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ABSTRACT
Background. Viral metagenomics (viromics) is increasingly used to obtain unculti-
vated viral genomes, evaluate community diversity, and assess ecological hypotheses.
While viromic experimental methods are relatively mature and widely accepted by the
research community, robust bioinformatics standards remain to be established.Herewe
used in silico mock viral communities to evaluate the viromic sequence-to-ecological-
inference pipeline, including (i) read pre-processing and metagenome assembly, (ii)
thresholds applied to estimate viral relative abundances based on read mapping to
assembled contigs, and (iii) normalization methods applied to the matrix of viral
relative abundances for alpha and beta diversity estimates.
Results. Tools specifically designed for metagenomes, specifically metaSPAdes,
MEGAHIT, and IDBA-UD, were the most effective at assembling viromes. Read
pre-processing, such as partitioning, had virtually no impact on assembly output,
but may be useful when hardware is limited. Viral populations with 2–5× coverage
typically assembled well, whereas lesser coverage led to fragmented assembly. Strain
heterogeneity within populations hampered assembly, especially when strains were
closely related (average nucleotide identity, orANI≥97%) andwhen themost abundant
strain represented<50% of the population. Viral community composition assessments
based on read recruitment were generally accurate when the following thresholds for
detection were applied: (i) ≥10 kb contig lengths to define populations, (ii) coverage
defined from reads mapping at ≥90% identity, and (iii) ≥75% of contig length with
≥1× coverage. Finally, although data are limited to the most abundant viruses in a
community, alpha and beta diversity patterns were robustly estimated (±10%) when
comparing samples of similar sequencing depth, but more divergent (up to 80%)
when sequencing depth was uneven across the dataset. In the latter cases, the use
of normalization methods specifically developed for metagenomes provided the best
estimates.
Conclusions. These simulations provide benchmarks for selecting analysis cut-offs
and establish that an optimized sample-to-ecological-inference viromics pipeline is
robust for making ecological inferences from natural viral communities. Continued
development to better accessing RNA, rare, and/or diverse viral populations and
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improved reference viral genome availability will alleviate many of viromics remaining
limitations.

Subjects Bioinformatics, Ecology, Genomics, Microbiology
Keywords Virus, Virome, Viral ecology, Metagenome, Assembly, Benchmarks

BACKGROUND
Microbial communities and their associated viruses are abundant, diverse, and play key roles
in Earth’s ecosystems and processes (Falkowski, Fenchel & Delong, 2008; Cobián Güemes et
al., 2016). However, because most microbes and viruses remain uncultivated, and because
viruses do not harbor a universal marker gene, viral ecology studies remain challenging
to perform (Brum & Sullivan, 2015; Solden, Lloyd & Wrighton, 2016). Viral metagenomics
(viromics) is a uniquely powerful tool for high-throughput analysis of uncultivated viruses
(Brum & Sullivan, 2015; Cobián Güemes et al., 2016). Initial viromics studies, despite being
limited to gene-level analyses, revealed the large diversity of viral-encoded genes (Edwards
& Rohwer, 2005; Schoenfeld et al., 2008), provided first estimates of richness and functional
diversity across natural viral communities (Hurwitz, Hallam & Sullivan, 2013; Hurwitz,
Brum & Sullivan, 2015), and suggested the existence of biome-specific viral communities
distributed worldwide (Rodriguez-Brito et al., 2010; Roux et al., 2012).

Thanks to recent improvements in high-throughput sequencing technologies and
genome assembly, viromes now also provide the opportunity to assemble large genomes
fragments (and even complete genomes) of uncultivated viruses (reviewed in Brum
& Sullivan, 2015; Rose et al., 2016). Historically, in silico benchmarks of the assembly
process for microbial metagenomes indicated that accurate bacterial and archaeal genomes
(complete or partial) could be recovered for relatively abundant lineages given sufficient
sequencing depth, but revealed potential issues including misassemblies deriving from
the presence of very closely related organisms (Mavromatis et al., 2007; Mende et al.,
2012; Greenwald et al., 2017; Sczyrba et al., 2017). Viral community datasets are typically
processed using the same methodologies, and viral-specific benchmarks came to a similar
conclusion: viral genomes can be assembled from metagenomes, but the presence of co-
existing viruses with highly similar regions in their genome can lead to reduced contig size
and/or chimeric contigs (Aguirre de Cárcer, Angly & Alcamí, 2014; Vázquez-Castellanos
et al., 2014; García-López, Vázquez-Castellanos & Moya, 2015; Martinez-Hernandez et
al., 2017; White, Wang & Hall, 2017). However, new metagenome assembly softwares
(e.g., metaSPAdes, Nurk et al., 2017) and methods for read filtering and/or partitioning
prior to assembly (e.g., khmer, Crusoe et al., 2015) that might improve assembly quality
have yet to be evaluated with viral data.

For bacteria and archaea, advances in genome binning and genome validation
approaches (e.g., Parks et al., 2015) have significantly improved the recovery of accurately
reconstructed genomes from increasingly complex environments (Wrighton et al., 2012;
Sharon et al., 2013; Waldor et al., 2015; Sangwan, Xia & Gilbert, 2016; Sczyrba et al., 2017).
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These methods rely on single-copy marker genes to assess genome bin completeness and
‘‘contamination’’ (i.e., multiple genomes in the same genome bin), two metrics critical
to guide the optimization of genome binning parameters and curate the final dataset
(Parks et al., 2015; Bowers et al., 2017). Unfortunately, because of the absence of universal
single-copy viral marker gene, viral genome bins are much more challenging to interpret
and analyze. Since viral genomes are also smaller than microbial ones and thus more
frequently assembled in a single contig, viromics studies usually rely on the assembled
contigs without applying any genome binning step.

