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ABSTRACT
Nodaviruses are small bipartite RNA viruses which belong to the family ofNodaviridae.
They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus,
which infects fishes. Another distinct group of nodavirus infects shrimps and prawns,
which has been proposed to be categorized as gamma-nodavirus. Our current review
focuses mainly on recent studies performed on nodaviruses. Nodavirus can be
transmitted vertically and horizontally. Recent outbreaks have been reported in China,
Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased
mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy
(TEM) are used to examine the presence of nodaviruses in infected fishes and prawns.
For classification, virus isolation followed by nucleotide sequencing are required. In
contrast to partial sequence identification, profiling the whole transcriptome using
next generation sequencing (NGS) offers a more comprehensive comparison and
characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the
viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips,
reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-
LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed.
Besides viral RNAdetections, diagnosis based on immunological assays such as enzyme-
linked immunosorbent assay (ELISA), immunodot andWestern blotting have also been
reported. In addition, immune responses of fish and prawn are also discussed. Overall,
in fish, innate immunity, cellular type I interferon immunity andhumoral immunity co-
operatively prevent nodavirus infections, whereas prawns and shrimps adopt different
immunemechanisms against nodavirus infections, through upregulation of superoxide
anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-
lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and
prawns based on inactivated viruses, recombinant proteins or DNA, either delivered
through injection, oral feeding or immersion, are also discussed in detail. Lastly, a
comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent
years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii
nodavirus (MrNV). RecombinantMrNVVLPs have been produced in prokaryotic and
eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform
for vaccine development, a molecular tool for mechanism study and in solving the
structures ofMrNV are intensively discussed.
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INTRODUCTION
The current review discusses recent studies related to nodaviruses. Recent reported
outbreaks of nodaviruses, diagnostic assays, host immunological responses, vaccines,
and virus-like particles (VLPs) are emphasized. To the best of our knowledge, there are
only eight review articles related to nodavirus which had been published within the past
five years: immunological-based detection of shrimp viruses (Chaivisuthangkura, Longyant
& Sithigorngul, 2014); recombinant nodavirus-like particles as delivery system (Jariyapong,
2015); the life cycle of beta-nodaviruses (Low et al., in press); viral encephalopathy and
retinopathy in aquaculture (Doan et al., 2017); interaction between beta-nodavirus and its
host for development of prophylactic measures for viral encephalopathy and retinopathy
(Costa & Thompson, 2016); reactive oxygen species-mediated cell death (Reshi, Su & Hong,
2014); mitochondrial disruption and necrotic cell death (Hong, 2013); and immunity
to beta-nodavirus infections of marine fish (Chen, Wang & Chen, 2014). Another two
review articles published within the past 10 years are about the biology and biomedical
applications of Flock House virus (Venter & Schneemann, 2008), and white-tail-disease
(WTD) in Macrobrachium rosenbergii (Bonami & Sri Widada, 2011). However, none of
these articles review the recent advances in the study of nodaviruses as presented in the
current review.

SURVEY METHODOLOGY
‘‘PubMed’’ and ‘‘Scopus’’ were used to search for journal articles published within the
last five years using the keyword ‘‘nodavirus’’. These articles were screened and used
as references for the current review. Additional information was obtained through the
‘‘Google’’ search engine with more specific keywords for older publications.

Nodavirus
Nodavirus belongs to the family of Nodaviridae. Generally, nodaviruses are classified into
alpha-nodavirus and beta-nodavirus based on their hosts. Alpha-nodaviruses such as
Nodamura virus (NoV), Flock House virus (FHV), black bettle virus (BBV), Pariacoto
virus (PaV), and a recently discovered mosinovirus (MoNV) (Schuster et al., 2014) infect
insects, whereas beta-nodaviruses such as striped jack nervous necrosis virus (SJNNV),
barfin flounder nervous necrosis virus (BFNNV), redspotted grouper nervous necrosis
virus (RGNNV), and tiger puffer nervous necrosis virus (TPNNV) infect fishes. Another
type of nodavirus infects prawn, and is distinctive from alpha- and beta-nodaviruses
(Naveen Kumar et al., 2013). This prawn nodavirus includes Macrobrachium rosenbergii
nodavirus (MrNV) and Penaeus vannamei nodavirus (PvNV). Naveen Kumar et al. (2013)
proposed that the MrNV and PvNV should be categorized into gamma-nodaviruses,
based on their distinct genomic sequences compared with that of both the alpha- and
beta-nodaviruses. More recent studies have identified another two prawn nodaviruses,
namely the covert mortality nodavirus (CMNV) (Zhang et al., 2014; Zhang et al., in press)
and Farfantepenaeus duorarum nodavirus (FdNV) (Ng et al., 2013), infecting Litopenaeus
vannamei and F. duorarum, respectively. Although nodaviruses are usually named after

Yong et al. (2017), PeerJ, DOI 10.7717/peerj.3841 2/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.3841


their native hosts, nodaviruses are often capable of infecting multiple species. RGNNV has
been reported to infect Asian seabass, Lates calcarifer (Banerjee et al., 2014); Nile tilapia,
Oreochromis niloticus (Keawcharoen et al., 2015); and Amphiprion sebae Bleeker, a marine
clownfish (Binesh et al., 2013), whereas MrNV has also been reported to infect Penaeus
indicus, Penaeus monodon, and P. vannamei (Ravi et al., 2009; Senapin et al., 2012).

Fish nodavirus
The fish nodavirus, also known as Nervous Necrosis Virus (NNV), infects fishes and
causes viral encephalopathy and retinopathy (VER). The first outbreak occurred in
1985 (Costa & Thompson, 2016). The infection was first described by Yoshikoshi & Inoue
(1990) in the Japanese parrot fish Oplegathus fasciatus. Fishes infected by nodavirus suffer
neurological disorders, which are characterized by intensive vacuolization of retina and
central nervous systems, culminating in abnormal swimming pattern and darkening of
fish color (Munday & Nakai, 1997). In fish, Nodavirus can be detected in many organs
but central nervous system including the brain, spinal cord and retina are the main targets
(Ghiasi et al., 2016). The fish nodavirus seriously affects aquaculture industry worldwide,
resulting in great economic losses. Infection by this virus is often associated with high
mortality rate, up to 100% in fish larvae and juveniles (Skliris et al., 2001). To date,
nodavirus is known to affect over 120 fish species, particularly groupers and seabass such
as the Asian seabass Lates calcarifer and European seabass Dicentrarchus labrax (Breuil
et al., 1991; Costa & Thompson, 2016; Frerichs, Rodger & Peric, 1996; Munday, Kwang &
Moody, 2002; Parameswaran et al., 2008). Although nodavirus mostly affects marine fishes,
nodavirus infections in freshwater fishes such as European eels (Anguilla anguilla L.),
yellow-wax pompano (Trachinotus falcatus), firespot snapper (Lutaanus erythropterus B.),
cobia (Rachycentron canadum) and Chinese catfish (Parasilurus asotus) have been reported
in Taiwan (Chi, Shieh & Lin, 2003). In addition, outbreaks in hybrid striped bass × white
bass (Morone saxalitis × Morone chrysops) and largemouth bass (Micropterus salmoides)
have also been reported in Italy (Bovo et al., 2011). Apart from horizontal transmission, fish
nodavirus can be transmitted vertically through infections at the gonads, passing the virus to
their progenies (Breuil et al., 2002; Kocan, Hershberger & Elder, 2001; Valero et al., 2015a).

