicaudatus moved with
preference through young and all growth native forest, and grassland with arborescent
shrublands to connect patch pairs (Fig. 4).

DISCUSSION
In this work, we found that, at this reduced geographical scale, Oligoryzomys longicaudatus
shows genetic signs of fragmentation. Also, we found that genetic distance between patches
showed best fitting to a LCP model. In addition, we found that connectivity between full
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Figure 2 Spatial population structure.GENELAND analyses with posterior probability isoclines denot-
ing the extent of genetic landscapes. Black dots represent patches analyzed. White indicates regions with
the greatest posterior probability of inclusion, whereas diminishing probabilities of inclusion are propor-
tional to the degree of coloring. (A) Map of posterior probability to belong to cluster 1; (B) map of poste-
rior probability to belong to cluster 2.

Table 2 Pairwise genetic distances between patches (γst) (below diagonal) and SNN significance P-
values (above diagonal). Bold numbers represent significant values.

FR1 FR2 FR3 FR4 FR5

FR1 – 0.835 0.735 0.588 0.31
FR2 0.022 – 0.586 0.351 0.379
FR3 0.091 0.049 – 0.346 0.046
FR4 0.096 0.062 0.030 – 0.044
FR5 0.038 0.027 0.099 0.085 –

Figure 3 Effect of fragmentation and landscape matrix on the genetic structure ofO. longicaudatus.
Graphics of Pearson correlation coefficient (r). (A) Isolation by Distance (IBD), (B) The Least-cost Path
(LCP), and (C) Isolation by Resistance (IBR). r value corresponds to Pearson correlation coefficient and
p values correspond to significance (p≤ 0.05).

Lazo-Cancino et al. (2017), PeerJ, DOI 10.7717/peerj.3842 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.3842


Figure 4 Results of Least Cost Paths analyses. Satellite image of the study site depicting the fragments
surveyed and the least cost paths inferred for Oligoryzomys longicaudatus in the highly fragmented Valdi-
vian Rainforest of southern Chile. Google Earth image c© 2017 DigitalGlobe.

growth native forest remnants is mediated by the presence of dense shrublands and native
forest corridors. The latter can be composed by different age and health status native
formations (Fig. 1B; Fig. 4). These results complement previous efforts to understand the
association between landscape attributes and the genetic diversity of this species. Previous
studies have been focused on regional and local scales proposing relationships between
haplogroups and ecogeographic regions, as well as latitudinal genetic structure in local
context (Belmar-Lucero et al., 2009; Palma et al., 2012a; Ortiz et al., 2017). Specifically,
Ortiz et al. (2017), studying a fragmented landscape in the Argentinian Patagonia, found
that landscape features such as lakes, rivers, roads and urban settlements constrain the
movement of O. longicaudatus, acting as barriers reducing gene flow. Our results support
the latter findings since, even at this small scale, showing abrupt changes in land use being
the species strongly affected by the fragmentation of the primary habitat.

The long-tailed pygmy rice rat has a marked foraging behavior characterized by the
search of seeds, a highly localized and temporally variable resource (Murúa, González &
Meserve, 1986). Previous studies on this species suggested high flexibility in habitat use,
characterized by an opportunistic behavior and large home range (Murúa & González,
1986;Murúa, González & Meserve, 1986; Spotorno, Palma & Valladares, 2000). In addition,
studies based in the Valdivian Rainforest (dense full growth forest at Villarrica National
Park) strongly suggest that migration is the modulator of the diversity and temporal genetic
structure ofO. longicaudatus (Boric-Bargetto et al., 2012). Thus, the landscapematrix effects
on the genetic diversity and genetic structure of this species would be largely buffered by
its high vagility features particularly in the Valdivian Rainforest which is its primary
habitat (Murúa, González & Meserve, 1986). However, we found that the LCP model is
the best predictor of the genetic distance for the fragments surveyed. This implies that O.
longicaudatus minimize the tradeoff between distance travelled and the costs traversed.
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Graphically, our results showed that the shortest paths among patch pairs are across native
forest (the species’ primary habitat), representing the routes of maximum efficiency for
landscape connectivity, while the rest of land uses would act, in some extent, as barriers.

