- $1 \quad Habitat \ suitability-density \ {\color{red}\underline{link}\underline{relationship}}\ in \ an \ endangered \ woodland \ species:$
- 2 the case of the Blue Chaffinch (Fringilla polatzeki)
- 3 Luis M. Carrascal^{1*}, Ángel C. Moreno², Alejandro Delgado, Víctor Suárez, Domingo
- 4 Trujillo

- 6 1: Department of Biogeography and Global Change. Museo Nacional de Ciencias
- 7 Naturales-C.S.I.C. C/ José Gutiérrez Abascal 2, 28006. Madrid, Spain.
- 8 2: Dirección General de Protección de la Naturaleza, Viceconsejería de Medio Ambiente,
- 9 Gobierno de Canarias, Las Palmas de Gran Canaria, Canary Islands, Spain.

10

*: Corresponding author. E-mail address: lmcarrascal@mncn.csic.es (L.M. Carrascal).

12

13 Short Title: Habitat suitability and population density

14 ABSTRACT

- 15 Background. UThe understanding of the constraints to the distribution of threatened
- species may help to ascertain whether there are other suitable sectors for reducing the
- 17 risks associated with their presence in only one protected locality, and to inform about the
- suitability of other areas for reintroduction or translocation programs.
- 19 Methods. We study the Gran Canaria blue chaffinch (Fringilla polatzeki), a habitat
- 20 specialist endemic of the Canary Islands restricted to the pine forest of Inagua, the only
- 21 area where the species has been naturally present as a regular breeder in the last 25 years
- 22 as a regular breeder. A suitability distribution model using occurrences with demographic
- 23 relevance (i.e., nest locations of successful breeding attempts) was built considering
- 24 orographic, climatic and habitat structure predictors. By means of a standardized
- 25 <u>census</u> program we have monitored the yearly abundance of the species in 100
- 26 sectors since the declaration of Inagua as a Strict Nature Reserve in 1994.
- 27 **Results**. The observed local abundance of the blue chaffinch in Inagua (census survey
- 28 data) was significantly correlated with habitat suitability derived from modelling the
- 29 location of successful nesting attempts. The outcomes of the habitat suitability model
- 30 were used to quantify the suitability of other natural, historic, pine forests of Gran
- 31 Canaria, being Tamadaba the forest that provides more suitable woodland patches for the
- species. We estimated a population size of 195_—430 blue chaffinches in Inagua since
- 33 2011 (95% CI), the smallest population size of a woodland passerine in the Western
- 34 Palearctic.
- 35 **Discussion**. Habitat suitability obtained from modelling the location of successful
- 36 breeding attempts is a good surrogate of the observed local abundance during the
- 37 reproductive season. The outcomes of these models can be used for the identification of

Commented [TWE1]: Awkward

Commented [TWE2]: A census is a complete count of a population or species. Given that not all birds were counted (not all birds could be detected), the authors conducted a survey rather than a census.

Commented [TWE3]: Awkward

- 38 potential areas for the reintroduction of the species in other suitable pine forests and to
- inform forest management practices.

47

49

51

57

58

59

60

INTRODUCTION

41 Habitat suitability is usually established considering determined by the relationship

42 between environmental predictors and species occurrence or abundance, or the

43 characteristics of localities where a species is found compared to those where it has not

44 been detected or obtained at random from the environmental background (Acevedo et al.,

45 2016). The second option Using species occurrence to understand the suitability of habitat

46 is commonly employed when studying very scarce and spatially restricted species. In the

case of very mobile species, such as birds, the localities where they have been observed

48 may include areas that are important for their existence (e.g., space around nesting

places), as well as other marginal areas used while dispersing or foraging outside the core

50 home range. Thus, the utility of species occurrence models rests on the availability of

good data on local species distribution, which will be all the better as the localities are

52 linked to processes directly related to survival or breeding success. On the other hand, the

53 analysis of the spatial variation of abundance may pose problems, since several authors

54 have warned that density could be a misleading indicator of environmental quality if it is

55 negatively correlated with other demographic variables via Ideal Pre-emptive Distribution

56 processes (Van Horne, 1983; Pulliam & Danielson, 1991; Brawn & Robinson, 1996). For

example, in environmentally restrictive areas, dominant individuals could displace other

young or subordinate individuals to marginal areas where they become abundant, not as a

consequence of habitat tracking considering foraging success, survival or successful

reproduction, but according to mere habitat displacement. Therefore, in order to obtain

61 good predictions about habitat suitability for selecting areas to protect the remnant

62 populations of endangered species, or for helping in the definingtion of habitat for

63 translocation-programs, it is necessary to maximize data quality related to survival or

64 breeding success. Furthermore, it is also necessary to know if habitat quality inferred

Commented [TWE4]: Awkward

from local abundance is associated with other independent measures related to suitability
linked with demography (Vickery et al., 1992). The "habitat suitability – abundance"
equivalence is a subject of intensive research, because independent tests are needed to
ascertain the validity of predictions of species occurrence models, considering that
presence data are much easier to obtain than local measures of density (JiménezValverde, 2011; Weber et al., 2016).