Prawn nodavirus
Like fish nodavirus, prawn nodavirus has significant economic impact on the prawn
aquaculture industry. Prawn nodavirus can be isolated from cephalothoraxes and whitish
abdominal muscle (Zhang et al., 2014) of infected prawns. The most studied prawn
nodavirus is the MrNV. It is a non-zoonotic nodavirus which infects M. rosenbergii,
commonly known as the giant river prawn. MrNV was first isolated and reported
in 1999 (Arcier et al., 1999) from M. rosenbergii. Infection by MrNV causes white tail
disease (WTD) or white muscledisease (WMD), where infected cells undergo necrosis
and turn whitish. The rate of mortality is extremely high (up to 100%) in larvae and
post-larvae of M. rosenbergii (Qian et al., 2003; Ravi et al., 2009), causing great economic
losses to M. rosenbergii hatchery and nursery farm industries. Despite the high mortality
rate in larvae and post-larvae prawns, MrNV does not cause death in adult prawns.
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However, the adult prawns still serve as the virus carriers, transmitting the virus vertically
to their offsprings (Sudhakaran et al., 2007), and horizontally to other prawns during
cannibalization (Sahul Hameed et al., 2004). Another prawn virus, PvNV was first isolated
in 2005 from a P. vannamei farm in Belize (Tang et al., 2007; Tang et al., 2011). Being a
prawn nodavirus, PvNV shares 83% similarities with MrNV in its viral genome (Tang et
al., 2011). It causes muscle necrosis, resulting in white, opaque lesions in the tail, similar to
the symptoms ofMrNV infection. However, the virulence of PvNV is not as high asMrNV,
in which the former normally resulted in approximately 50% production loss in an infected
farm (Tang et al., 2007). Apart from its native host, PvNV has also been demonstrated to
be able to infect Penaeus monodon in an experimental infection (Tang et al., 2007).

Insect nodavirus
Unlike fish and prawn nodaviruses, insect nodaviruses do not have a direct impact on
the global economy. Despite that, insect nodaviruses, especially the FHV and BBV, have
served as excellent models to study the mechanisms of other positive-strand RNA viruses,
such as those of Caliciviridae, Flaviviridae, Picornaviridae, and Togaviridae, due to their
small genome size and high level of replication in compatible hosts (Ball & Johnson, 1998).
FHV was originated from grass grub, Costelytra zealandica (Dearing et al., 1980). FHV
has been demonstrated to be able to infect a wide variety of hosts, including insects,
yeasts, plants, and mammalian cells. Apart from its original host C. zealandica, FHV
also infects the common fruit fly, Drosophila melanogaster. Therefore, cell-lines derived
from D. melanogaster such as Schneider Line 1 (DL1) have been established for the
propagation of insect nodaviruses (Dearing et al., 1980; Miller, Schwartz & Ahlquist, 2001).
When the yeast Saccharomyces cerevisiae was transfected with FHV, the viral genomic
RNA induced the production of infectious virion capable of infecting Drosophila cells
(Price, Rueckert & Ahlquist, 1996). In addition, FHV was also reported to infect the whole
plants of barley, cowpea, chenopodium and tobacco (Selling, Allison & Kaesberg, 1990), as
well as mammalian cells such as the baby hamster kidney cell (BHK21) (Ball, Amann &
Garrett, 1992). Due to its wide host range, FHV has been an excellent model to study the
mechanisms of other economically important RNA viruses. Another well-studied insect
virus, BBV, was isolated from Heteronychus arator. BBV propagates well in Drosophila line
1 cells, but not in BHK21, mouse L-cell, mosquito cells (Aedes albopictus and A. aegypti),
cabbage looper (Trichoplasia ni), fall armyworm (Spodoptera frugiperda) and line GM1 of
D. melanogaster (Friesen et al., 1980). Selling & Rueckert (1984) established a plaque assay
for nodaviruses using Drosophila cell-adapted BBV, which greatly facilitates the isolation
and reassortant of nodaviruses (Kopek et al., 2010; Settles & Friesen, 2008). BBV’s structure
has been studied intensively using electron microscopy and crystallization followed by
small-angle x-ray scattering (Hosur et al., 1984). As in other nodaviruses, BBV appeared to
form icosahedral structure with a triangulation number of T = 3. Furthermore, the RNA3
of nodavirus was identified to be a subgenomic mRNA of the viral RNA1 by studying BBV,
and it can be isolated from cells infected by BBV (Friesen & Rueckert, 1982; Guarino et al.,
1984). Another insect nodavirus, Boolarra virus was isolated from the ghost mothOncopera
intricoides (Reinganum, Bashiruddin & Cross, 1985). The viral morphogenesis was shown
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to be restricted to the cytoplasm of cultured Drosophila cell lines (Bashiruddin & Cross,
1987). A more recent Wuhan nodavirus was isolated from Pieris rapae larvae (Liu et al.,
2006a). A study of its subgenomic RNA3 has provided an insight into the RNAi inhibitory
property of the nodavirus B2 protein (Cai et al., 2010).

General features of nodavirus
In general, nodaviruses are non-enveloped zoonotic viruses with icosahedral structures.
Their genomes comprise of two linear, positive-sense, single-stranded RNA. RNA 1 is
approximately 3.1–3.2 kilobases (kb) in length, whereas RNA2 is approximately 1.2–1.4 kb.
Both of which lack a poly-A tail at their 3′ ends (Comps, Pepin & Bonami, 1994;Mori et al.,
1992). RNA 1 encodes for the RNA-dependent RNA polymerase (RdRP), which functions
in replicating the viral RNA genome without involving an intermediate DNA. RNA 3, a
subgenomic transcript of RNA 1, it encodes for a non-structural B2-like protein (Cai et
al., 2010; Hayakijkosol & Owens, 2012; Lingel et al., 2005). B2 functions as a suppressor for
the post-transcriptional gene silencing of host defense mechanisms through non-specific
binding to double-stranded RNA generated during the virus replication (Fenner et al.,
2006). RNA 2 encodes for the viral capsid protein, which forms the core of nodavirus.
The nodavirus capsid protein assembles into virus particles with icosahedral structures,
approximately 30 nm in diameter, with a triangulation number of 3 (T = 3) containing 180
capsid subunits. The virus particles package only the RNA 1 and RNA 2, forming simple
but infectious virions.