For ecological analyses, a community abundance matrix of microbial OTU counts
across samples is the typical starting point, and this ‘‘OTU table’’ is often derived from
16S rRNA gene abundances in amplicon sequencing datasets or metagenomes (Hill et al.,
2003; Roesch et al., 2007; Fulthorpe et al., 2008; Fierer et al., 2011; Logares et al., 2014). Even
for these relatively established microbial ecological analyses, appropriate normalization
methods that account for different sequencing throughput across samples are still debated,
and rarely are results compared across multiple normalization methods to establish
best practices (Doll et al., 2013; Paulson et al., 2013; McMurdie & Holmes, 2014). This
microbial ecology pipeline also needs adjustment when applied to viruses because viruses
lack a universal marker gene, precluding amplicon-based viral population abundance
estimates at the community scale (although amplicon-based studies have been successful
for ecological analyses of specific viral lineages, e.g., Filée et al., 2005; Goldsmith et al.,
2011; Chow & Fuhrman, 2012). Notably, comparative genomic and ecological analysis of
model systems enabled the identification of sequence-discrete populations, which represent
stable ecotypes in natural viral communities (Marston & Amrich, 2009; Gregory et al., 2016;
Marston & Martiny, 2016). Thus, in the absence of a universal viral marker gene, these
genome-based populations have been proposed to be used as a viral population units
(akin to a microbial operational taxonomic unit, OTU) in ecological analysis (Brum et al.,
2015). Pragmatically, viral populations are derived from de novo metagenomic assemblies,
with abundances estimated by metagenomic read recruitment. Ecological analyses of these
contig-derived abundance matrices still have to be comprehensively evaluated, although
one bias specific to this approach has already been identified: counting each assembled
contig as a separate OTU can lead to over-estimates of the number of different viruses in
the community (Aziz et al., 2015; García-López, Vázquez-Castellanos & Moya, 2015).

Here we used 14 in silico simulated viral metagenomes to (i) compare the assembly
results across different reads pre-processing methods and assemblers, both in terms of
the overall genomes recovery and the number and type of errors observed, (ii) assess
potential biases and identify optimal thresholds for identification and quantification of
viral populations from metagenomic contigs, and (iii) determine if virome populations
abundance matrices can provide reliable estimates of alpha diversity (i.e., diversity within
a community) and beta diversity (i.e., differentiation between communities), even in cases
where sequencing depth vary widely (up to two orders of magnitude) between samples.
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METHODS
Mock community design
Viral genomes were randomly selected among the complete genomes of viruses infecting
bacteria or archaea in theNCBI RefSeq database (v69, 2015-02). For eachmock community,
the total number of viruses randomly selected (between 500 and 1,000, Table S1, Fig. S1A),
as well as the parameter of the power law distribution used to model relative abundances
(between 1 and 50) were varied (Figs. S1B–S1D). To create patterns of beta diversity across
samples, the 50 most abundant viruses were homogenized within each of four sample
groups, i.e., samples within a group shared 30 to 50 of their most abundant viruses, and
samples between groups did not share any of their most abundant 50 viruses. This led to a
clear beta diversity pattern with the mock communities clustering into four groups (Figs.
S1E & S1F, a PerMANOVA was performed in R with the package vegan (Oksanen et al.,
2017) to verify that the sample groups were significantly different).

Virome simulations
To simulate virome sequencing for each mock community, the number of reads derived
from each genome was first calculated based on the relative abundance of the genome in
the mock community and the total number of reads sequenced in the virome (10 millions
paired-end reads in the initial viromes, 1 million and 100,000 paired-end reads for the
subsets at 10% and 1% respectively). Then, NeSSM (Jia et al., 2013) was used to generate
random reads (2×100 bp) at the prescribed abundances with simulated Illumina HiSeq
errors.

Reads processing
Reads generated by NeSSM were first quality-controlled with Trimmomatic (Bolger, Lohse
& Usadel, 2014) with aminimum base quality threshold of 30 evaluated on sliding windows
of 4 bases, and minimum read length of 50. We opted not to evaluate different error
correction softwares or to compare raw reads to quality-controlled (QC) reads, as previous
studies have already provided such benchmarks for genomic assembly, which should be
applicable to metagenomic assembly as well (e.g., Yang, Chockalingam & Aluru, 2013).

All sets of additionally pre-processed reads were generated from these QC reads
using khmer v1.4.1 (Crusoe et al., 2015), following the online protocols (http://khmer-
protocols.readthedocs.io/, Fig. S2). First, a dataset of digitally normalized reads was
generated, i.e., a dataset in which all reads with median k-mer abundance higher than
a specified threshold were eliminated. This was done in two steps by normalizing k-
mer coverage first to 20× then to 5× (script ‘‘normalize-by-median’’, dataset ‘‘Digital
normalization’’). The script ‘‘do-partition’’ was then used to partition these digitally
normalized datasets, i.e., separate reads that did not connect to each other in the k-mer
graphs in different bins (dataset ‘‘Partitioned reads (normalized)’’). These reads partitions
were then re-inflated, i.e., the original abundance of reads was restored to its value
prior to digital normalization, with the script ‘‘sweep-reads’’ (dataset ‘‘Partitioned reads
(inflated)’’). Finally, three sets of reads were generated by trimming all low-abundance
k-mers for highly covered reads, i.e., highly covered reads (in this case, ≥20×) were
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truncated at the first occurrence of a k-mer below a given abundance cutoff (here ≤2×,
≤5×, and ≤20× for the three datasets ‘‘Low k-mer filter (2×)’’, ‘‘Low k-mer filter (5×)’’,
‘‘Low k-mer filter (20×)’’, respectively). This was done with the script ‘‘filter-abund’’, with
option ‘‘variable-coverage’’ as recommended for metagenomes.