Natural reserves are established to protect biodiversity, both as a whole and considering those threatened species that have conservation problems. Nevertheless, their effectiveness may vary if phenomena outside the borders of the protected areas affect populations inside them (e.g., global warming and changes in rainfall regime, emergent diseases, invasive species), a worrying concern if species are restricted to only one protected area. This concern is a relevant question contributing to knowing whether it is advisable to place the emphasis on the conservation of an endangered species in only the protected area where it is relegated, or if more efforts should be directed towards translocations to other areas (Pérez et al., 2012; Rummel et al., 2016). To identify those other potential areas it is necessary to know the constraints to the distribution of species restricted to only one protected area, in order to know if there are other suitable sectors for reducing the risks associated with the presence of an endangered species in only one locality (an IUCN criteria for cataloging threat; IUCN, 2012).

The blue chaffinch of the Gran Canaria island (*Fringilla polatzeki*, Canary Islands) is a recently established species on the basis of genetic, morphological and behavioural data (Pestano et al., 2000; Lifjeld et al., 2016; Sangster et al., 2016), mainly restricted to the Strict Nature Reserve of Inagua-Ojeda-Pajonales (Inagua, hereafter; 39.2 km²; Moreno and Rodríguez, 2007). It inhabits mature pine forests, where nests are placed in tall trees; breeding success is very low for a Fringillidae, with only ca. 1.5

Commented [TWE5]: Awkward

114

(Rodríguez & Moreno, 2008; Delgado et al., 2016). The estimated population size of the 91 Gran Canaria blue chaffinch (guessed at around 300 birds with no recent estimation in its 92 whole area of distribution, BirdLife Inernational, 2016a) lies within the left tail of the 93 distribution of minimum viable population (MVP) estimates for many species, far away 94 from the average MVP of 3,750 individuals for birds (Brook et al., 2006; Traill et al., 95 2007). This is most notable if we take into account the small size of the species (approx. 96 30 g), since body mass in birds is usually negatively correlated with abundance or 97 maximum ecological densities in the preferred habitats (Carrascal & Tellería, 1991; 98 Gaston & Blackburn, 2000). Surprisingly, and in spite of its low population size and 99 100 smaller distribution area in comparison with the also endemic blue chaffinch from Tenerife island (Fringilla teydea; Rodríguez & Moreno, 2004; Moreno & Rodríguez, 101 102 2007), it has a higher haplotype diversity of the mitochondrial DNA control region (Pestano et al., 2000). 103 The main goals of this study are twofold. Firstly, to build a species occurrence 104 105 distribution model in order to disentangle the habitat preferences of the species 106 considering orographic, climatic and habitat structure predictors. This goal is carried out relying on high-high-quality occurrence data, using the location of successful breeding 107 attempts. The results of this model are used to contrast the habitat preferences of the Gran 108 Canaria (F. polatzeki) and Tenerife (F. teydea) blue chaffinches considering the available 109 literature, and to predict the habitat suitability of the natural and historic pine forests of 110 Gran Canaria located within the same altitudinal range of Inagua. An applied utility of 111 this aim is to understand if there are important environmental restrictions limiting the 112 natural presence of the blue chaffinch outside of Inagua, and to quantify the suitability of 113 other historic pine forests on Gran Canaria (?) as candidates for future translocations of

fledglings per successful nesting attempt, and 1.4 clutches per breeding season

birds. And secondly, to test if habitat suitability modelling, considering the location of successful nesting attempts, is related to independent measures of bird abundance during the breeding season using a different methodological approach. This exercise would cast light on the usefulness of occurrence distribution models, using labour-intensive occurrences with demographic relevance, forecasting the spatial variation of habitat suitability, and the validity of census programs to derive estimations estimates of environmental quality.

MATERIAL AND METHODS

Study areas and environmental data

The study areas are located in several pine forests of Gran Canaria (27°58'N, 15°35'W), an island of volcanic origin (1560 km², maximum altitude of 1950 m.a.s.l.; for more details on the vegetation of the island see Santos, 2000). The canary pine forests are dry and monospecific stands of *Pinus canariensis*, very heterogeneous regarding the size and cover of trees and undergrowth (mainly composed by Leguminosae shrubs *Adenocarpus spp.* and *Chamaecytisus proliferus*, and the Ericaceae shrubs *Erica arborea* and *E. scoparia*), that—occupying semi-arid hilly terrains—with—comprised of a predominance of high slopes and rugged terrain- (González et al., 1986).