Transmission of nodavirus
It has been confirmed that vertical transmission is the main mechanism of nodavirus
spreading (Murwantoko et al., 2016; Zhang et al., in press). This vertical transmission in the
aquaculture industry can be overcome by good biosecurity practices in hatchery-reared
larvae and juveniles of some fish species. Besides vertical transmission, nodavirus may
also infect the cultured fish even at the grow-out stages through horizontal transmission.
Although nodaviruses detected in aquaculture farms are often with relatively low sequence
variations, PCR based molecular analyses (including RT-PCR and nested PCR) have
revealed different betanodaviruses with high numbers of sequence variations in wild fishes
and even seawater samples. This implies that, nodavirus with different virulence may be
shed by the less susceptible wild fish in water and consequently virulent forms of nodavirus
in the seawater would infect the susceptible cultured fish (Nishi et al., 2016).

Recent incidence of nodavirus
Nodavirus infection has a great negative impact on the aquaculture industry. To date, more
than 40 marine and freshwater fish species have been identified susceptible to nodavirus
(particularly betanodavirus) infection (Nishi et al., 2016). It has been detected in freshwater
prawn hatcheries in Indonesia (Murwantoko et al., 2016) and marine shrimp farms located
in Fujian, Shandong and Hebei Provinces in China (Zhang et al., 2014). In addition,
nodavirus caused mass mortality in cage-reared freshwater guppy Poicelia reticulate in
Singapore (Hegde et al., 2003), larval rearing facility of marine clownfish, Amphiprion sebae
in India (Binesh et al., 2013) and Asian seabass in India (Banerjee et al., 2014). Apart from
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affecting aquaculture industry, nodaviruses detected in wild golden grey mullet Liza aurata
and sharpnose mullets Liza saliens were correlated to the dramatically decrease of mullets
stock in the Caspian Sea (Zorriehzahra et al., 2014; Ghiasi et al., 2016).

Detection of nodavirus
General identification
Histopathology and Transmission Electron Microscopy (TEM) examinations were used
to observe the presence of nodaviruses in fishes (Ghiasi et al., 2016) and shrimps (Zhang
et al., 2014). In terms of histopathological analysis of nodavirus infected shrimps, necrotic
epithelium and inclusions in the hepatopancreatic tubular epithelium are commonly
observed in a nodavirus infected shrimp. In addition, viral inclusion and viral particles
are commonly observed in the hepatopancreas using TEM (Zhang et al., 2014). Moreover,
severe anemia associated with increase of neutrophil populations, decrease of lymphocyte
populations, raise of liver enzyme profile and decline of total protein, albumin and total
immunoglobulin levels were also observed in fishes infected with nodaviruses (Ghiasi et
al., 2016).

Molecular identification
For the phylogenetic analysis, conventional and real-time reverse transcription PCR (RT-
PCR) that amplify the RNA-dependent RNA polymerase (RdRp) of RNA 1 (Murwantoko et
al., 2016) or the T4 region of RNA2 of nodavirus (Nishizawa et al., 1994;Hegde et al., 2003;
Banerjee et al., 2014; Overgård et al., 2012), random shotgun metagenomic sequencing
(Ng et al., 2013) and Illumina whole transcriptome metagenomic sequencing were able
to detect the presence of nodavirus in infected organisms (Greninger & DeRisi, 2015)
or even from seawater (Nishi et al., 2016). For example, tombunodavirus that shares
nucleotide sequence similarity with that of nodavirus and tombuvirus family members
was identified in the weekly metagenomic sequencing of organisms in San Francisco
wastewater (Greninger & DeRisi, 2015). Nevertheless, whether this phenomenon was due
to co-infection of nodavirus and tombuvirus or the real existence of tombunodavirus
needs further validation. In another study by Conceição Neto et al. (2015), a putative novel
member of nodavirus was detected in the fecal samples of otter (Lutra lutra) in Portugal
based on the identification of RdRp in the metagenomic analysis. However, this nodavirus
identified in the gut of the otter may have originated from a fish diet, which casts doubt
on the report of a new host for nodavirus (Conceição Neto et al., 2015).

To improve molecular identification, virus isolation coupled with either the Sanger
sequencing or next generation sequencing (NGS) allow specific characterization of a
particular strain of nodavirus (Zhang et al., 2014). Based on the International Committee
on Taxonomy of Viruses (ICTV), isolated nodaviruses can be classified according to the
genetic diversity of the RNA2 segment by the simple and cost-effective Sanger sequencing
method (Conceição Neto et al., 2015). Pairwise identity of the RNA2 with less than 80%
at the nucleotide level and less than 87% at the amino acid level is classified as a novel
species (Schuster et al., 2014). Compared to the partial sequence identity determined by the
Sanger sequencing method, profiling the whole transcriptome of a nodavirus offers a more
comprehensive comparison and characterization of the virus classification. For example,
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CMNV, an alphanodavirus that shares only 31-54% nucleotide sequence similarity with
other nodaviruses in GenBank, was successfully characterized by sequencing the cDNA
library using the Roche 454 sequencer (Zhang et al., 2014). In addition, fluorescence in
situ hybridization (FISH) and nested RT-PCR assays that detect a specific nodavirus can
be designed (Zhang et al., 2014). Another study by Schuster et al. (2014) reported that the
identification of Mosinovirus (MoNV), a novel member of the familyNodaviridae, belongs
neither to alpha- nor beta-nodaviruses. Without the isolation of the virus, recombination
that was detected by the whole transcriptome 454 pyrosequencing in MoNV would not
be accepted (Schuster et al., 2014). Although nodavirus can be detected in water samples,
quantitative isolation of the nodavirus remains challenging with the current available
protocols (Nishi et al., 2016).

Diagnosis of nodaviruses
Most of the diagnostic assays for nodaviruses are based on detection of the viral RNA
through RT-PCR. In recent years, efforts have been focused to establish diagnostic assays
which require minimal laboratory setup. A rapid and sensitive automatedmicrofluidic chip
system for the detection of piscine nodavirus in groupers has been developed (Kuo et al.,
2012). The microfluidic chip contains an RT-PCR module capable of processing extracted
RNA samples, and a capillary electrophoresis module. This microchip has been field-tested
in an epidemiological investigation of NNV in Taiwan (Kuo et al., 2012).

Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is another
potential point-of-care diagnostic assay, as a laboratory setup such as thermocycler and
electrophoresis equipment can be omitted. Suebsing, Prombun & Kiatpathomchai (2013)
developed an RT-LAMP with colorimetric gold nanoparticle probe assay for the detection
of PvNV in P. vannamei and P. monodon. This assay is 10x more sensitive than the nested
RT-PCR established byTang et al. (2007). On the other hand,Zhang et al. (in press)used the
RT-LAMP as a rapid and quantitative diagnostic assay for the detection of CMNV in P. van-
namei. This assay is capable of detecting as little as 6.3 pg of total RNA from infected shrimps.

Assays based on lateral flow strips have also been deployed for diagnosis of nodavirus.
Lin et al. (2014) combined RT-LAMP with a lateral flow dipstick (RT-LAMP-LFD) for
the detection of MrNV, targeting six distinct regions of MrNV RNA2. The sensitivity of
this RT-LAMP-LFD is 10x higher than that of the RT-LAMP. Toubanaki, Margaroni &
Karagouni (2015b) also developed a lateral flow paper biosensor for the detection of NNV
in European seabass. Instead of RT-LAMP, this lateral flow biosensor detects the viral RNA
through RT-PCR using a 5′-biotin-tagged primer, a probe containing a poly-A tail, and
gold nanoparticles conjugated to a poly-T oligonucleotide, with streptavidin forming the
test line. This assay was reported to detect 270 pg of initial total RNA, which is less sensitive
than the RT-LAMP based method (6.3 pg).

Apart from simply detecting the presence of nodavirus infection, it is also important to
identify the genotype of the infecting virus, either for epidemiological study, or for specific
strategy design to eliminate virus infection in an aquaculture farm.Toubanaki, Margaroni &
Karagouni (2015a) developed a tetra-primer PCR which can amplify specifically RGNNV
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or SJNNV cDNA, thereby generating short PCR products of different sizes which can
distinguish between RGNNV and SJNNV infections in European seabass.

Apart from detecting the virus at RNA level, the presence of nodavirus can also be
evaluated by immunological methods, such as Western blotting, indirect florescent
antibody, enzyme-linked immunosorbent assay (ELISA) and immunodot blot tests
(Ghiasi et al., 2016; Hegde et al., 2003; Sri Widada et al., 2003). MrNV infection has been
diagnosed with Western blotting, dot blot and ELISA using polyclonal antibodies against
the recombinantMrNV capsid protein raised in rabbit (Farook et al., 2014a).Wang, Chang
& Wen (2016) used an immunodot blot assay to detect MrNV with a polyclonal antibody
raised against the recombinant viral capsid in a Wistar rat. In addition, Wangman et al.
(2012) successfully produced monoclonal antibodies that bind specifically toMrNV capsid
protein. These antibodies can be used to detect MrNV without cross-reaction with other
common shrimp viruses. Although the immunological methods are less sensitive compared
with the viral RNA-based detection methods, the former remains a viable alternative for
many laboratories.

In vitro model for nodavirus studies
Cell lines are important models in virology, toxicology and gene expression studies. In
virology, cell lines have been widely used to determine the infectivity, pathogenicity
and infectious mechanisms of nodavirus (Abdul Majeed et al., 2013; Nishi et al., 2016).
Currently, Channa striatus kidney (CSK) (kidney of Channa striatus), GB (brain of
Epinephelus coioides), GF-1 (fin of Epinephelus coioides), SSN-1 (fry of Ophicephalus
striatus), E-11 (clone of SSN-1), SISK (kidney of Lates calcarifer), SISS (spleen of Lates
calcarifer), SIGE (eye of Epinephelus coioides), ICF (fin of Clarias batrachus), IEE (eye of
Etroplus suratensis), IEG (gill of Etroplus suratensis), IEK (kidney of Etroplus suratensis), and
IGK (kidney of Epinephelus coioides) fish cell lines were proven susceptible to nodavirus
infections and thus suitable for in vitro propagation and studies of the viral infectious
mechanisms (Abdul Majeed et al., 2013; Chi, Hu & Lo, 1999; Sarath Babu et al., 2013; Kai,
Wu & Chi, 2014;Nishi et al., 2016). Among these cell lines, SISK, SISS and SIGEwere found
to be more susceptible to nodavirus infections and are thus suitable models for nodavirus
propagation, diagnostic reagent and vaccine productions (Sarath Babu et al., 2013).

Immune response against nodavirus infection
Immunity plays an important role in the prevention and recovery of nodavirus infection
in aquatic animals. Overall, activation of innate immunity (such as NK cells and
antimicrobial peptides), cellular T cell type I interferon immunity, and humoral immunity
(immunoglobulins antibodies) cooperatively prevent nodavirus infection (Chen, Wang
& Chen, 2014; Costa & Thompson, 2016). Nodavirus mainly affects fishes at larval stage,
which may be due to the lack of well-developed adaptive immune cells as present in adult
fishes that restrict the viral replication, thus minimize the development of pathological and
clinical signs (Overgård et al., 2012).

Pathogen-associated molecular patterns (PAMPs) on RNA viruses are first recognized
by pattern-recognition receptors (PRRs). This process subsequently induces intracellular

Yong et al. (2017), PeerJ, DOI 10.7717/peerj.3841 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.3841


Figure 1 Innate antiviral immunity of fish against nodavirus infection. (A) Positive regulation
which inhibits viral replication. TRIM25, TRIM32 and TRIM39 upregulate the expression of MDA5,
which in turn induces ISRE, IRF3 and IRF7. The upregulation of ISRE also induces the expression of
ISG15 and proinflammatory cytokines, cooperatively reducing the viral load. Other elements known
to inhibit virus replication include HSP90, 2-C Type I IFN and Tachyplesin I, which downregulates
HSF1, upregulates Mx promoter and IFN-β, respectively. (B) Negative regulation which promotes viral
replication. TRIM13 and LGP2 downregulate MDA5, thereby reduce the ISRE. LGP2 also downregulates
Mx promoter, proinflammatory cytokines and Type I IFN. TRIM, Tripartite motif-containing protein;
MDA5, Melanoma differentiation-associated gene 5; IRF, Interferon regulatory factor; ISRE, Interferon-
stimulated response element; HSF1, Heat shock transcription factor 1; HSP90, Heat shock protein 90; ISG,
Interferon-stimulated gene.