Assembly and comparison to input genomes
The different read sets were assembled with five different assembly software tools, using
metagenomic-optimized parameters (when available, Fig. S2). IDBA-UD v.1.1.1 (Peng
et al., 2012) was used with the option ‘‘pre-correction’’ and from fasta reads (converted
from fastq reads with the tool ‘‘fq2fa’’). MetaSPAdes assemblies (Nurk et al., 2017) were
computed from the software version 3.10.0, with the option ‘‘metagenomic’’ (all other
options default). MEGAHIT assemblies (Li et al., 2016) were computed from version v1.0.6
with presets ‘‘meta’’ (all other options default). MetaVelvet assemblies (Namiki et al., 2012)
were computed with software version 1.2.07 with the ‘‘discard_chimera’’ option selected,
default parameters otherwise. Omega assemblies (Haider et al., 2014) were computed with
software version 1.0.2 and minimum overlap length of 60. Each assembler was applied to
each read pool from each sample (7 read pools × 14 samples = 98 assemblies, Fig. S2),
retaining all contigs ≥500 bp for each assembly (Table S4).

Contigs were compared to the input genomes with nucmer (Delcher, Salzberg &
Phillippy, 2003)(default options). When ≥95% of a contig’s length matched an input
genome at ≥90% nucleotide identity, that contig was considered to be a genuine assembly
of the input genome. Otherwise, if a contig was similar to multiple genomes but to none
over ≥95% of its length, it was considered a chimera. Circular contigs were detected
based on identical 5′ and 3′ ends, as in (Roux et al., 2014). A circular contig with a length
corresponding to ≥95% of the original genome length was considered a genuine complete
genome assembly, while circular contigs covering less than 95% of the original genomes
were considered false positives (i.e., incomplete contigs incorrectly predicted as complete
genome assemblies). R was used to conduct t -test when comparing rate of chimeric contigs
across assemblers and reads pre-processing methods, using the assembly of QC reads with
MEGAHIT as the control (the set of contigs with the lower number of chimeras).

Generation of the non-redundant pool of population contigs and
coverage estimation
Based on the previous benchmarks, the assemblies obtained with metaSPAdes from the QC
reads were considered to be the most optimal assemblies and were used in all subsequent
benchmarking analyses. Contigs from all samples were clustered with nucmer (Delcher,
Salzberg & Phillippy, 2003) at ≥95% ANI across ≥80% of their lengths, as in (Brum et al.,
2015; Gregory et al., 2016), to generate a pool of non-redundant ‘‘population contigs’’.
QC reads from each sample were then mapped to these population contigs with bbmap
(http://bit.ly/bbMap), with ambiguous mapping assigned to contigs at random (option
ambiguous=random). A custom python script was then used to estimate the number of
reads and coverage of each contig.
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Alpha and beta diversity estimates
The abundance of each population contig in a given sample was estimated based on the
number of reads mapping to that contig, normalized by the contig length (to account for
differences in contig / genome size). Beyond the raw read counts (normalized by contig
length), five abundance matrices were generated with different library size normalization
methods as follow (summarized in Fig. S2):

• ‘‘Normalized’’: counts were divided by the total library size, i.e., the total number of
QC reads in the sample, as used for example in Brum et al. (2015). This approach is also
known as ‘‘total-sum scaling’’.
• ‘‘MGSeq’’: counts were normalized through cumulative-sum scaling with the
metagenomeSeq R package (Paulson et al., 2013). This method was specifically designed
for metagenomes in which communities are under-sampled (as is the case in most
viral metagenome studies), and will divide counts by a cumulative sum of count to
a given percentile (as opposed to dividing by total counts as in ‘‘Normalized’’). This
will minimize the effects of the few highly abundant viruses potentially dominating the
community, and introducing biases in relative abundances (Paulson et al., 2013).
• ‘‘EdgeR’’: countswere normalized using scaling factors for libraries designed tominimize
the log-fold change between samples for most of the populations, computed with
the edgeR R package (Robinson, McCarthy & Smyth, 2009). This method was initially
developed for count-based expression data and assumes that the relative abundances of
most features (here populations) will not vary between two samples.
• ‘‘DeSeq’’: as with EdgeR, counts were normalized to minimize variations between
samples for most populations but with a different underlying model, computed with
the DESeq R package (Anders & Huber, 2010). As with EdgeR, this method was initially
developed for the detection of differentially expressed features in sequence count data
analysis.
• ‘‘Rarefied’’: new counts were generated based on rarefied sets of reads, i.e., quality-
controlled reads are subsampled (without replacement) to the smallest number of
quality-controlled reads across all samples. Thus, all of the libraries are artificially set
to the same size, however some data are ‘‘wasted’’ in the process, i.e., for the more
deeply sequenced samples, some observations will not be included in the rarefied counts
(McMurdie & Holmes, 2014).

Each abundance matrix was then used to calculate alpha and beta diversity indices,
namely the Shannon index, Simpson index, and pairwise Bray–Curtis dissimilarities
between samples with a custom perl script. R was used to generate all plots using the
ggplot2 package (Wickham, 2009), as well as the NMDS and PerMANOVA analyses,
computed with the vegan package (Oksanen et al., 2017). For alpha diversity, we opted to
only test indices reflecting community structure (Shannon and Simpson indexes) and not
indices predicting sample richness (e.g., Chao estimators (Chao, 1984)), since the latter
have been highlighted as not suitable for cases in which rare members of the community
are not adequately sampled (Haegeman et al., 2013).
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Under-sequencing and strain heterogeneity benchmarks
To evaluate the impact of under-sequencing on alpha and beta diversity estimates, the
same pipeline (assembly with metaSPAdes fromQC Reads, selection of population contigs,
and estimation of alpha and beta diversity) was applied to datasets in which seven of the 14
samples were under-sequenced. Two levels of under-sequencing were tested, one in which
under-sequenced samples were set at 10% of the initial library size (i.e., 1,000,000 reads)
and another at 1% of the initial library size (100,000 reads, Table S1).

To evaluate the impact of strain heterogeneity (within-population genomic diversity) on
assembly success, a custom perl script was used to simulate strain variations as observed on
natural populations of T4-like cyanophages (Gregory et al., 2016), i.e., a set of potentially
mutated positions were determined for each new simulated strain gathering all intergenic
positions, all third codons positions in protein-coding genes, and all positions in two
randomly selected genes (to simulate genes undergoing diversifying selections). These
simulations were based on the mock community ‘‘Sample_1’’, for which every genome was
transformed into a population composed of a set of related strains.

