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ABSTRACT
The social hymenoptera are emerging as models for epigenetics. DNAmethylation, the
addition of amethyl group, is a common epigenetic marker. Inmammals and flowering
plants methylation affects allele specific expression. There is contradictory evidence
for the role of methylation on allele specific expression in social insects. The aim of
this paper is to investigate allele specific expression and monoallelic methylation in the
bumblebee, Bombus terrestris.We found nineteen genes that were bothmonoallelically
methylated and monoallelically expressed in a single bee. Fourteen of these genes
express the hypermethylated allele, while the other five express the hypomethylated
allele. We also searched for allele specific expression in twenty-nine published RNA-
seq libraries. We found 555 loci with allele-specific expression. We discuss our results
with reference to the functional role of methylation in gene expression in insects and
in the as yet unquantified role of genetic cis effects in insect allele specific methylation
and expression.

Subjects Animal Behavior, Entomology, Evolutionary Studies, Genomics, Zoology
Keywords Methylation, Hymenoptera, Genomic imprinting, Allele specific expression

INTRODUCTION
Epigenetics is the study of heritable changes in gene expression that do not involve changes
to the underlying DNA sequence (Goldberg, Allis & Bernstein, 2007). Social hymenoptera
(ants, bees, and wasps) are important emerging models for epigenetics (Glastad et al., 2011;
Weiner & Toth, 2012; Welch & Lister, 2014; Yan et al., 2014). This is due to theoretical
predictions for a role for an epigenetic phenomenon, genomic imprinting (parent of origin
allele specific expression), in their social organisation (Queller, 2003), the recent discovery
of parent-of-origin allele specific expression in honeybees (Galbraith et al., 2016), and data
showing a fundamental role in social insect biology for DNA methylation, an epigenetic
marker (Chittka, Wurm & Chittka, 2012).

In mammals and flowering plants, allele specific expression is often associated with
methylation marks passed from parents to offspring (Reik & Walter, 2001). However
DNA methylation is involved in numerous other cellular processes (Bird, 2002). There is
contradictory evidence for the role of methylation on allele specific expression in social
insects. Methylation is associated with allele specific expression in a number of loci in
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the ants Camponotus floridanus and Harpegnathos saltator (Bonasio et al., 2012). Recently,
we found evidence for allele specific expression in bumblebee worker reproduction
genes (Amarasinghe et al., 2015) and that methylation is important in bumblebee worker
reproduction (Amarasinghe, Clayton & Mallon, 2014). However, other work on the
honeybee Apis mellifera found no link between genes showing allele specific expression and
known methylation sites in that species (Kocher et al., 2015).

The presence of allele specific expression does not necessarily mean an epigenetic process
is involved. Allele specific expression is known to be caused by a number of genetic as well
as epigenetic processes (Palacios et al., 2009). The genetic process usually involves cis effects
such as transcription factor binding sites, or less often, untranslated regions which alter
RNA stability or microRNA binding (Farh et al., 2005).

The aim of this paper is to investigate allele specific expression and methylation in the
bumblebee, Bombus terrestris. The recently sequenced genome of the bumblebee, Bombus
terrestris displays a full complement of genes involved in the methylation system (Sadd et
al., 2015). An extreme form of allele specific expression involves monoallelic expression,
where one allele is completely silenced. In the canonical mammal and flowering plant
systems, this is often associated with monoallelic methylation. In this paper, we examined
the link between monoallelic methylation and monoallelic expression in the bumblebee,
Bombus terrestris using an integrative approached previously used in human epigenetic
studies (Harris et al., 2010). Namely, we compare two types of whole methylome libraries
and an RNA-seq library from the same individual. In humans, this integrative approach has
been independently validated by clonal bisulphite sequencing (Harris et al., 2010). MeDIP-
seq is an immunoprecipitation technique that creates libraries enriched for methylated
cytosines (Harris et al., 2010). Methyl-sensitive restriction enzymes can create libraries
that are enriched for non-methylated cytosines (MRE-seq) (Harris et al., 2010). Genes
found in both libraries are predicted to be monoallelically methylated, with the putatively
hypermethylated allele being in the MeDIP-seq data and the putatively hypomethylated
allele in the MRE-seq data (Harris et al., 2010). Monoallelic expression was identified in
these loci from the RNA-seq library. If only one allele was expressed then we knew that
these loci were both monoallelically methylated and monoallelically expressed in this bee.
We confirmed this monoallelic expression in one locus using qPCR.