signals to activate defensive mechanisms (Chen et al., 2014). Toll-like receptors (TLRs) and
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are the two important classes
of PRRs that sense the PAMPs of RNA viruses such as fish nodaviruses (Chen et al., 2014;
Costa & Thompson, 2016). The RLR family consists of RIG-1, melanoma differentiation-
associated gene 5 (MDA-5) and Laboratory ofGenetics and Physiology 2 (LGP2). Activation
of RLRs and TLRs subsequently promotes interferon type I antiviral immune response
(Costa & Thompson, 2016). RLRs, MyD88-dependent TLRs (Chen et al., 2015) and TLR7
(Takano et al., 2011) were found upregulated and correlated with the production of type
I interferon and pro-inflammation response. MDA5 is a member of RLRs that promotes
transcription of interferon related immune factors, which include interferon regulatory
factor 3 (IRF3), IRF7 (Yu et al., 2017), and interferon-stimulated response element (ISRE)
such as interferon-stimulated gene 15 (ISG15) (Huang et al., 2013) and proinflammatory
cytokines (Huang et al., 2016b). Unlike RIG-1 and MDA-5, the exact functions of LGP2
in different virus infections are controversial. LGP2 is generally reported as a positive
regulator of RIG-1 and MDA-5 (Chen et al., 2014). However, a recent study showed a
contrary function of LGP2, in which the overexpression of LGP2 suppressed the expression
of MDA5, Mx promoter, ISRE, pro-inflammatory cytokines and type I interferon genes,
thus resulting in a high viral load (Yu et al., 2016).

Tripartite motif-containing (TRIM) proteins are multi-domain proteins that exert
important immune regulatory roles on TLR and RLRs mediated antiviral innate immunity
(Huang et al., 2016a). The innate antiviral immunities of fish against nodavirus infection
are summarized in Fig. 1. In fish, TRIM proteins play an important role in the recognition
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and initiation of protection against nodavirus infection. To date, fish TRIM25, TRIM32
and TRIM39 exerted positive antiviral responses via activation of MDA5 expression (Wang
et al., 2016; Yang et al., 2016; Yu et al., 2017). On the other hand, TRIM13 exerted negative
regulation on antiviral immunity against nodavirus infection through downregulation of
MDA5 and the downstream IFN signaling pathway (Huang et al., 2016a).

Type I (α/β) and type II (γ) interferons play important roles in the innate immune
responses against nodavirus infection in fish. Post detection by PRRs, IFN type I will be
secreted and picked up by IFN receptor of neighboring cells, activating its Janus kinases 1
(JAK1)/signal transducer and activators of transcription (STAT) pathway which leads to
the transcription of IFN-stimulated genes (ISGs) (Chen et al., 2014) and pro-inflammatory
cytokines, such as IL-1β, IL-6 and TNF-α (Costa & Thompson, 2016). Activation of ISGs
via type I interferon subsequently promotes Mx promoter activity, which increases host
resistance to nodavirus infection (Chen et al., 2014). Mx is one of the downstream antiviral
effectors under type I interferon immunity (Sadler & Williams, 2008). The researchers
demonstrated that the sevenband grouper Epinephelus septemfasciatusu pre-treated with
non-lethal aquabirnavirus (ABV) developed a protection against the RGNNV nodavirus
infection prior to the activation of type I interferon. This protection was attributed to the
overexpression of the type I interferon downstream effector, the Mx gene in head kidney
and brain of the fish (Pakingking Jr et al., 2005). Furthermore, inoculation of gilthead
seabream Sparus aurata with lipopolysaccharides from Vibrio alginolyticus also stimulated
the Mx gene expression in liver, which effectively reduced the load of nodavirus in the
brain (Bravo et al., 2013).

Halibuts and groupers are known reservoirs of nodavirus but resistant to the virus and
vertically transmit the disease (Chaves-Pozo et al., 2012;Overgård et al., 2012). Although the
early proinflammatory type 1 interferon response helps to control the nodavirus infection
in the juvenile Atlantic halibutHippoglossus hippoglossus, the viral RNA was still detected in
the brain, eye and head kidney of the fish even after 14weeks post infection by the virus. This
was accompanied by more drastic T cell mediated responses including upregulation of the
T cell markers (CD4, CD8α and CD8β), ISG15, Mx and IFNγ genes expression (Overgård
et al., 2012). However, elevation of proinflammatory cytokines without significant changes
in CD4, CD8α and CD8β T cell markers was observed in the brain, eye and head kidney
of Atlantic halibut at the early stage of nodavirus infection (Overgård et al., 2012). On the
other hand, susceptible species such as European seabass were detected with delayed but
stronger proinflammatory response, resulting in an irreparable brain damage (Poisa-Beiro
et al., 2008; Valero et al., 2015b). In addition, a challenge study on sensitive seabass species
with low titer of nodavirus induced early but short-term type I interferon response
(Scapigliati et al., 2010). Moreover, Valero et al. (2015a) showed that nodavirus replicated
more in the reservoir seabream’s testis than the susceptible seabass, through modulation of
reproductive system that favor the transmission and shedding of the virus in the reservoir
species. This result indicates that proinflammatory type I interferon did not involve in
stimulating T cell proliferation at the early stage of the viral infection, and thus T cell type
I interferon response is not sufficient to clear the nodavirus, resulting in vertical virus
transmission in the reservoir species. The researchers proposed that antimicrobial peptides
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(AMPs) play an important role in vertical transmission of nodavirus in resistant fish species
(Valero et al., 2015b). AMPs are a major component of the innate immune system in fish
that activate antiviral effects upon nodavirus infection (Xie, Wei & Qin, 2016; Valero et
al., 2015b). Grouper epinecidin-1 (CP643-1), complement factor 3 (c3), lysozyme (lyz),
hepcidin (hamp), dicentracin (dic), piscidin (pis) or b-defensin (bdef) are AMPs found
to be activated during nodavirus infection in both susceptible and resistant fish species
(Valero et al., 2015b). CP643-1 was also reported to induce the Mx gene expression during
nodavirus infection in fish (Chia et al., 2010). In addition, Tachyplesin I has been reported
as an AMP found in resistant grouper strains which activates the antiviral activity through
promotion of ISRE and IFN-β expression (Xie, Wei & Qin, 2016). Histones (H1 to H4) are
another type of potential AMPs that may play some roles in the antiviral effects in fish.
However, more studies are needed to investigate the function of histones in protecting fish
against nodavirus infection (Valero et al., 2016a). Production of AMPs in resistant gilthead
seabream and susceptible European seabass differs significantly, in which the AMPs were
highly expressed in the brain but low in the gonad of gilthead seabream, whereas in
European seabass it was highly expressed in the gonad but low in brain. These results
indicate that vertical transmission of nodavirus by the resistant gilthead seabream could
be attributed to the poor AMP response in the gonad. The European seabass containing a
high level of AMPs in the gonad did not survive nodavirus infection as the AMP expression
level in the brain was low (Valero et al., 2015b).