For each population, three parameters selected randomly and independently:

• The total number of strains was set at 10, 50, or 100 strains simulated.
• The strain divergence, controlled by a ‘‘mutation rate’’, i.e., the ratios of positions
mutated within the set of positions identified as ‘‘potentially mutated’’ (see above). The
other positions in the genome, not selected as potentially mutated, were mutated at a
rate 100 times lower. This ‘‘mutation rate’’ was set at 5%, 10%, or 20%. This led to ANI
between the generated strains and the original reference genomes of 97–100%, 95–97%,
and 90–95%, respectively.
• The relative abundance of individual strains within the population, sampled from a
power-law distribution. The shape of the distribution was controlled by the power-law
parameter, set at 0.1, 1, 10, 100, or 1,000. This led to the dominant (i.e., most abundant)
strain representing from 1% to 100% of the population.

For each population, reads were then simulated with NeSSM (Jia et al., 2013), with the
total reads generated for each population calculated based on the input coverage (as for
previous simulations), and the number of reads generated from each strain calculated
from the strains relative abundance. Reads were then processed as previously, i.e., quality-
controlled, partitioned, or filtered, and assembled with the five assemblers tested using the
same options as for the simulated viromes. Finally, the size of the largest contig recovered
for each population was compared to the size of the largest contig recovered for the
same genome without strain heterogeneity, to evaluate the impact of strain heterogeneity
independently from differences in assembly efficiency between coverage levels, reads
processing methods, and assemblers.

RESULTS AND DISCUSSION
Mock communities design
A set of 14 viral communities was designed to provide a gradient of alpha diversity and
clear beta diversity patterns (Fig. S1, Tables S1 & S2). These communities were composed
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of 500 to 1,000 genomes (randomly sampled within bacteriophages and archaeal viruses
available in NCBI RefSeq v69), with the relative abundance of individual genomes based
on power law distributions with varying exponents. These simulations are thus designed
to reflect a diverse viral community, as is usually observed in environmental samples
(e.g., oceans, lakes, soils, or human gut), but would not correspond to viral communities
dominated by a single type of virus, e.g., clinical samples associated with a specific host
or epidemiological samples targeting a specific type of virus. Beyond differences in alpha
diversity, these communities were also designed to organize into four ‘‘ecological’’ clusters,
i.e., four groups of mock communities sharing more genomes within than between groups
(Fig. S1). Thus, this simulated dataset allows us to evaluate the ability of virome-based
population ecology approaches to recover absolute values of alpha diversity, as well as
trends in alpha diversity and beta diversity patterns across samples.

Virome reads were simulated in silico with NeSSM (Jia et al., 2013) for each mock
community (10,000,000 paired-end Illumina HiSeq reads, 2×100 bp). Since the number
of reads derived from each genome was based on its prescribed relative abundance in the
community, 29.1% to 75.2% of the viral genomes in each mock community did not get
‘‘sequenced’’ at all (i.e., did not yield any reads). This was by design to mimic the lack of
sampling for rare viruses by current sequencing efforts of environmental samples.

Testing the capacity and accuracy of assembly tools
Given metagenomic sequence data from these 14 mock communities, we first evaluated
currently available assembly algorithms. To this end, five assemblers (IDBA-UD (Peng et al.,
2012), MEGAHIT (Li et al., 2016), MetaVelvet (Namiki et al., 2012), Omega (Haider et al.,
2014), andmetaSPAdes (Nurk et al., 2017), all adapted to assemblemetagenomic data) were
compared to assess their ability to accurately assemble genomes of bacterial and archaeal
viruses from viromes (Fig. S2). As expected, each of the assemblers successfully assembled
highly covered genomes (10× or higher) and failed to assemble most low-coverage
genomes (2× and lower, Fig. 1A, Fig. S3A). However, MetaVelvet and Omega required
higher coverage to assemble viral genomes (∼5−10×), while IDBA-UD, MEGAHIT, and
metaSPAdes routinely assembled genomes at∼2−5× coverage (Fig. 1A, Fig. S3A). A similar
trend was found when observing genome recovery in a single contig (i.e., the percentage of
a genome assembled in a single contig, as opposed to the percentage of a genome assembled
when cumulating all contigs). Again, IDBA-UD, MEGAHIT, and metaSPAdes were more
efficient than MetaVelvet and Omega for assembling large genome fragments at lower read
coverage (∼ 2−20×), and metaSPAdes was also better than IDBA-UD and MEGAHIT for
assembling low-coverage genomes in a single large contig (Fig. 1B, Fig. S3B).

When comparing individual genome assemblies across the three best assemblers
(metaSPAdes, IDBA-UD, and MEGAHIT), no clear differences could be observed in the
genome recovery (Fig. S4, correlation coefficients between assemblers > 0.99). However,
the percentage of each genome recovered in a single contig was more variable among
assemblers (Fig. S4, correlations coefficients: 0.88–0.98). This comparison did not indicate
that one assembler would be systematically better than another, but rather that the best
assembly for a given genome could come from any of these three assemblers.
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Figure 1 Influence of assembly software and read curation on genome recovery. All plots display the
input coverage on the x-axis, and either the cumulated genome recovery across all contigs (A & C) or the
highest genome recovery by a single contig (B & D) on the y-axis. (A & B) display a comparison of as-
semblers applied to quality-controlled (QC) reads. (C & D) present a comparison of read pre-processing
methods, all assembled with metaSPAdes. Comparable plots for reads assembled with the other assemblers
are available in Fig. S5.

Together these comparisons suggest that: (i) IDBA-UD, MEGAHIT, and metaSPAdes
are currently the best available choices for maximizing assembly of viral contigs from short-
read (100 bp) viromes (assembly accuracy discussed below), (ii) regardless of the choice
of assembly tool, low coverage genomes (<2×) are under-assembled, and (iii) because
assembly success varies across genomes and assemblers, multiple tools should be compared
to optimally assemble desired target genomes from viromes. Overall, these results are
consistent with microbial metagenomic benchmarks, which also indicated that assemblers
designed specifically for metagenomes, especially metaSPAdes, MEGAHIT, and IDBA-UD,
provided the best assemblies (Sczyrba et al., 2017; Vollmers, Wiegand & Kaster, 2017).