We then more generally searched for allele specific expression by analysing twenty nine
published RNA-seq libraries from worker bumblebees (Harrison, Hammond & Mallon,
2015; Riddell et al., 2014). We identified heterozygotes in the RNA-seq libraries and
measured the expression of each allele. We then identified loci that showed significant
expression differences between their two alleles.

MATERIALS AND METHODS
Samples
Data from twenty-nine RNA-seq libraries were used for the allele specific expression
analysis (six from Harrison, Hammond & Mallon (2015), and twenty-three from Riddell et
al. (2014)). The Riddell bees came from two colonies, one commercially reared bumblebee
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Table 1 Bees used in each experiment. K refers to Koppert, A to Agralan and Q to the wild caught Le-
icester queen.

Experiment Number Colony Tissue

Allele specific expression RNA-seq 1 A1 Whole body
2 A2 Whole body
2 A3 Whole body
1 A4 Whole body
14 K1 Abdomen
9 Q1 Abdomen

MeDip/MRE/RNA-seq 1 K2 Whole body
qPCR 2 K3 Head

1 K4 Head
1 K5 Head

colony from Koppert Biological Systems UK and one colony from a wild caught queen
from the botanic gardens, Leicester. The Harrison bees were from four commercially
reared colonies obtained from Agralan Ltd. A Koppert colony worker bee was used for
the MeDIP-seq / MRE-seq / RNA-seq experiment. Bees from three different Koppert
colonies were used for the qPCR analysis. Samples are outlined in Table 1. Colonies were
fed ad libitum with pollen (Percie du sert, France) and 50% diluted glucose/fructose mix
(Meliose—Roquette, France). Before and during the experiments colonies were kept at
26 ◦C and 60% humidity in constant red light.

Next generation sequencing
MeDIP-seq, MRE-seq and RNA-seq
RNA and DNA was extracted from a single five day old whole bee (Colony K2). DNA
was extracted using an ethanol precipitation method. Total RNA was extracted using
Tri-reagent (Sigma-Aldrich, UK).

Three libraries were prepared from this bee by Eurofins genomics. These were MeDIP-
seq and MRE-seq libraries on the DNA sample and one amplified short insert cDNA
library with size of 150–400 bp on the RNA sample. Both the MeDIP-seq and MRE-seq
library preparations are based on previously published protocols (Harris et al., 2010).
MeDIP-seq uses monoclonal antibodies against 5-methylcytosine to enrich for methylated
DNA independent of DNA sequence. MRE-seq enriches for unmethylated cytosines by
using methylation-sensitive enzymes that cut only restriction sites with unmethylated
CpGs. Each library was individually indexed. Sequencing was performed on an Illumina
HiSeq R©2000 instrument (Illumina, Inc., San Diego, CA, USA) by the manufacturer’s
protocol. Multiplexed 100 base paired-read runs were carried out yielding 9,390 Mbp
for the MeDIP-seq library, 11,597 Mbp for the MRE-seq library and 8,638 Mbp for the
RNA-seq library.

Previously published RNA-seq
Full details of the RNA-seq protocols used have been published previously (Harrison,
Hammond & Mallon, 2015; Riddell et al., 2014). Briefly, for the Riddell bees, total RNA
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was extracted from twenty three individual homogenised abdomens using Tri-reagent
(Sigma-Aldrich, Irvine, UK). TruSeq RNA-seq libraries were made from the 23 samples
at NBAF Edinburgh. Multiplexed 50 base single-read runs was performed on an Illumina
HiSeq2000 instrument (Illumina, Inc.) by the manufacturer’s protocol. For the Harrison
bees, total RNA was extracted from whole bodies using a GenElute Mammalian Total RNA
Miniprep kit (Sigma-Aldrich) following the manufacturers’ protocol. The six libraries were
sequenced as multiplexed 50 base single-read runs on an Illumina HiSeq 2500 system in
rapid mode at the Edinburgh Genomics facility of the University of Edinburgh.