Our results should be viewed with caution, in terms of some possible consequences
derived from our interpretations. If the most efficient routes connecting patches are
through native forest, this does not mean that individuals of O. longicaudatus occurs
only in native forest. If dispersing individuals follow these optimal routes, they would
increase the probability of survival reaching the optimal destination (another patch).
This is because, dispersal through optimal routes and their associated habitats increases
increases the likelihood of finding resources and evading predation (Walker & Craighead,
1997). In fact, Moreira-Arce et al. (2015) found that O. longicaudatus is the preferred prey
of the culpeo fox (Lycalopex culpaeus) only in monocultures, increasing its predation risk in
silvoagropecuary landscapes. However, dispersing individuals may not choose the optimal
route, and travel through other types of soil use less effectively, because of connectivity
among patches. For instance, due to its opportunistic behavior and according to previous
ecological studies settled in coastal ranges of the Valdivian Rainforest, this species could
be found on grassland—shrublands when the seed availability increases on this area but
not on the native forest (Murúa & González, 1986; Murúa, González & Meserve, 1986). In
tree monocultures, this rodent is less abundant, but not absent, than in native forest and
exhibits an omnivorous diet, where mainly consumes seeds (e.g., Pinus radiata seeds)
and fruits, and arthropods and mushrooms in less amount (Muñoz-Pedreros, Murúa &
González, 1990; Moreira-Arce et al., 2015). Another important caveat of this work is the
molecular marker used to infer the genetic structure and diversity of the Colilargo.We used
a very variable fragment from the mtDNA, then our results reflect the matrilineal genetic
diversity and least cost paths. The major consequence of this choice, is that just a quarter of
the total effective population size is used in this study, so the results could underestimate
the genetic diversity of each patch, but not the routes, since the latter are estimated from
the properties of the landscape (Van Etten, 2017). Finally, given that our sampling period
was during the autumn and winter, our results may reflect connectivity aspects of Colilargo
modulated by the features of those seasons. Interestingly, a previous ecological work on
O. longicaudatus, settled in Temperate Forest, shows that a very marked seasonal
reproductive period from October to May, which overlaps with the recruitment period
from March to April, is followed by population peaks during autumn-winter (Murúa,
González & Meserve, 1986). Therefore, our sampling was carried out post-recruitment,
so the results of genetic diversity and structuring are relevant to estimate connectivity in
this fragmented system since these patterns are the result of migration processes between
patches that have already occurred.

Oligoryzomys longicaudatus is recognized as the major reservoir of the Andes strain of
Hantavirus (ANDV) in Southern South America (Medina et al., 2009). This virus causes
the Hantavirus Cardiopulmonary Syndrome (HCPS) disease (Martinez-Valdebenito et al.,
2014). In Valdivia, Chile,Mansilla (2006) found that >50% of HCPS cases were associated
to silvoagropecuary landscapes (Holz & Palma, 2012). In addition, the long - tailed pygmy
rice rat is one of the most common species in the rodent assemblages, where it could
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potentially infect other wild rodent species with the ANDV (horizontal transmission to
coexisting species; Palma et al., 2012b), thus increasing the risk to humans (Polop et al.,
2010; Andreo et al., 2012; Barrera & Murúa, 2016). In this sense, our results are important
because they show how native forest patches and associated routes act as source of vector
species in silvoagropecuary landscape, highly associated to human activities increasing the
infection risk on human population. Further studies are required to elucidate the effects
of landscape fragmentation at large scales (i.e., ecogeographic), in order to gain a deeper
understanding of the underlying causes of HCPS infection risk in the Valdivian Forest.
Finally, a general pattern of the consequences of Temperate Forest fragmentation should
be based on an important number of species, and future efforts should point out to other
endemic species of this ancient landscape of South America.
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