The main study area is located in the pine forest of Inagua Integral Natural Reserve surrounding areas (3759 ha with nearby pine stands; Special Protection Area of the European Union since 1979), which harbours the main extant breeding population of the blue chaffinch (Moreno & Rodríguez, 2007; a new established small population, mainly derived from translocations is located in La Cumbre at a considerably higher altitude of 1600-1800 m a.s.l.; Delgado et al., 2016; Rodríguez, 2016). Location of nests

and yearly monitoring of blue chaffinch abundance were carried out in Inagua. For

Commented [TWE6]: This seems out of place here.

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

evaluating the habitat suitability of other mature pine forests within the environmental span of Inagua, we also considered the pine forests of Tamadaba (2812 ha), Pilancones (3167 ha) and Tauro (470 ha). Fig. 1, Table S1 and Figures S1, S2 and S3 of the supplementary material show the geographical location of the study areas and their environmental characteristics. The four pine forests show a broad overlap in orographic attributes, with all cardinal orientations represented: altitudinal range of the studied pine forests is 250 - 1550 m a.s.l., slopes of the terrain varies between 0% and 260% (with very steep averages of 45%-55%). Pine canopy cover ranges between 0% (clearings) and 99%, with Tamadaba forest being the area with the largest cover (43%). Pine height also shows a large overlap among the four pine forests, with the tallest pines reaching 40 m in Inagua. The shrub layer shows similar structural characteristics in the four pine forests, with average covers ca. 10% (maximum of 75%) and heights ca. 0.7 m (maximum values of 1.25 m). Climatic variables considerably overlap among the study areas, with high levels of average incident sun radiation during April-August (ca. 7000 kWh/m²; minimum of 4567 and maximum of 7515), high average temperatures in May (ca. 19 °C; minimum: 17.0 °C; maximum: 21.2 °C) and July (ca. 24.5 °C; minimum: 23.6 °C; maximum: 25.9 °C), and low summer rainfall (July-September) ranging from 0 mm to 34 mm (Tamadaba is the pine forest with the highest rainfall-__mainly horizontal precipitation—, while Pilancones was is the driest pine forest). A severe fire occurring in July 2007 badly affected the Inagua Reserve,

Pilancones and Tauro, but not the Tamadaba forest (see Fig. 1 in Suárez et al., 2012). The Canary Pine has the remarkable characteristic of being able to survive and grow after fire. In most places the pine foliage was partially recovered by June 2008, and the tree foliage showed full growth by the breeding season of 2010.

164 The geographic information was managed using the GRASS 6.4 (GRASS Development Team, 2015). The cartographic information employed to generate the 165 digital terrain model comes from the "Infraestructura de Datos Espaciales de Canarias" 166 (http://www.idecanarias.es/). The digital elevation model was built from a contour map 167 with 5-m equidistant topographic curves which it was converted to a raster map of 50x50 168 m resolution, with module {v.to.rast} and {r.surf.contour}. From the digital terrain model, 169 raster maps of slopes of the terrain, and cardinal orientations of the hillsides, were 170 elaborated at 50×*50 m resolution by means of the module {r.slope.aspect}. Climatic 171 variables were obtained from the "Clima-Impacto" project (http://climaimpacto.eu/), 172 developed by the Gobierno de Canarias and funded by the European Regional 173 174 Development Fund of the European Union, at a raster resolution of 50×*50 m. Vegetation 175 structure variables (pine and shrubs covers and heights) were obtained from precision 176 laser LiDAR measurements. Data was provided at a raster resolution of 25×x25 m by project "Enriquecimiento de la Cartografía de las islas forestales de Canarias a partir de 177 datos LIDAR" (GESFORMAC -Gestión y Planificación Forestal en la Macaronesia-, 178 funded by European Regional Development Fund and by Dirección General de 179 180 Protección de la Naturaleza del Gobierno de Canarias). These vegetation LiDAR measurements were upscaled to a resolution of 50×*50 mm using the module 181 {r.resample}. Finally, solar radiation data were obtained from the photovoltaic potential 182 maps in the Canary Islands (http://www.idecanarias.es/), partially funded by the Spanish 183 Ministery of Industry, Tourism and Commerce, and by the European Regional 184 Development Fund. 185