Monoallelic methylation and expression—bioinformatic analysis
We searched for genes that were monoallelically methylated (present in both MeDip-seq
(the putatively hypermethylated allele) andMRE-seq (the putatively hypomethylated allele)
libraries), heterozygous (different alleles in the methylation libraries) and monoallelically
expressed (only one allele present in the RNA-seq library).

Alignment and bam refinement
mRNA reads were aligned to the Bombus terrestris genome assembly (AELG00000000)
using Tophat (Kim et al., 2013) and converted to bam files with Samtools (Li et al.,
2009). Reads were labelled with the AddOrReplaceReadGroups.jar utility in Picard
(http://picard.sourceforge.net/). The MRE-seq and MeDIP-seq reads were aligned to
the genome using BWA mapper (Li & Durbin, 2009). The resultant sam alignments were
soft-clipped with the CleanSam.jar utility in Picard and converted to bam format with
Samtools. The Picard utility AddOrReplaceReadGroups.jar was used to label the MRE and
MeDIP reads whichwere then locally re-alignedwithGATK (DePristo et al., 2011;McKenna
et al., 2010). PCR duplicates for all bams (mRNA, MeDIP and MRE) were marked with the
Picard utility Markduplicates.jar.

Identifying regions of interest and integrating data
Coverage of each data type was calculated using GATK DepthofCoverage (McKenna et
al., 2010). Only regions with a read depth of at least six in each of the libraries (RNA-seq,
MeDIP-seq andMRE-seq) was used. Heterozygotes were identified using Samtoolsmpileup
and bcftools on each data set separately (Li & Durbin, 2009) and results were merged with
vcf tools (Danecek et al., 2011). Regions of mRNA with overlaps of MeDIP, MRE, and
monoallelic snps were identified with custom perl scripts.

Allele specific expression—bioinformatic analysis
We created a pipeline to search for heterozygous loci that show allele specific expression
and identify the associated enriched gene ontology (GO) terms in twenty-nine previously
published RNA-seq libraries (Harrison, Hammond & Mallon, 2015; Riddell et al., 2014).

Each RNA library was mapped to the Bombus terrestris reference genome (Bter 1.0,
accession AELG00000000.1) (Sadd et al., 2015) using the BWA mapper (Li & Durbin,
2009). The combat method in the R package SVA (version 3.20.0) was used to remove any
batch effects and control for original differences in coverage (Leek et al., 2012; Johnson,
Li & Rabinovic, 2007). The success of this control was confirmed by the R package edgeR
(version 3.14.0) (McCarthy, Chen & Smyth, 2012; Robinson, McCarthy & Smyth, 2010).
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Bcftools (version 0.1.19-44428cd), bedtools (version 2.17.0), and SAMtools (version
0.1.19-44428cd) were used to prepare the RNA libraries and call the SNPs, before the SNPs
were filtered based on mapping quality score (Quinlan & Hall, 2010; Li & Durbin, 2009).
Only SNPs with a mapping quality score of p <0.05 and a read depth of ≥6 were included
in the analyses.

The R package, QuASAR implements a statistical method for: (1) genotyping from
next-generation sequencing reads (according to the Hardy–Weinberg equilibrium), and
(2) conducting inference on allele specific expression at heterozygous sites (Harvey et
al., 2015). One problem with genotyping heterozygotes is being able to identical true
homozygotes that appear heterozygote due to base-calling errors. QuASAR removes snps
with extreme differential allele expression from the analyses, thus controlling for any
base-calling errors. Despite this inherent conservatism, in benchmark tests, QuaSAR can
accurately genotype loci with lower error rates than other methods commonly used for
genotyping DNA-seq data (Harvey et al., 2015). The allele specific expression inference
step takes into consideration the uncertainty in the genotype calls, base-call errors in
sequencing, and allelic over-dispersion. QuASAR is a powerful tool for detecting allele
specific expression if, as during most RNA-seq experiments, genotypes are not available
(Harvey et al., 2015).