There are other immune factors contribute to the protection of fish against nodavirus
infection. Esteban et al. (2013) reported that nodavirus strain 411/96 (RGNNV) induced
early (day 1 post-challenged) expression of the peroxiredoxin natural killer enhancing
factor A (NKEF-A), which involved in inflammation and innate immunity in both the
brain and head kidney of gilthead seabream, but not in European seabass. This result shows
that an early expression of NKEF-Awhich activates immune cells including theNK cells and
macrophages is an important anti-nodavirus mechanism in resistant species. On the other
hand, the involvement of CD83 gene in the immune response of fish during nodavirus
infection was also evaluated. Downregulation of CD83-like molecule expression was
observed in the head kidney of European seabass post-infected with nodavirus. Although
CD83 was known as a marker for matured human dendritic cells, active thymic T cells and
even B cells, the exact function of CD83 in fish lymphocytes is still unknown (Buonocore
et al., 2012). Thus, more studies have to be performed to investigate the involvement of
CD83 expression in immunity against nodavirus infection.

Nodavirus is a simple RNA virus with only three genes. However, it has developed some
virus-host interaction properties, which include hijacking the host system and escaping
host defense mechanism (Chen et al., 2014). Overexpression of heat shock transcription
factor 1 (HSF1) promoted the replication of nodavirus at the initial stage of the viral
infection, which could be due to an increase of fish body temperature as the expression
of Mx protein was suppressed at high temperature condition (Wang, Chen & Chen, 2016).
Suppression of HSF1 by the heat shock protein 90 (HSP90) thereby reduced the replication
of nodavirus during the initial stage of the viral infection (Chen et al., 2010; Wang, Chen
& Chen, 2016). Moreover, fish is more susceptible to nodavirus infection in the present of
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immunosuppressive agents. Lawrence, Reid & Whalen (2015) reported that an organotin
compound, tributyltin, which is commonly used as antifouling paints for ships and fishing
nets caused immune suppression in fishes. Exposure of Japanese medaka Oryzias latipes
larvae to tributyltin increased their susceptibility towards SGWak97 nodavirus (RGNNV)
infection, which resulted in a higher mortality in a dosage dependent manner. This
phenomenon could be attributed to the immunosuppression caused by tributyltin on fish
NK cell activity (Kitamura et al., in press).

Besides innate and cell mediated immunity, humoral immunity also plays an important
role in protecting fish against nodavirus infection (Chen et al., 2014), especially the two
immunoglobulins, IgM and IgT. Infection of susceptible seabass with low titer of nodavirus
did not significantly alter the expression of IgM and IgT in the gills and spleen (Buonocore
et al., 2017) but only induced a marginal increase of serum IgM (Scapigliati et al., 2010).
On the other hand, activation of IgM+ and IgT+ B cells in the brain and overexpression
of soluble IgT+ by B cells in the head kidney by early inflammatory response in the
central nervous system reduced nodaviral replication in the resistant aquaculture-relevant
fish species (Lopez-Munoz et al., 2012; Piazzon et al., 2016). Thus, activation of IgM and
IgT expression by vaccination can protect the fish from nodavirus infection (Costa &
Thompson, 2016).

Unlike vertebrates including fish, the understanding of prawn immunity against
nodavirus infection is even limited. Based on current findings, prawns generally fight
infections through non-specific innate immune responses including prophenoloxidase-
activating system (Ourth & Renis, 1993; Popham et al., 2004) and over-accumulation of
superoxide anion (Ravi et al., 2010), whichwere known to inactivateDNAandRNAviruses.
However, the basic understanding on the prawn immunity against nodavirus infection
has ignited a spark of interest among researchers to produce vaccines against the prawn
nodavirus. Instead of the whole virus, Farook et al. (2014b) introduced a recombinant
MrNV capsid protein (r-MCP) produced in E. coli intoM. rosenbergii as a potential vaccine
against the WTD. This r-MCP increased the level of prophenoloxidase, superoxide anion,
and other anti-viral compounds such as crustin, peroxinectin, anti-lipopolysaccharides
and heat shock proteins (HSP21, HSP70, HSP90), which protected the M. rosenbergii
post-larvae fromMrNV challenge up to 76%.

Advances in nodavirus vaccine development
Vaccination has been proposed as a solution to control and prevent nodavirus outbreaks
in aquaculture industry (Pakingking Jr et al., 2010). Table 1 summarizes the studies on
nodavirus vaccines. Among different types of vaccines, virus-like particles (VLPs) show
the highest potential to induce a long lasting and protective humoral immunity (Liu et al.,
2006b). Intramuscular administration of recombinant DGNNV VLPs produced in E. coli
induced a high antibody titer which is capable to neutralize the virus in vitro. Even without
an adjuvant, neutralizing antibodies induced by the DGNNVVLPs lasted over five months,
further justifying the potential application of nodavirus VLPs as a vaccine. A recombinant
betanodavirus capsid protein r-FNCP42 was generated by Vimal et al. (2014) based on
the gene sequence of a fish nodavirus isolated from Asian seabass (L. calcarifer) larvae.
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Table 1 Vaccines, route of administration and their protectivity.

Type of vaccine Route of
vaccination

Protectivity Remarks References

Recombinant betanodavirus
of RNA2 capsid protein
r-FNCP42

IM 75% higher survival rate of
juveniles of Asian seabass
challenged with 1 × 106.5

TCID50 of nodavirus/fish

As the genome sequence analysis
of r-FNCP42 has more than 98–
99% of similarity with other fish
nodavirus including red spotted
grouper nervous necrosis virus,
Dicentrarchus labrax encephalitis
virus, Asian seabass nervous necro-
sis virus, and Epinephelus tauvina
nervous necrosis virus (ETNV),
thus cross protectivity of r-FNCP42
against other strains of nodavirus
shall be tested.

Vimal et al.
(2014);Vimal et
al. (2016)

Recombinant r-FNCP42-DNA IM 77% higher survival rate of
juveniles of Asian seabass
challenged with 1 × 106.5

TCID50 of nodavirus/fish

Capsid protein was highly
expressed in the heart, muscle
and liver of the vaccinated fish.

Vimal et al. (2016)

Recombinant capsid protein
MGNNV virus like particles
(VLPs)

IM ∼70% higher survival rate
of juvenile European seabass
(Dicentrarchus labrax) chal-
lenged with 105 TCID50/fish

MGNNV induced humoral immu-
nity against nodavirus.

Thiery et al. (2006)

DNA vaccine pVHSV-G encod-
ing glycoprotein of viral hem-
orrhagic septicaemia virus

IM ∼54% higher survival rate of
juvenile turbot (Scophthal-
mus maximus) challenged
with 106.3 TCID50

DNA vaccine induced inflamma-
tory response that cross protect no-
davirus infection.