Impact of k-mer-based read filtering and partitioning on assembly
Next, we evaluated how available read pre-processing approaches impacted genome assem-
bly (using approaches from the khmer package and summarized in Table S3 and Fig. S2)
(Crusoe et al., 2015). Briefly, beyond the reference dataset of quality controlled reads, the
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different methods tested were (i) trimming of reads based on low-abundance k-mers, i.e.,
reads are truncated at the first occurrence of a low-abundance k-mer likely originating
from sequencing error, (ii) digital normalization, i.e., the removal of redundant sequences
to normalize genome coverage at or under a specific value (here 5×), and (iii) read
partitioning, i.e., separate assembly of the disconnected components of the k-mer graph.

Overall, and compared with the effect of the different assembly algorithms, the read
pre-processing had a minimal impact on the assembly output (Figs. 1C and 1D, Figs. S3C
& S3D with metaSPAdes; the same observations were made with different assemblers in
Fig. S5). The main effects observed were that (i) digital normalization (treatments ‘‘Digital
normalization’’ and ‘‘Partitioned reads (normalized)’’) led to sub-optimal assemblies, likely
because differences in coverage above 5× are useful for assemblers to distinguish between
related genomes, and (ii) trimming of low-abundance k-mers led to sub-optimal assemblies
when the threshold used to define low abundance k-mers was close to the threshold used
to define ‘‘abundant’’ reads to be trimmed (effect especially noticeable for the 20× filter,
Figs. 1C & 1D). Conversely, partitioning reads and keeping their coverage information
(treatment ‘‘Partitioned reads (inflated)’’) or trimming low-abundance k-mers from high
coverage reads (with thresholds of 2× and 5×) had little effect on the assembly output,
except on low-coverage genomes (<5×). These observations are consistent with the initial
expectations of khmer’s performance (Crusoe et al., 2015), although these simulations
illustrate that digital normalization alone (i.e., without read partitioning and restoration
of original read coverage) can lead to a sub-optimal metagenomic assembly.

Errors and limitations of genome assembly from viromes
Beyond the assembly of low-coverage genomes, which was found to be challenging for all
assemblers tested, other errors are known to occur during the de novo assembly of viromes.

First, chimeric contigs (i.e., contigs representing artificial constructs assembled from two
or more distinct genomes) were generated in each assembly, as previously noted (Aguirre
de Cárcer, Angly & Alcamí, 2014; Vázquez-Castellanos et al., 2014; García-López, Vázquez-
Castellanos & Moya, 2015). In our simulated data, these usually represented less than 2.5%
of the assembled datasets, and less than 5% of the large contigs (≥10 kb), but these numbers
varied between assemblers and read curation methods (Figs. 2A & 2B). This low number
of chimeric contigs is in accordance with benchmarks of microbial metagenomes, and
suggests that metagenome assemblers in general can correctly reconstruct microbial and/or
viral genomes (Mende et al., 2012). For all assemblers, reads after digital normalization
always yielded more chimeric contigs, which confirmed that the digital normalization step
led to sub-optimal assemblies (p-value <0.01). MEGAHIT systematically produced fewer
chimeric contigs than IDBA-UD and metaSPAdes, especially for large (≥10 kb) contigs
(Fig. 2B, p-value < 0.01). Hence, although MEGAHIT did not assemble as many large
genome fragments, the fragments that were assembled contained fewer chimeras.

Next, we investigated whether finished and closed viral genomes assemblies could be
robustly identified as ‘‘circular’’ contigs, i.e., contigs with matching 5′ and 3′ ends, as previ-
ously suggested (Roux et al., 2014). The ratio of false-positive circular contigs, i.e., circular
contigs that represented less than 95% of the original genome and thus likely arose from
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Figure 2 Types and frequency of errors observed in genome assembly from viral metagenomes. (A)
Percentage of chimeric contigs (i.e., contigs originating from two distinct genomes) across all assembled
sequences, by assembler (x-axis) and read curation method (colors). (B) Percentage of chimeric contigs
among large (≥10 kb) contigs, by assembler (x-axis) and read curation method (colors). (C) Percentage
of false-positive circular contigs, i.e., contigs identified as circular (matching 5′ and 3′ ends) but represent-
ing 95% or less of the original genome, by assembler (x-axis) and read curation method (color). (D) Im-
pact of strain heterogeneity (i.e., presence of multiple strains from the same population) on the assem-
bly efficiency. These tests were computed on one mock community (Sample_1), for which each reference
genome was replaced with a set of related strains with varying divergence and relative abundances. The
y-axis represents the ratio between the largest contig assembled for a genome when strain heterogeneity
is introduced and the same parameter without strain heterogeneity (i.e., previous assemblies of the same
Sample_1). Populations are grouped based on the two main parameters explaining assembly inefficiency:
proportion of the most abundant strain in the population (C, D) and divergence of strains in the pop-
ulation (A, B). Data presented here include assemblies from QC reads with IDBA-UD, MEGAHIT, and
metaSPAdes, while the full set of parameters and approaches tested are presented in Fig. S6.

repeat regions within a genome, was not modified by read pre-processing but was different
among assemblers (Fig. 2C). Specifically, 10 to 30% of the circular contigs generated by
MEGAHIT and IDBA-UD did not correspond to a complete genome, while metaSPAdes
assemblies rarely included any false positive (4 contigs, or <2%, for metaSPAdes assemblies
of quality-controlled reads). This suggests that metaSPAdes circular contigs are more
likely to correspond to complete genomes and that the ‘‘circularization’’ of a contig
cannot be considered as proof of completeness for MEGAHIT and IDBA-UD contigs.