Sequence regions (the snp position +/− 2,900 bp), encompassing the loci identified
as showing ASE in at least three of the thirty libraries, were compared to Drosophila
melanogaster proteins (non-redundant (nr) database) with Blastx (Altschul et al., 1997).
The blast results were annotated using Blast2Go (Gotz et al., 2008). We carried out an
enrichment analysis (Fisher exact test) using a custom R script (https://dx.doi.org/
10.6084/m9.figshare.3201355.v1) on this list of GO terms. This identified GO terms
that are overrepresented (p < 0.05) relative to the entire bumblebee transcriptome
(https://dx.doi.org/10.6084/m9.figshare.3458828.v1).We then usedREVIGO to summarize
and visualise these terms (Supek et al., 2011). REVIGO summarizes lists of GO terms using a
clustering algorithm based on semantic similarity measures. To identify which bumblebee
genes the snps were located in, the snp position +/−25 bp was compared against the
Bombus terrestris genome (Sadd et al., 2015) using Blastn.

Candidate gene allele specific qPCR
DNA was extracted from four bees from three Koppert colonies using the Qiagen DNA
Micro kit according to manufacturer’s instructions. RNA was extracted from samples
of the heads of the same worker bees with the QIAGEN RNeasy Mini Kit according to
manufacturer’s instructions. cDNA was synthesized from a 8 µl sample of RNA using the
Tetro cDNA synthesis Kit (Bioline, London, UK) as per manufacturer’s instructions.

We amplified numerous fragments of the 19 candidate genes. Sanger sequencing results
were analyzed using the heterozygote analysis module in Geneious version 7.3.0 to identify
heterozygotic nucleotide positions. It was difficult to identify snps in exonic regions of
the 19 loci, which could be amplified with primers of suitable efficiency. We managed
to identify a suitable region in toll-like receptor Tollo (AELG01000623.1 exonic region
1838–2420).
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The locus was run for three different reactions; T allele, G allele and reference.
Reference primers were designed according to Gineikiene, Stoskus & Griskevicius
(2009). A common reverse primer (CTGGTTCCCGTCCAATCTAA) was used for all
three reactions. A reference forward primer (CGTGTCCAGAATCGACAATG) was
designed to the same target heterozygote sequence, upstream of the heterozygote
nucleotide position. The reference primers measure the total expression of the gene,
whereas the allele specific primers (T allele: CCAGAATCGACAATGACTCGT, G allele:
CAGAATCGACAATGACTCGG) measure the amount of expression due to the allele.
Thus the ratio between the allele specific expression and reference locus expression would
be the relative expression due to the allele.

Three replicate samples were run for each reaction. All reactions were prepared by the
Corbett robotics machine, in 96 well qPCR plates (Thermo Scientific, Loughborough,
UK). The qPCR reaction mix (20 µl) was composed of 1 µl of diluted cDNA (50 ng/ µl),
1 µl of forward and reverse primer (5 µM/ µl each), 10 µl 2X SYBR Green JumpStart Taq
ReadyMix (Sigma Aldrich, Irvine, UK) and 7 µl ddH20. Samples were run in a PTC-200
MJ thermocycler. The qPCR profile was; 4 min at 95 ◦C denaturation followed by 40 cycles
of 30 s at 95 ◦C, 30 s at 59 ◦C and 30 s at 72 ◦C and a final extension of 5 min at 72 ◦C.

Forward primers are different, both in their terminal base (to match the snp) and in
their length. It is entirely possible that they may amplify more or less efficiently even if
there was no difference in amount of template (Pfaffl, 2001). To test for this we repeated
all qPCRs with genomic DNA (1 µl of diluted DNA (20 ng/ µl) from the same bees as the
template. We would expect equal amounts of each allele in the genomic DNA. We also
measured efficiency of each reaction as per Liu & Saint (2002).

Median Ct was calculated for each set of three technical replicates. A measure of relative
expression (ratio) was calculated for each allele in each worker bee as follows:

ratioallele=
E−Ctalleleallele

E−Ctreferencereference

(1)

E is the median efficiency of each primer set (Liu & Saint, 2002; Pfaffl, 2001). All
statistical analysis was carried out using R (3.3.1) (R core Team, 2016).