186

212

188 DThe data on bird counts was obtained throughout from line-line-transect sampling in Inagua, during the breeding season of the species (second fortnight of May 189 and the first fortnight (?) of June; see Rodríguez and Moreno, 2008) from 1994 to 2016 in 190 15 different years. A fixed network of trails of a total length of 22.9 km has been 191 192 surveyed using the same methodology since 1994 (see Fig. 1). From 1994 to 2006, the a transect of 22.9 km was censussurveyed only one time per year; from 2011 to 2016, the 193 transect was repeated three times in on different days to potentially obtain more stable 194 average results. Transects were carried out on windless and rainless days, walking along 195 single tracks at a low speed (1-3 km/h approximately), during the first four hours after 196 dawn. Different persons carried out the eensussurveyes: A.C.M. from 1994 to 2004; V.S 197 198 and A.D, in 2006, 2011-2016. To account for inter-personal and between-year variations in detectability while doing the monitoring program of the blue chaffinch collecting 199 200 counts, we employed distance sampling methods (Buckland et al., 2007). For each bird 201 heard or seen, the perpendicular distance to the observer's trajectory was estimated. Previous training helped to reduce inter-observer variability in distance estimates. 202 203 Detection distances were right-truncated, excluding 5% of birds recorded far away (i.e. 204 beyond 125 m). Detectability estimations were as follow; Years 1994-2004: probability 205 of detection (pDET) = 0.64, se = 0.12, sample size (N) = 345 bird contacts; Years 2006, 2013-2016: pDET = 0.56, se = 0.09, N = 385. The total length of transects were divided 206 in 100 contiguous units of equal length (229 m), to which the detected blue chaffinches 207 208 were averaged across years, accounting for detection probability. Intensive prospections surveys of the Inagua pine forest during 2011 to 2016 209 allowed the location of active nests (carried out by V.S., A.D. and D.T.). We restricted 210

the sample nests used in data analyses to those years when the pine forest had recovered

after the forest fire of July 2007. Although searches were mainly carried out around the

Commented [TWE7]: Does this mean results of those three days were averaged?

Commented [TWE8]: Move to Results

213 area covered by the fixed network of trails where the monitoring census program was 214 conducted, other sectors covering the whole Inagua reserve were surveyed while moving around to access those trails (by foot and by vehicles on dirt tracks). Nests were located 215 by following individuals during the prelaying and incubation period (mainly by females), 216 by means of audible begging calls by nestlings, or by observing parents feeding bouts to 217 chicks (see Rodríguez & Moreno, 2008 for more details on nest location and the breeding 218 biology of the blue chaffinch in Inagua). Nests were monitored every 3_5 days in order 219 to establish the successful reproduction of each breeding pair. We considered a successful 220 breeding attempt when at least one fledgling was produced in the focal nest. Fifty-Fifty-221 nine successful nests were recorded: 16 in 2011, 12 in 2013, 16 in 2014, 15 in 2016. They 222 were found within an area of 24.2 km² (2.6×x-9.2 km in latitude and longitude 223 geographical dimensions). Altitudinal range of nest locations was 860-1485 m a.s.l., 224 225 within a broad spectrum of orographic conditions regarding the cardinal orientation and the slope of the terrain (see Table S1 of the supplementary material). The Consejería de 226 Medio Ambiente del Cabildo de Gran Canaria gave permisión to carry out all the field 227 work under the LIFE14 NAT/ES/000077. 228

229230

231

232

233

234

235

236

237

Data analyses

Detectability models for the blue chaffinch were built with the R packages {Distance} (Miller, 2016a) and {mrds} (Miller, 2016b) under R version 3.1.2 (R Core Team, 2014). Population density of the blue chaffinch in Inagua was calculated considering the counts of birds in the 22.9 km transect and the effective strip width (ESW) derived from the probability of detection.

Breeding habitat suitability for the blue chaffinch in Inagua was modelled using boosting classification trees with the occurrence of the species in the denoted as nest

Commented [TWE9]: I'm more familiar with this being 'boosted', boosted trees produced by a boosting algorithm

learning method that attains both accurate predictions and good explanations for regression and classification problems, dealing with many types of response and predictor variables (numeric or categorical) and loss functions (Gaussian, binomial, Poisson), and managing parsimoniously complex interactions among predictors (De'Ath, 2007; Elith et al., 2008). Boosting trees algorithm aims to improve model accuracy by fitting several trees in a stage-wise process in which the first tree focuses on the raw data, the second tree on the residuals from the first tree, and so on. Final predictions are made through model averaging.