Sommerset et al.
(2003)

Synthetic peptides (N-terminal
regions) of nodavirus DIEV
RNA2 protein

IM ∼27% higher survival rate of
seabass challenged with 109

FCU/fish

Peptides induced humoral immu-
nity.

Coeurdacier, Laporte
& Pepin (2003)

Heat inactivated S1 and Sb2
nodavirus

IM ∼33% and 26% higher sur-
vival rate of seabass chal-
lenged with 9× 109 FCU/-
fish, respectively

Induced humoral immunity. Coeurdacier, Laporte
& Pepin (2003)

Virus-like particles (VLPs) of
grouper nervous necrosis virus

IM – Induced humoral immunity. No
challenge test was performed.

Liu et al. (2006b)

Recombinant RGNNV-CP IM ∼60% higher survival
rate of humpback grouper
challenged with 105.5

TCID50/fish, respectively

Induced humoral immunity. Yuasa et al. (2002)

Recombinant ETNNV-CP
(Epinephelus tauvina nervous
necrosis virus-capsid protein)

IM – Induced stronger humoral immu-
nity than formalin inactivated no-
davirus. No challenge test was per-
formed.

Hegde, Lam & Sin
(2005)

Formalin inactivated nodavirus IP 60% higher survival rate of
brown-marbled grouper
challenged with 106.5

TCID50/fish of OSGBF1E

Induction of humoral immunity. Pakingking Jr et al.
(2009)

(continued on next page)
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Table 1 (continued)

Type of vaccine Route of
vaccination

Protectivity Remarks References

Recombinant capsid protein,
recAHNV-C

IP 29% higher survival rate of
juvenile turbot (Scophthal-
mus maximus) challenged
with 106 TCID50/ml AHNV

Fishes vaccinated with plasmid
DNA expressing the recombinant
capsid protein were not protected
as the plasmid DNA only induced
cellular but not humoral immunity.

Sommerset et al.
(2005)

Formalin inactivated SGWak97 IP Not reported Inactivated SGWak97 induced hu-
moral immunity.

Pakingking Jr et al.
(2009)

Recombinant rT2 SJNNV-
CP (Scophthalmus maximus
nervous necrosis virus-capsid
protein)

IP ∼36% higher survival
rate of humpback grouper
challenged with 6.3 × 107

TCID50/fish, respectively

Induced humoral immunity. Húsgağ et al. (2001)

Chitosan-encapsulated DNA
vaccine (CP-pNNV)

Oral 55% higher survival rate of
juvenile European seabass
(Dicentrarchus labrax) chal-
lenged with 106 TCID50/fish

CP-pNNV failed to induce humoral
immunity but activated interferon
pathway and cell-medicated
cytotoxicity.

Valero et al. (2016b)

Chitosan conjugated DNA
vaccine pcDNA-XSVAS

Oral Approximately 50% higher
survival rate of prawn chal-
lenged with crude extract of
prawn with WTD.

XSV with nodavirus caused white
tail disease (WTD) in prawn. The
challenge experiment shall consider
using isolated virus instead of crude
one.

Ramya et al. (2014)

Recombinant yeast express-
ing RGNNV-CP (red-spotted
grouper necrosis virus capsid
protein)

Oral – Induced humoral immunity
in mice. No challenge test was
performed.

Kim et al. (2013)

Artemia-encapsulated recom-
binant pET24a-NNV VP E. coli
expressing nodavirus capsid
protein

Oral ∼34% higher survival rate
of grouper larvae challenged
with 105 TCID50/fish, re-
spectively

Induced humoral immunity. Lin et al. (2007)

Inactivated bacteria encapsu-
lated dsRNA ofMrNV and
XSV

Oral MrNV challenge 24 h and 72
h post-feeding showed rela-
tive percent survival of 80%
and 75%, respectively

Protection through RNA interfer-
ence with capsid and B2 genes of
MrNV, and capsid gene of XSV.

Naveen Kumar,
Karunasagar &
Karunasagar (2013)

Solid lipid nanoparticles encap-
sulated binary ethylenimine in-
activated nodavirus

Bath and
Oral

45% higher survival rate of
grouper larvae challenged
with 1 × 106 TCID50/ml
HGNNV

Simple vaccination procedure that
fit for larvae. Both routes of vacci-
nations induced pro-inflammatory
cytokines expression, type I IFN
response, humoral immunity and
cellular immunity.

Kai & Chi (2008),
Kai, Wu & Chi (2014)

RecombinantMrNV capsid
protein

Bath Immersion for 24 h followed
byMrNV challenge showed
76.03% survival in 15 days
post-challenge

Protection is believed to be through
upregulation of prophenoloxidase,
superoxide anion and SOD activity.

Farook et al. (2014b)

Notes.
IM, intramuscular injection; IP, intraperitoneal injection; Oral, oral feeding; Bath, immersion.
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Intramuscular injection of 50 µg r-FNCP42/fish resulted in 75% survival of juveniles of
Asian seabass challenged with 1×106.5 TCID50 of nodavirus. As the genome sequence of
r-FNCP42 shares more than 98–99% similarity with other fish nodaviruses including
red spotted grouper nervous necrosis virus, Dicentrarchus labrax encephalitis virus,
Asian seabass nervous necrosis virus, and Epinephelus tauvina nervous necrosis virus
(ETNV), thus cross protectivity of r-FNCP42 against these nodaviruses should be tested.
Naveen Kumar, Karunasagar & Karunasagar (2013) immunized M. rosenbergii through
oral administration of inactivated bacteria encapsulated dsRNA of MrNV and XSV,
where a post-feeding virus challenge showed promising results. The MrNV challenge
at 24 h and 72 h post-feeding showed relative high percentage of survival at 80% and
75%, respectively, indicating a regulation via RNA interference. Ramya et al. (2014) used
chitosan conjugated DNA vaccine, where XSV antisense (XSVAS) nucleotide sequence
was cloned into the pcDNA plasmid vector. The presence of plasmid pcDNA-XSVAS
was confirmed after 30 days of administration through oral feeding, where it provided
approximately 50% protection to prawns challenged with crude extract of WTD-prawns.
In addition, introduction of recombinant MrNV capsid protein through 24 h immersion
followed by MrNV challenge boosted the relative percent survival of prawns by 76.03%
(Farook et al., 2014b).