RESULTS
Discovery of monoallelically methylated and expressed genes
In total, we found nineteen genes that were both monoallelically methylated (present in
bothMe-DIP andMRE-seq libraries) andmonoallelically expressed (only one allele present
in the RNA-seq library). Figures 1 and 2 show the coverage of the three libraries for two
examples of these genes (ras GTPase-activating protein nGAP-like and bicaudal-D). Of the
nineteen genes, fourteen had the hypermethylated (MeDIP) allele expressed, while five had
the hypomethylated (MRE-seq) allele expressed (see Tables S1). The nineteen genes were
compared to the nr/nt database using Blastn. Six returned noninformative hits (Table 2).
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Figure 1 Coverage of the three libraries for ras GTPase-activating protein nGAP-like
(LOC100652225). The transcript models come from GCF_000214255.1_Bter_1.0. The y-axis in the
coverage plots is log (1+ coverage). The red vertical line represents the heterozygote position. The MeDip
allele was expressed in this locus, see Table 2.

Confirmation of monoallelic expression
Monoallelic expression was confirmed in one of these nineteen (toll-like receptor Tollo
(LOC100644648)) by allele specific qPCR (Amarasinghe et al., 2015). The allele with a
guanine at the snp position had a mean expression of 6.04 ± 8.28 (standard deviation) in
four bees from three different colonies. The thymine allele was not expressed at all in these
bees. This was not due to the efficiency of the primers as the DNA controls of both alleles
showed similar amplification (G mean = 422.70±507.36, T mean = 1575.17±503.02).
In the three other loci tested (Ras GTPase-activating protein 1, LOC107964816, Elbow) we
found apparent monoallelic expression, but could not dismiss primer efficiency as the
cause.

We then looked at these nineteen genes in twenty-nine previously published RNA-seq
libraries. Fifteen of these nineteen genes expressed a single allele in all twenty nine RNA-seq
libraries, see Tables S2. The remaining four genes were inconsistent; they showed expression
of one allele in some B. terrestris workers, and expression of two alleles in other workers.
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Figure 2 Coverage of the three libraries for bicaudal D-related protein homolog ( LOC100650109).
The transcript model come from GCF_000214255.1_Bter_1.0. The y-axis in the coverage plots is log (1 +
coverage). The red vertical line represents the heterozygote position. The MeDip allele was expressed in
this locus, see Table 2.

Removing batch effects
The twenty nine RNA-seq libraries do not come from the same experiment (Table 1). This
gives rise to the possibility of batch effects, sources of variation due to samples not being
from the same source or not being run together. We must remove these before any other
analysis.

The mean GC content of the 29 libraries was 42.34%, with individual libraries having a
similar GC content ranging from 40–46%. GC content differed with run (Nested ANOVA:
F = 20.302, df = 1, p< 0.001), but not by colony (Nested ANOVA: F = 1.763, df = 4,
p= 0.171). The mean coverage of the 29 libraries was 13.29, with mean library coverage
ranging from 9.84 to 17.61. Run had an effect on coverage (Nested ANOVA: F = 7.554,
df = 1, p= 0.011), as did colony (Nested ANOVA: F = 6.962, df = 4, p< 0.001).

Therefore, the combat method in the R package SVA (version 3.20.0) was used to
remove any batch effects and control for original differences in coverage (Leek et al., 2012;
Johnson, Li & Rabinovic, 2007). The success of this control was confirmed by the R package
edgeR (version 3.14.0) (McCarthy, Chen & Smyth, 2012; Robinson, McCarthy & Smyth,
2010). The SVA adjustment reduced the edgeR dispersion value from 3.9994 (BCV= 2) to
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Table 2 The thirteen of the nineteen monoallelically methylated and expressed genes that returned informative blast hits.

Gene Accession Expressed allele Function

yippee-like 1 LOC100642754 MeDIP Yippee is an intracellular protein with a zinc-finger like
domain. DNA methylation of a CpG island near the
yippie-like 3 promoter in humans represents a possible
epigenetic mechanism leading to decreased gene expression
in tumours (Kelley et al., 2010).

toll-like receptor Tollo LOC100644648 MeDIP Tollo regulates antimicrobial response in the insect
respiratory epithelium (Akhouayri et al., 2011).

zinc finger protein Elbow LOC100650465 MeDIP The elbow (elB) gene is involved in the formation of the
insect tracheal system (Dorfman et al., 2002).

heterogeneous nuclear ribonucleoprotein A3 LOC100651168 MeDIP Heterogeneous nuclear ribonucleoproteins associated with
precursors of functional, protein coding mRNAs (Dreyfuss
et al., 1993).

calmodulin-lysine N-methyltransferase-like LOC100749522 MRE Calmodulin-lysine N-methyltransferase catalyses
the trimethylation of a lysine residue of calmodulin.
Calmodulin is a ubiquitous, calcium-dependent, eukaryotic
signalling protein with a large number of interactors. The
methylation state of calmodulin causes phenotypic changes
in growth and developmental processes (Magnani et al.,
2010).