BCT models were built and summarizing using the R packages [gbm] (Ridgeway, 2016), [dismo] (Hijmans et al., 2016), [ROCR] (Sing et al., 2015) and [psych] (Revelle, 2016). Model parameters were: bag fraction of 2/3, learning rate of 0.001, tree complexity of 5 (a maximum model complexity of 11 nodes-leaves and five splitting criteria), and minimum of 5 sampling units per inner node. We used a ten-fold approach in order to test the accuracy of predictions of BCT models. The discrimination ability of BCT models was estimated through the area under the curve (AUC) of the receiver operating characteristic (ROC) plot of sensitivity against 1-specificity.

The environmental characteristics of the cells of $50\underline{\times}*50$ m in which the successful nests were located (n = 59; "breeding success", level 1 of a binomial distribution) were compared with those measured in an identical number of $50\underline{\times}*50$ m cells randomly obtained from the background of Inagua (59 out of 15,037 cells obtained by means of resampling without replacement; "available habitat", level 0 of a binomial distribution). Moreover, in order to obtain a more robust approximation to the habitat occupancy during reproduction, bootstrapped samples of the fifty-fifty-nine $50\underline{\times}*50$ m cells with successful breeding were obtained (i.e., resampling with replacement in order

to avoid outliers). This analytical approach is associated with the classic, and well-established, study of the habitat selection in which the active habitat used is compared against the habitat availability (Cody, 1985; Wiens, 1989), in such a way that the sample size of the availability records is determined by the sample size recorded for the individuals under study. Moreover, this approach shows good statistical properties in comparison with other presence-only analyses (Barbet-Massin et al., 2012; see also Warton & Aarts, 2013). BCT predictions (p) around 1 denote that the 50×50 m cells have environmental characteristics very similar to those shown by the nest locations with blue finch successful reproduction. Conversely, BCT predictions around 0 are related to 50×*50 m cells with extremely different environmental characteristics for the successful reproduction of the species. And finally, when p = 0.5, the environmental characteristics of the 50×*50 m cells are similar to the average of the habitat use and habitat availability samples.

We repeated the BCT models 20 times, using different bootstrap samples of the 50x50 m cells characterizing the habitat of the 59 breeding successful nests, and different random samples of 59 background cells of 50×x50 m. The values obtained with these 20 models were averaged (accuracy parameters, relative importance of the 12 predictor variables, partial effects of each variable, and predictions for all 50x50 cells in Inagua, Tamadaba, Pilancones and Tauro).

BCT predictions of habitat suitability for the successful breeding of the blue chaffinch in the one-hundred 229-m units, of the abundance monitoring transect, were obtained by averaging the nearest sixteen 50×*50 m cells. Habitat suitability in these 100 sample units were regressed upon the average number of blue chaffinch counted in those years when after the pine forest have been recovered from the forest fire of July 2007 (i.e., 1994-2006 and 2011-2016; 15 years considered). The spatial eigenvector mapping

Formatted: Font: Italic

Formatted: Font: Italic

288 analysis (SEVM) was carried out to account for spatial autocorrelation in the 100 transect units (Diniz-Filho & Bini, 2005; Dorman et al., 2007). SEVM is based on the idea that 289 spatial arrangement of sample locations can be translated into explanatory variables that 290 capture spatial effects, by means of the eigenfunction decomposition of the spatial 291 292 connectivity matrix among the 100 transect units of 229 m. SEVM produced three spatial filters that reduced the spatial autocorrelation in the residuals of the regression model of 293 chaffinch abundance on predicted habitat suitability for successful breeding (i.e., the 294 residuals showed nonsignificant figures of spatial autocorrelation according to Moran's I). 295 SEVM was carried out using SAM package (v. 4.0; Rangel et al., 2010). Due to 296 deviations from homoscedasticity of the residuals across the predictions of the SEVM 297 298 model, we used the heteroscedasticity-corrected coefficient covariance matrix in order to obtain the proper significance of habitat suitability and the three spatial filters (Zeileis, 299 300 2004); the HC4m estimator suggested by Cribari-Neto (2004) was used to further improve the performance in significance estimations, especially in the presence of 301 influential observations under small sample sizes (using the R package [sandwich], 302 Lumley and Zeileis, 2015). Quantile regression of bird abundance against habitat 303 304 suitability was carried out using [quantreg] package (Koenker, 2016), applying the 305 bootstrapping approach for estimating standard errors and significance.

306 307

308

309

310

311

312

RESULTS

Reproductive habitat selection and habitat suitability modelling

The boosted classification tree models (BCT) produced highly accurate results, considering sensitivity (0.999), specificity (0.979), 10-fold cross-validation AUC (0.905), and positive (0.979) and negative (0.999) predictive success figures (see Table 1 for more

details regarding the results of the 20 randomized runs of the BCT models, each time with a different random sample of background 50×x50 m cells). The variables with the highest relative importance in the BCT models were pine height (relative importance = 26.4_units?), tree cover (19.2), altitude (13.7), and rainfall during the driest trimester (July-September; 11.7). The remaining eight predictors had relative importance lower than that expected considering the number of predictors (100/12 = 8.3). Table 2 shows the results for the relative importance of predictors in 20 runs of the BCT models, and Fig. 2 shows the partial dependence plots for the four most influential variables.