Virus-like particles
After decades since nodaviruses were first discovered, studies on their VLPs continue.
DGNNV VLPs produced in E. coli were crystallized and studied with x-ray diffraction,
revealing aT = 3 icosahedral structure approximately 38 nm in diameter, closely resembling
the native virion (Luo et al., 2014). Recombinant FHV capsid protein produced in E. coli
was also used in an in vitro assembly study (Bajaj & Banerjee, 2016). The capsid protein
possesses additional N-terminal tag which hinders the assembly of the capsid protein into
VLPs. Cleavage of this N-terminal region in vitro in the presence of Ca2+ ion allows the
capsid protein to assemble into VLPs of different sizes. Despite the heterogenicity, these
VLPs were capable of membrane disruption, a property required by the nodavirus to
penetrate its host cells (Bajaj & Banerjee, 2016).

In addition, FHV VLPs have also been used to display foreign epitopes, such as that of
hepatitis C virus (HCV) (Peng, Dai & Chen, 2005). Chen et al. (2006) used FHV VLPs to
display the epitopes ofHCV core protein and hepatitis B virus (HBV) surface antigen, where
the displayed epitopes were shown to be immunogenic in guinea pigs. In another study,
Manayani et al. (2007) fused the protective antigen-binding von Willebrand A domain of
ANTXR2 cellular receptor to FHV VLPs. The researchers demonstrated that the fusion
protein inhibited lethal anthrax toxin, and at the same time induced toxin-neutralizing
antibody which protected rats from anthrax lethal toxin challenge. All of these studies
demonstrated the potential of insect nodavirus VLPs as a foreign epitope presenting agent.
In recent years, however, studies on nodavirus VLPs focused more on the prawn nodavirus,
particularlyMrNV.

The first prawn nodavirus VLPs were produced by Goh et al. (2011) via recombinant
DNA technology. The recombinantMrNV capsid protein expressed in E. coli self assembles
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into VLPs of approximately 30 nm in diameter (Goh et al., 2011). Recently, they reported
that 20–29 amino acids (a.a.) at the N-terminal region of MrNV capsid protein are
responsible for RNA binding during the VLPs assembly through ionic interaction, where
mutation of positively charged a.a. at this region to alanine abolished the RNAbinding of the
MrNV capsid protein (Goh et al., 2014). Despite the role of RNA binding, the N-terminal
region (1–29 a.a.) is not required for the assembly of the VLPs, as demonstrated byGoh et al.
(2014). Jariyapong et al. (2014) demonstrated the ability of theMrNV VLPs to encapsidate
plasmid DNA in 0.035–0.042 mol ratio (DNA/ protein) through particle disassembly and
reassembly, with the use of EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid) and Ca2+ ion, thereby opening a path for the MrNV VLPs to be used for
the delivery of nucleic acid based therapeutic agents, such as DNA vaccine or siRNA.

VLPs have been widely used for displaying foreign epitopes, for instance the VLPs of
human papilloma virus (Matic et al., 2011), HBV (Ibañez et al., 2013; Murray & Shiau,
1999; Yap et al., 2012), as well as bacteriophages (Hashemi et al., 2012; Kok et al., 2002;
Tan et al., 2005; Wan et al., 2001). VLPs are known to enhance the immunogenicity of
small epitopes displayed on the particles (Murata et al., 2003; Quan et al., 2008). We have
displayed the immunodominant region of HBV on the surface of theMrNV VLPs through
fusion at the C-terminal end of MrNV capsid protein and confirmed the fusion protein
with immunogold TEM (Yong et al., 2015a). When introduced into BALB/c mice, this
recombinant VLPs induced the production of anti-HBV antibodies, as well as the cellular
immune responses including natural killer cells, cytotoxic T lymphocytes (CTL) and IFNγ.
In addition, we have fused and displayed multiple copies of influenza A virus matrix 2
ectodomain (M2e) on the surface of the MrNV VLPs (Yong et al., 2015b). The displayed
M2e epitopes were highly antigenic and immunogenic, where they correlated well with
the copy number of M2e displayed on the surface of the VLPs. Most recently, Somrit et al.
(2017) showed that the C-terminal region ofMrNV capsid protein is exposed on the surface
of the VLP, constituting the core of the viral capsid protrusion, through a homology-based
modeling based on cucumber necrosis virus. When the C-terminal region was removed
with chymotrypsin digestion, the internalization capability of the truncated VLPs into
Sf9 cells reduced significantly, suggesting the importance of the C-terminal region in the
viral infection.

In an attempt to discover the possible mechanism of MrNV infection pathway, we
used the MrNV VLPs labeled with fluorescein as a model to study the MrNV entry and
localization in Sf9 cells (Hanapi et al., 2017). Through the use of endosomal inhibitors
coupled with laser confocal microscopy and live cell imaging, we demonstrated that
the internalization of MrNV VLPs was facilitated by clathrin- and caveolae-mediated
endocytosis. We have also identified a potential nuclear localization signal (NLS), which
could aid in the localization ofMrNV capsid protein to the nucleus based on the importin-α
pathway (Hanapi et al., 2017).

Apart from the MrNV VLPs produced in E. coli, we have also produced the MrNV
capsid protein in Sf9 cells through baculovirus expression system (Kueh et al., 2017).
This eukaryotic produced MrNV capsid protein self-assembles into VLPs significantly
larger than their prokaryotic counterparts. The Sf9 producedMrNV VLPs are structurally
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more homogenous as observed by TEM, representing a better candidate to be used in
structural study. Subsequently, we used thisMrNV VLPs produced in Sf9 for 3D structure
reconstruction using the images obtained from cryogenic electron microscopy (Ho et
al., 2017). The 3D structure of MrNV capsid at 7 Angstroms resolution reveals a T = 3
icosahedral structure distinctive to other insect and fish nodavirus capsids, characterized
by large dimeric blade-like spikes exposed on the surface of the VLPs. This finding supports
the assertion that prawn nodavirus should be classified into a new genus.

CONCLUSIONS
Prawn nodaviruses are relatively new compared to the typical alpha- and beta-nodaviruses.
Despite their genomic and structural differences with the two established genera, prawn
nodaviruses have yet been classified into a new genus. There are likely more prawn
nodaviruses unknown to men, such as the recently discovered CMNV and FdNV. Isolation
and characterization of these new prawn nodaviruses could contribute in creating a new
genus of Nodaviridae, which is the gamma-nodavirus. In addition, there is not yet an
effective mid- or long-term vaccine for shrimps and prawns against nodavirus infections.
Due to the lack of adaptive immune response in crustacean, antigens that can induce
protection against the infections have to be administrated from time to time, especially
during the larval stage. Therefore, nodavirus vaccines based on recombinant proteins
incorporated into feeds would bemore relevant. Better yet, self-replicating DNA expression
vector-based vaccines would be more cost-effective to be utilized in shrimp and prawn
aquaculture industries.
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