Na/K/Ca exchanger CG1090 LOC107998466 MRE CG1090 functions in the maintenance of calcium
homeostasis.

Shaker LOC100648438 MeDIP Shaker is involved in the operation of potassium ion
channel. Shaker expression was upregulated in sterile versus
reproductive honeybee workers (Cardoen et al., 2011).

Centrosomal and chromosomal factor-like LOC105665737 MeDIP Essential protein required for proper condensation of
mitotic chromosomes and progression through mitosis.
Expressed during oogenesis in Drosophila (Kodjabachian et
al., 1998).

excitatory amino acid transporter 1 LOC100744217 MRE Excitatory amino acid transporters are neurotransmitter
transporters. Excitatory amino acid transporter 3 expression
was upregulated in sterile honeybee workers (Cardoen et
al., 2011). Excitatory amino acid transporter 1 expression
differences were also associated with worker - queen
differentiation in the paper wasp Polistes metricus (Toth et
al., 2014).

aminopeptidase M1-like LOC105666993 MeDIP M1 aminopeptidases are zinc-dependent enzymes that
catalyze the removal of amino acids from the N terminus of
polypeptides (Drinkwater et al., 2017).

ras GTPase-activating protein nGAP-like LOC100652225 MeDIP Ras GTPase-activating protein 1 was found to be
upregulated in reproductive honeybee workers (Cardoen et
al., 2011). It is involved in oocyte meiosis.

neuromedin-B receptor-like LOC100745453 MeDIP In humans, this G protein-coupled receptor binds
neuromedin B, a peptide that stimulates mitosis in
gastrointestinal epithelial tissue.

bicaudal D-related protein homolog LOC100650109 MeDIP Bicaudal is involved in embryonic pattern formation in
Drosophila (Markesich et al., 2000). It is thought to be
involved in the differentiation between soldiers and workers
in the termite Reticulitermes flavipes (Scharf et al., 2003).
Bicaudal protein D has been shown to be methylated more
in eggs than sperm in honeybees (Drewell et al., 2014).
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Figure 3 Biological coefficient of variation (BCV) of (A) raw data, and (B) SVA-adjusted data for the
29 RNA-seq Bombus terrestris libraries. The black dots represent the BCV if it were calculated individu-
ally for each gene (tagwise). The blue line is the trend of this data. The red line represents the BCV of the
samples if a common dispersion value, over all genes, were used. In (B) tagwise values are exactly the same
as common values so no black dots are visible.

0 (BCV= 0.0003) (see Fig. 3). That is, we successfully removed the batch effects due to the
separate runs.

Allele specific expression—RNA-seq
We then searched more generally for allele specific expression in the twenty-nine RNA-seq
libraries. A total of 555 loci showed allele-specific expression in ≥3 of the 29 RNA-seq
libraries (Tables S3). Comparing these loci against the Bombus terrestris genome using
Blastn returned 211 hits. To search for gene ontology terms, we compared them against
Drosophila melanogaster proteins, using Blastx, which returned 329 hits. We tested for
enriched gene ontology (GO) terms against their background value in the bumblebee
transcriptome. One hundred and fifty-one Gene Ontology(GO) terms were enriched in
the 555 regions showing allele specific expression (Fisher’s exact test p> 0.05), however
none were significant at the more stringent FDR > 0.05. Figure 4 shows the large number
of biological functions associated with these 555 genes.

DISCUSSION
An important caveat about the integrative analysis of monoallelic methylation and
expression carried out here is that all three libraries were from a single bee. It is certain
that there is variation in methylation and allele specific expression between bees just as
there is in other species (Pignatta et al., 2014). We attempted to confirm this monoallelic
expression in other bees using RNA-seq and qPCR but with limited success. This analysis is
only a first step in understanding the link betweenmonoallelic methylation and expression.