Habitat suitability for successful breeding steadily increased with pine height from 15 to 20 m (remaining stably high above the second value), with tree cover from 25% to 37% (the partial influence of tree cover was at random when cover was higher than 55%), with altitude from 1100 to 1280 m a.s.l. (remaining stably high above the second value), and from 13 to 20 mm of summer rainfall. Habitat suitability in Inagua was very low in sectors with less than \leq 17 m of pine height, \leq 30% of tree cover, at altitudes lower than \leq 1100 m a.s.l. and at locations with less than \leq 13 mm of precipitation during July-September. Average Mean habitat suitability in the forest patches with those characteristics was 0.029 (sd = 0.019, interquartile range: 0.018-0.030, n = 2285 cells of 50x50 m). Conversely, habitat suitability reached the highest figures in woodland sectors located between 1200 and 1550 m of altitude, with pines taller than 20 m covering 37-50% of the area, and with a summer precipitation of 18-24 mm. Average habitat suitability in these favourable forest patches was 0.827 (sd = 0.083, interquartile range: 0.781-0.889, n = 261 cells of 50x50 m).

The average BCT model obtained in Inagua has been applied to the environmental data of the pine forests of Gran Canaria island located within the altitudinal range of the study area in which the BCT models were built. The results of the predicted suitability for

338 the pine forests of Inagua, Tamadaba, Pilancones and Tauro are presented in Fig. 3, and with more detail in the Figures S1-S3 of the supplementary material. Habitat suitabilities 339 of pine forests are summarized in Fig. 4 according to the area in an increasing scale of 340 suitability levels. Inagua is the pine forest with the largest surface for the successful 341 breeding of the blue chaffinch (795 ha with a suitability >0.5), followed by Tamadaba 342 pine forest (389 ha) and Pilancones (42 ha); Tauro forest lacks suitable habitat for the 343 reproduction of the species. This pattern of among forests differences in habitat suitability 344 becomes more skewed when considering higher levels of habitat suitability; e.g., with 345 suitability >-0.8, there are 209 ha in Inagua, 48 in Tamadaba and a complete lack of 346 habitat in Pilancones and Tauro. Moreover, there is more contiguity of woodland patches 347 348 with high levels of habitat suitability, and their sizes are larger, in Inagua than in Tamadaba (compare smoothed values of suitability >0.5 in Figures S1 and S2 of the 349 supplementary material). Finally, the proportion of pine forest surface with very low 350 habitat suitability (e.g., <0.2) decreased according to the following order: Pilancones 351 (92.1%), Tauro (89.2%), Tamadaba (62.5%) and Inagua (57.5%). Summarizing, Inagua 352 reserve, the classical pine forest with historic and continuous presence of the blue 353 354 chaffinch, has the largest potential area of more favourable habitat for the successful breeding of the species, with larger and less fragmented suitable woodland patches, and 355 with the lowest proportion of unfavourable breeding habitat. The pine forest of 356 Tamadaba, with scarce presence of the blue chaffinch in the last 60 years, also provides 357 suitable woodland patches for the species, although the amount of highly favourable 358 habitat is lower, and its patchiness higher, than that obtained for Inagua. The pine forests 359 of Pilancones and Tauro have an extremely low habitat suitability for the successful 360 breeding of the species. 361

387

Relationship between local abundance and predicted habitat suitability

There was a positive relationship between the predicted breeding habitat 364 suitability of BCT models in 100 units of the same 22.9-km eensussurvey trail in Inagua 365 reserve, and the average mean number of blue chaffinches counted in the breeding season 366 during 15 years in those units (1994-2006 and 2011-2016, considering those years when 367 the pine forest was not affected by the devastating forest fire of July 2007; Fig. 5). The 368 linear model obtained taking into account three spatial autocorrelation filters (that 369 reduced the spatial autocorrelation in the residuals of the model -being nonsignificant 370 according to Moran's I-) was highly significant: $R^2 = 42.5\%$, $F_{4.95} = 17.55$, p << 0.001 371 The partial contribution of the spatial filters (i.e., spatial component) to total variance in 372 373 blue chaffinch counts was 19.2%, that attributable to predicted suitability was 15.3%, while 8% was the shared contribution of both sets of predictors. The partial effect of the 374 375 habitat suitability on finch counts was highly significant (partial slope = 0.661, heteroskedastic-heteroskedastic-corrected standard error = 0.151, p << 0.001). This 376 relationship depicts a relatively triangular spread. In fact, a quantile regression analysis 377 378 shows that the slope progressively increases from 10% to 50% to 90% percentiles (tau_= 0.1, b = 0.367, se = 0.187, p = 0.053; tau = 0.5, b = 0.491, se = 0.214, p = 0.0243; tau = 0.09, 379 380 b = 0.760, se = 0.251, p = 0.003; taking into account the three spatial autocorrelation filters). Thus, two different sets of habitat preference measures were highly correlated, 381 showing that for a passerine species with a low population density, such as the blue 382 383 chaffinch in Gran Canaria, local estimations of abundance are positively related to habitat favourability for successful breeding. 384 Considering the relationship between habitat suitability and local abundance of 385 the blue chaffinch in 2011—2016 (very similar to that depicted in Fig. 5; partial slope = 386