Finally, we evaluated the impact of population strain heterogeneity— i.e., the co-
existence of closely related strains with distinct genomes from the same population—on
virome assembly. In microbial communities, strain heterogeneity is known to considerably
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hamper the assembly of the corresponding genomes (Sharon et al., 2015; Martinez-
Hernandez et al., 2017; Sczyrba et al., 2017). Population genetic studies of natural viral
communities are however challenged by the paucity of cultivated systems that include
multiple viral genomic representatives from a single population. Pragmatically, this means
that although strain heterogeneity has been observed for specific model systems (Gregory
et al., 2016; Marston & Martiny, 2016), community-wide strain variations that would
accurately reflect natural viral communities cannot be pulled from these data. Hence, we
opted to generate a mock community using the same populations and relative abundances
as Sample 1 above, but introduced some level of strain heterogeneity for each population
by varying a combination of three parameters: (i) the number of strains in the population,
either low (n= 10), medium (n= 50), or high (n= 100), (ii) the diversity of these strains,
presented as the average ANI of strains compared to the consensus population genome,
either low (90–95%), medium (95–97%), or high (97–100%), and (iii) the evenness of
the power-law distribution of strain frequency in the population, either low (dominant
variant represents 75–100% of the population), medium (dominant variant 50–75%), or
high (dominant variant < 25%). For each genome, reads were thus not generated from the
reference genome sequence as before, but from a set of strains generated and sampled using
a random combination of these 3 parameters. Then, the same pipeline of read processing
and assembly was applied, and the size of the largest contig obtained for each population
was compared to the size of the largest contig obtained in the previous mock community
assembly (i.e., without strain heterogeneity, Fig. 2D and Fig. S6).

An ANOVA was performed on the complete dataset (i.e., all combinations of assemblers
and read processing) to evaluate which component of strain heterogeneity impacted
the assembly process (see ‘Methods’). The three parameters (number of strains, strain
diversity, and evenness of strain distribution) significantly but differently impacted the
assembly: population shape (i.e., strain distribution) was the main explanatory variable
of suboptimal assemblies (F-value 149.8, p-value < 1e−16), strain diversity was also a
strong driver of assembly failures (F-value 70.4, p-value < 1e−16), while the number of
strains in the populations had a more marginal effect (F-value 2.8, p-value 0.06). Overall,
when compared to the assemblies generated without strain heterogeneity, contigs were
shorter for populations with an even strain distribution (i.e., dominant strain≤ 50% of the
population) and/or when strains were more similar to the consensus genome (i.e., average
ANI to consensus ≥ 97%) and to each other, with the combination of both leading to the
greater reduction in contig length (Fig. 2D). These results indicate that strain heterogeneity
within natural viral populations will likely be a key factor contributing to assembly success
and failure, and populations of evenly distributed closely related strains will be the most
likely to fail to assemble in virome studies. A similar trend was observed for microbial
genomes in the Critical Assessment of Metagenome Interpretation benchmarks, where the
assembly of closely related genomes (i.e., those with strain-level heterogeneity) was found
to be challenging for all assemblers tested, although the experimental design did not allow
the evaluation of which level and parameter of strain heterogeneity were most impactful
(Sczyrba et al., 2017).
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Population identification and quantification
In viral ecological studies, the next step after assembly often consists of identifying viral
populations (i.e., contigs representing individual populations) and quantifying their relative
abundances in each sample. We opted to use the contigs assembled with metaSPAdes from
quality-controlled reads, as they represented the largest contigs overall across the different
samples (despite ∼1% chimerism). We pooled contigs generated from all samples into
a single non-redundant database (contigs were clustered at ≥95% of nucleotide identity
across≥80% of the contig length, in accordance with population genome analysis (Gregory
et al., 2016)). Quality-controlled reads were thenmapped to this database to estimate contig
coverage across the 14 samples. Two types of thresholds were evaluated in this mapping
step: (i) minimum nucleotide identity for a given read to be considered mapped to a given
contig, and (ii) minimum length of the contig covered to consider a contig as ‘‘detected’’ in
a sample (Fig. S2). Reads not meeting the threshold were removed from abundance counts,
and contigs not meeting the detection threshold in a given sample were given abundance
values of zero for that sample in the resulting coverage table.

Considering all non-redundant contigs ≥500 bp as different populations, we observed
that increasing the two thresholds (read mapping identity percentage and length of contig
covered) progressively decreased the sensitivity of the analysis (evaluated here as the
percentage of genomes recovered among genomes which were covered≥1× in the sample,
Fig. 3A) and the false discovery rate (or FDR, which is the percentage of contigs recovered
that were not part of the initial community, i.e., these genomes did not provide any reads to
the simulated metagenome, Fig. 3B). However, because FDR decreased more precipitously
than sensitivity, there is an optimal combination of thresholds for which FDR can be
minimized and sensitivity maximized. In these simulations, that optimal threshold was
≥75% on the contig length coverage associated with ≥90% nucleotide identity for the
read mapping, which led to a 3% decrease in sensitivity (compared to the most permissive
thresholds), but only 13% FDR (compared to 49% for the most permissive thresholds).