Of the nineteen genes displaying monoallelic methylation and monoallelic expression,
fourteen had the hypermethylated (MeDIP) allele expressed, while five had the
hypomethylated (MRE-seq) allele expressed (see Tables S1). In ant genes with allele
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Figure 4 GO terms associated with allele specific expression. A summary of the enriched GO terms
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specific methylation, the hypermethylated allele showed more expression than the
hypomethylated allele (Bonasio et al., 2012). This fits with genome wide analysis that
shows exonic methylation in insects associated with increased gene expression (Glastad,
Hunt & Goodisman, 2014; Yan et al., 2015). Our fourteen genes with the hypermethylated
allele expressed agree with this pattern. But how to explain the five genes where the
hypomethylated allele was expressed? Firstly, the role of methylation in insect gene
expression is not clear cut, with the relationship between exonicmethylation and expression
often disappearing at the gene level (Yan et al., 2015). For example, EGFR expression is
lower in ant workers that exhibit higher DNA methylation of EGFR (Alvarado et al.,
2015). Secondly, even in the canonical mammalian methylation system, the ‘‘wrong’’ allele
has been shown to be expressed occasionally due to lineage specific effects (Dean et al.,
1998; Pardo-Manuel de Villena, de la Casa-Esperón & Sapienza, 2000; Onyango et al., 2002;
Sapienza, 2002; Zhang et al., 1993).

We analysed RNA-seq libraries from different published sources. This lead to two
confounding problems. The first is that as the samples were run at different times, using
different machines this could lead to a batch effect. We were able to successfully remove
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this. The second, that the libraries were made from abdomens in some cases and whole
bodies in others, is still a confounding effect. Allele specific expression is known to vary
between tissues (Chamberlain et al., 2015). Any variation in which allele is expressed could
be due to these tissue effects.

We looked at the expression of the nineteen genes in all twenty-nine RNA-seq libraries.
If they are monoallelically expressed in these bees, we would find only one allele in a given
RNA-seq library. Fifteen of these nineteen genes were confirmed to show a single allele
in all twenty-nine RNA-seq libraries. We would also find only one allele if that bee was
homozygous. We cannot rule out that these fifteen genes just happen to be homozygous
in all twenty-nine bees from five different colonies from multiple sources.

The remaining four genes showed inconsistent expressionwith one allele being expressed
in some B. terrestris workers, and expression of two alleles in other workers. Natural
intraspecific variation in allele specific expression has been found in other species (Pignatta
et al., 2014). The tissue variationmentioned above is also a possibility. Another explanation
is that these loci are not epigenetically controlled but rather their allele specific expression
is derived from genetic effects (Remnant et al., 2016).

There are three main genetic, as opposed to epigenetic, affectors of allele specific
expression (Edsgard et al., 2016). Allele specific expression can be caused by differences in
the alleles’ sequence within the translated part resulting in a modified protein. A change
at the alleles’ cis regulatory sites, could cause differential binding of transcription factors.
Transcript processing can be affected by a change in the alleles’ sequence a splice site or
untranslated region. This large number of possible causes of allele specific expression could
explain why we see so many functions associated with the 555 genes showing allele specific
expression (Fig. 4).

But it is not just allele specific expression that may have genetic as well as epigenetic
effects. It has been shown in humans that some allele specific methylation is determined
by DNA sequence in cis and therefore shows Mendelian inheritance patterns (Meaburn,
Schalkwyk & Mill, 2010). An extreme example of genetically controlled allele specific
methylation is found in Nasonia wasps, where there is no evidence for methylation
driven allele specific expression but inheritable cis-mediated allele specific methylation
has been found (Wang, Werren & Clark, 2016). This cis-mediated methylation has recently
been suggested as being important in social insect biology (Remnant et al., 2016; Wedd,
Kucharski & Maleszka, 2016).

We have found that allele specific expression is widespread in the bumblebee. We have
also found that the extreme version of allele specific expression, monoalleic expression is
associated withmonoallelicmethylation. Genomic imprinting inmammals usually involves
monoallelic methylation and expression. Although tempting to associate our results with
genomic imprinting, this current work is unable to identify genomic imprinting. In any
case, caution should be applied due to the lack of understanding of the functional role of
methylation in gene expression in insects and in the, as yet unquantified, role of genetic cis
effects in insect allele specific methylation and expression.
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