0.780, heteroscedastic-heteroscedastic-corrected standard error = 0.194, p = 0.001), and

Commented [TWE10]: awkward

Commented [TWE11]: Triangular doesn't seem like the correct word here. Might write: This relationship depicts an increasing error variance.

389

390

391

392

393

394

396

397

398

404

407

409

411

its conversion to density (accounting for detectability in the period 2011-2016), and the suitability map of Fig. 3, we have calculated the probable population size of the species in Inagua (using the 95% confidence interval of the predictions in 15037 cells of 50×x50 m²). Although the topic merits an exhaustive census program, this assessment should be considered as a first approximation to the population estimation in Inagua. The average mean estimation estimate is 279 birds, with a 95% confidence interval of 195_-430

Commented [TWE12]: This commentary or qualifier should be reserved for the Discussion

395

chaffinches.

DISCUSSION

Relationship between local abundance and predicted habitat suitability

Studies aimed at predicting species abundance from species occurrence 399 distribution models have yielded a mixed bag of results (e.g., Conlisk et al., 2009; Jiménez-Valverde et al., 2009; Yañez-Arenas et al., 2014; Carrascal et al., 2015; Basile et 400 401 al., 2016). A recent meta-analysis (Weber et al., 2016) concludes concluded that occurrence data can be a reasonable proxy for abundance, especially if local 402 403 environmental variables are considered when dealing with the abundance-suitability relationship. Our results show that the observed local abundance of the blue chaffinch in Inagua (census survey data) correlates correlated with habitat suitabilitiy derived from 405 modelling the location of successful breeding attempts. The relationship was relatively 406 triangular (Fig. 5), denoting the asymmetric relationship between these two parameters: unsuitable woodland sectors can only have low blue chaffinch abundances, whereas very 408 favorable sites can have high or low abundances (see VanDerWal et al., 2009; Jiménez-Valverde, 2011). This suggests the existence of other important factors responsible for 410 the emergence of the triangular positive relationship, such as the "unsaturation" of the available habitat (i.e., there are not enough blue chaffinches to occupy the favorable 412

413 woodland patches) or other unmodelled habitat features. For example, García-del-Rey et al. (2009, 2010) have shown the importance of structure and species identity of the shrub 414 415 layer during the breeding season, as well as pine seed availability on the ground for feeding habitat selection during winter in F. teydea of Tenerife island. On the other hand, 416 417 census survey counts at very small spatial scales may be accounting for the mere presence of floaters or breeders outside the core area of the nesting place, as chaffinches 418 (especially males) spend a considerable amount of time outside the breeding territories 419 (e.g., Hanski & Haila, 1988 with Fringilla coelebs). Conservation biologists are warned 420 to be cautious when relying on abundance estimations as surrogates of habitat quality 421 (Van Horne, 1983), which is more accurately described with labor-intensive demographic 422 423 research (Johnson, 2007). Nevertheless, our results suggest that local abundance is a good surrogate of environmental quality for successful nesting in the blue chaffinch, which 424 agrees with other previous studies showing that birds are usually more abundant in 425 habitats where per capita reproduction is highest (e.g., review by Bock & Zach, 2004; 426 Carrascal & Seoane, 2009). 427

428

429

430

431

432

433

434

435

436

437

Population size

In spite of the imperfect fit between habitat suitability for successful nesting and local bird abundance, regional abundance can be accurately predicted in an unbiased way from occurrence distribution models by the aggregation of local predictions, whose overpredictions and underpredictions can be counteracted (see Carrascal et al., 2015 for 21 terrestrial bird species in La Palma, Canary islands). Thus, the species occurrence distribution models can be used as a cost-effective tool to provide tentative population estimations when data from exhaustive census programs are not available. We have estimated an exiguous population size of ca. 280 blue chaffinches in Inagua, which is