As noted by previous studies (Aziz et al., 2015; García-López, Vázquez-Castellanos &
Moya, 2015), considering all non-redundant contigs as distinct populations strongly
over-estimated the total number of populations (on average, two to three contigs were
counted for each individual genome, Fig. 3C). Thus, we re-analyzed our dataset using only
non-redundant contigs ≥10 kb or circular as was proposed previously, and as required
for taxonomic classification by gene content network-based analysis (Bolduc et al., 2017).
Again, the optimal threshold combination was ≥75% of the contig length covered and
≥90% read mapping identity (Figs. 3D–3F). However, while sensitivity declined slightly
(∼15%) compared to the dataset including all contigs ≥500 bp, FDR improved drastically
to 0.2%, compared to 13% observed in the above analyses. Further, by increasing the
stringency of the population definition, the number of contigs per genome that were
counted as a population was 1.2 which is much closer to the correct number of 1 contig
per genomne. More generally, increasing this contig size threshold quickly decreased the
number of contig observed per genome, and most of the over-estimation observed earlier
seemed to arise from contigs <5 kb (Fig. S7).
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Figure 3 Impact of read mapping thresholds on accuracy of viral population detection. Two param-
eters were investigated when parsing the mapping of individual virome reads to the population contigs
pool: (i) the percentage of a contig covered by a sample to considered the contig as detected (x-axis), and
(ii) the percentage of identity of reads mapping to the contig (color scale). Two pools of population con-
tigs were tested: all non-redundant contigs of ≥500 bp (A–C), and all non-redundant contigs ≥10 kb
(D–F). Three metrics were calculated to evaluate the impact of mapping reads thresholds. The detection
sensitivity is estimated as the percentage of ‘‘expected’’ genomes (i.e., genomes covered ≥ 1× in the sam-
ple) that were detected through mapping to population contigs (A and D). The false-discovery rate corre-
sponds to the percentage of contigs detected in a sample through mapping to population contigs, but were
not associated with any genomes from the initial sample (i.e., these genomes did not provide any reads to
the simulated virome, so these contigs should not be detected, B and E). Finally the average number of dis-
tinct population contigs detected is calculated for each individual genome initially covered ≥1×, and cor-
respond to the number of times a single genome is ‘‘counted’’ (i.e., multiple contigs suggest multiple pop-
ulations, even though it is really just one population, C and F).

In summary, we recommend that viral populations (as an operational taxonomic unit)
be defined and analyzed in viromes using contigs that are ≥10 kb or circular, and only
considered ‘‘detected’’ when the contig is covered over≥75% of its length by read mapping
at≥90%nucleotide identity. However, we also anticipate that the data from these sensitivity
analyses will help researchers tune these thresholds to match a given study’s need for high
sensitivity or low FDR. Importantly though, these suggestions are specific to viromes, since
microbial metagenomic studies can rely on genome binning and universally conserved,
single-copy marker genes to estimate more robustly the global number and completeness
of the different genomes assembled (Sczyrba et al., 2017).

Alpha and beta diversity estimation from virome-derived populations
We next sought to evaluate how the variation in community structure of our 14
mock community metagenomes impacted diversity estimations, and did so using our
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recommended optimized population cut-offs for identifying populations and then
estimating their abundances by read mapping. These population count matrices (counting
either base pairs or reads mapped to each population contig) were used as input for alpha
and beta diversity estimations and compared across the dataset. Notably, these matrices
included only a fraction (10–33%) of the original genomes in the dataset, as rare viral
genomes were not ‘‘sequenced’’, and low-coverage genomes produced only small (<10 kb)
contigs (Fig. 4A).

Before calculating any index, the read counts were first normalized by the contig length,
since viral genome lengths can be highly variable (∼2 orders of magnitude, Angly et
al., 2009). Then, to account for potential differences in library sizes, we compared five
different methods: (i) a simple normalization in which counts are divided by the library
size, ‘‘Normalized’’ (ii) a method specifically designed to account for under-sampling of
metagenomes, from the metagenomeSeq R package, ‘‘MGSeq’’ (iii and iv) two methods
designed to minimize log-fold changes between samples for most of the populations, from
the edgeR R package, ‘‘edgeR’’, and the DESeq R package, ‘‘DESeq’’, and (v) a rarefaction
approach whereby all libraries get randomly down-sampled without replacement to the
size of the smallest library, ‘‘Rarefied’’ (Fig. S2).

For both Shannon and Simpson alpha diversity indices, the values calculated from
normalized count matrices were within 10% of the actual value calculated from the whole
community (Figs. 4B & 4C). Hence, the recovery of abundant members of the community
seems to be enough to estimate alpha diversity values. Since both Shannon and Simpson
indices are based on the relative abundance of individual members of the community, the
three methods that applied a sample-wide correction factor (normalization by library size,
MGSeq, EdgeR) all led to the same estimations, while rarefied count matrices and DESeq,
which can (slightly) modify relative abundance of populations within communities,
provided statistically indistinguishable estimates (Figs. 4B & 4C). Similarly, for beta
diversity estimates, pairwise Bray–Curtis dissimilarities between samples calculated from
normalized counts matrices were highly similar to the dissimilarities calculated from the
whole communities for all normalization methods (within 15% of actual values, p-value
≤0.001 for Mantel test comparing true and estimated dissimilarity matrices, Fig. 4D).
Thus, as long as the count matrices were normalized to account for different contig lengths
and library sizes, each of the five methods tested here provided reliable estimates of alpha
and beta diversity.

Impact of under-sequencing and possible corrections
Finally, to help guide researchers in making decisions about under-sequenced samples,
we evaluated how alpha and beta diversity estimates were impacted by such samples in a
dataset. Specifically, we performed the same computations (assembly with metaSPAdes
from quality-controlled reads, generation of a pool of dereplicated population contigs,
mapping of quality-controlled reads and computation of normalized count matrices), but
we did so with a dataset in which half of the samples were drastically under-sequenced
either at 10% (subset_10) or 1% (subset_1) of the original sequencing depth, respectively
(Table S1, Fig. S2).
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Figure 4 Estimation of alpha and beta diversity from virome-derived viral populations. To evaluate
the impact of varying sequencing depth, six viromes (highlighted in bold in A–C), were sub-sampled at
10% (long dash) or 1% (short dash) of the original read number (‘‘Initial’’ corresponds to the assem-
blies presented in Figs. 1–3, for which all viromes had the same initial number of reads). A. Number of
genomes observed from the read mapping to viral populations. The actual number of genomes in the ini-
tial simulated community is indicated with black dots, while estimated based on viromes are colored in
red. B. Comparison of Shannon diversity index from the true community composition (black dots) and
estimated from the viromes (colored dots). The different estimations are based on 3 different normaliza-
tion methods: counts divided by the total number of reads sequenced in the virome and the contig size
(‘‘Normalized’’), counts after rarefying all viromes to the smallest dataset and normalized by contig size
(‘‘Rarefied’’), and counts normalized via DESeq (‘‘DESeq’’). (C) Comparison of Simpson diversity index
from the true community composition and estimated from the viromes (color codes are the same as in B).
(D) Distribution of differences in Bray–Curtis dissimilarities between samples calculated from true com-
munity composition and the same dissimilarities estimated from the viromes analysis. The different nor-
malization methods (x-axis) are as follows: counts divided by genome size (‘‘Counts’’), counts rarefied
to the smallest dataset and normalized by contig size (‘‘Rarefied’’), counts divided by the total number of
reads sequenced in the library and the contig size (‘‘Normalized’’), counts normalized by metagenomeSeq
(‘‘MGSeq’’), EdgeR (‘‘RPKM’’), and DESeq (‘‘DESeq’’). (E) Distribution of differences in Bray–Curtis dis-
similarities between samples calculated from true community composition and the same dissimilarities es-
timated from virome analysis, including 6 samples sequenced at 10%. Methods are similar as in (D). (F)
Distribution of differences in Bray–Curtis dissimilarities between samples calculated from true commu-
nity composition and from virome analysis, including 6 samples sequenced at 1%. Methods are similar as
in (D).
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Not surprisingly, under-sequenced samples resulted in fewer genomes detected (t -test,
p-value< 1e−05, Fig. 4A). Using the same five normalization methods to account for these
differences in sequencing depth, we found that the diversity estimations were impacted. The
subset_10 samples resulted in Shannon and Simpson estimations that were close (within
16%) to the initial estimates, but the diversity estimates in the subset_1 samples varied as
much as 30% (Figs. 4B & 4C). Hence, although the different normalization methods tested
here helped to compensate for some degree of under-sequencing, none was able to recover
the correct values of alpha diversity when sequencing depth was highly variable and/or
when some samples were significantly under-sequenced.

Similarly, beta diversity patterns (evaluated as pairwise Bray–Curtis dissimilarities)
were not estimated as accurately with the under-sequenced samples than with the initial
samples: dissimilarities estimated from subset_10 samples varied asmuch as 61% compared
with the true dissimilarities (mean: 5.9%), and the ones estimated from subset_1 samples
varied as much as 77% (mean: 4.4%; Figs. 4E & 4F). Rarefaction and MGSeq were
the two normalization methods most efficient at limiting these biases, as they led to
maximum variations of 11.5% and 11.3% for subset_10, and 10.9% and 52.7% for
subset_1, respectively. Moreover, even with the subset_1 samples, the results of an NMDS
based on these normalized count matrices were still strongly correlated with the results of
an NMDS based on true relative abundances (Fig. S8, r2>0.9 for all normalization methods
but ‘‘rarefied’’, for which the positions of two groups are switched leading to a lower r2

of 0.64). Hence, beta diversity trends can be recovered even when sequencing depth was
highly variable.

Although not formally evaluated through in silico benchmarks, it is very likely that
microbial metagenomes with highly uneven sequencing depth would be subjected to
similar biases, and the tools tested here would be expected to perform comparably on
viral and microbial metagenomes, since the input data (i.e., coverage matrix) is essentially
identical. Hence, the information and guidelines provided here can in all likelihood be
considered relevant for microbial metagenomes as well.

Current limitations of the sample-to-ecological-inference pipeline
Overall, these benchmarks confirmed that virome-derived abundance matrices can be
used in ecological studies, with two main caveats. First, absolute viral richness will likely
be under-estimated, because the assembly will only yield large contigs for abundant viral
genotypes without evenly distributed and/or closely related strains. Hence, absolute values
of richness and diversity should be interpreted with care, although once normalized, sample
comparisons of these richness and diversity metrics are generally robust to differences in
community complexity and sequencing depth. Second, because this approach relies on
coverage as a proxy for relative abundance, only quantitative (or near-quantitative)
datasets can be used as input (Duhaime et al., 2012). Notably, protocols to generate
these quantitative viromes are currently available only for dsDNA and/or ssDNA viruses
(Duhaime et al., 2012; Roux et al., 2016), and still remain to be developed for their RNA
counterparts, although these RNA viruses might represent up to half of the viral particles
in some environments (Steward et al., 2013). Thus, when interpreting viromics-based
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ecological studies, it is important to remember and clearly state that these reflect only the
sub-part of viral communities with (ds)DNA genomes.

CONCLUSIONS
Our comparative analysis of 14 simulated viromes showed that the genome-assembly-
to-ecological-inference viromics pipeline can efficiently and robustly identify abundant
viruses and recover trends in alpha and beta diversity. As viromics becomes routine in
viral ecology, the approaches underlined here (both the tools and thresholds used) offer
an initial set of ‘‘best practices’’ for data analysis.

Moving forward, increased library size and number associated with improved genome
recovery from metagenomes will undoubtedly lead to an unprecedented catalog of
uncultivated viral genomes (e.g., 125,000 released in a single study; Paez-Espino et al.,
2016). These will be complemented by viral genomes obtained from other methods,
such as single-virus sequencing, which can access less dominant viruses and those with
high strain heterogeneity (Martinez-Hernandez et al., 2017). As standards emerge, such
uncultivated viral genomes will migrate toward specifically-designed databases (e.g.,
IMG/VR, Paez-Espino et al., 2016), and viral ecological studies will be greatly improved
by these centralized reference genome data. Beyond improved references (which will also
need to include uncultivated RNA viruses), viromics will need to advance from relative
abundance estimations to absolute quantification of viral populations, likely coupled with
‘‘ground-truthing’’ provided by quantitative, lineage-specific molecular methods such
as phageFISH, polonies, microarrays, or microfluidic PCR (Tadmor et al., 2011; Allers
et al., 2013; Martínez-García et al., 2014). Once in-hand, such approaches should enable
researchers to address long-standing questions in the viral ecology field, and more fully
bring viruses into predictive ecological models across Earth’s ecosystems.
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