Formatted: Font: Italia

Commented [TWE13]: Love the word, but it is superfluous here

438 consistent with its low population density and the small area of this pine forest (37.6 km²). Other Another 38 blue chaffinches have to becan be added to those low numbers 439 (minimum estimation; Rodríguez, 2016), considering given the recently established small 440 population located at higher altitudes in La Cumbre (from a captive breeding and 441 translocation program; Delgado et al., 2016; Rodríguez, 2016). Therefore, with ~320 442 individuals during the breeding season, the Gran Canaria blue chaffinch is the small 443 passerine of the Western Palearetic with the lowest population size in the Western 444 Palearctic of around 320 individuals during the breeding season. This population size is 445 several times lower than that recorded for the other three specialists species of marginal 446 woodlands with very small populations: Sitta whiteheadi (5500 individuals in ca. 185 447 km²; BirdLife International, 2016b), *Phyrrula murina* (1000 individuals in ca. 100 km²; 448 BirdLife International, 2016c), and Sitta ledanti (350-1500 individuals in ca. 700 km²; 449 BirdLife International, 2016d). Although the population size of the blue chaffinch is 450 considerably lower than minimum viable population sizes suggested for birds (around 451 3500 individuals for a persistence probability of 99% in 40 generations; Brook et al., 452 2006; Traill et al., 2007), its persistence with relatively constant numbers in Inagua 453 454 during the last several years probably shows its high resilience against demographic risk factors. 455

Commented [TWE14]: Or, it's just lucky

457 Breeding habitat selection

456

458

459

460

461

462

Habitat preferences for successful breeding of the Gran Canaria blue chaffinch are similar to those measured in its sibling species from the nearby Tenerife island, although Fringilla polatzekiblue chaffinch shows a remarkably lower altitudinal range and a higher preference for mature pine stands. *Fringilla teydea* spreads ranges from 1000 to 2060 m a.s.l., reaching in the 1500-2000 m belt an average abundance 3.4 times higher

Formatted: Font: Not Italia

463 than that recorded at 1000-1500 m (Carrascal & Palomino, 2005). The BCT model for blue chaffinch F. polatzeki in Inagua shows a step increase of habitat suitability with 464 altitude up to 1300 m where it stabilizes, a limit that can be understood considering that 465 only 15.8% of Inagua is above 21300 m a.s.l. and 0.28% above 1500 m. Thus, Inagua 466 establishes imposes an altitudinal restriction to blue chaffinch F. polatzeki due to its based 467 on orography, but the 1300 m a.s.l. threshold is not a true biological limit as the data of 468 the recently established small population in La Cumbre demonstrates. The species is able 469 to dwell at higher altitudes in this area (Delgado et al., 2016), and has shown a formidable 470 increase in the number of breeding pairs from two in 2010 to 16 in 2016 (Rodríguez, 471 2016). Therefore, the altitudinal range of Gran Canaria probably imposes, per se, 472 473 restrictions to the distribution of the blue chaffinch, assuming that F. teydea and blue chaffinch F. polatzeki share similar abiotic environmental preferences as sibling species. 474 475 As for forest structure, the highest habitat suitability for the successful breeding of blue chaffinch F. polatzeki is attained in woodland stands with more than 21 m of pine 476 height and tree cover between 35%-55%. Practical recommendations can be derived from 477 these results for managing the dense and relatively young pine plantations located above 478 479 1300 m a.s.l. in other areas of Gran Canaria island (La Cumbre, Los Marteles, Moriscos-Galdar). The positive influence of pine height on habitat preferences has been also 480 observed in F. teydea (see Carrascal and Palomino, 2005 at a broad scale, and García-del-481 Rey et al., 2009 at the habitat use level), while the species in Tenerife island is ca. three 482 483 times more abundant in thinned (53% tree cover) than in unmanaged (86%) reafforestations (García-del-Rey et al., 2010). Nevertheless, the most remarkable 484 difference between the habitat preferences of the two taxa is the ability of F. teydea to 485 occupy young pine forests during the breeding season (e.g., Carrascal et al., 1992; 486 García-del-Rey and Cresswell, 2005; García-del-Rey et al., 2010), even the non-native 487

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

Pinus radiata plantations (Carrascal, 1987), with densities ranging from 25 to 170 birds/km² in woodlands with pine height ranging from 7 to 15 m. Again, the preference for well-developed and open forests of <u>blue chaffinch</u> *F. polatzeki* in Inagua may be the consequence of the maturity of the pine forest in this area. This idea is supported by the fact that <u>blue chaffinch</u> *F. polatzeki* is able to thrive at higher altitudes in the less mature pine forests of La Cumbre, with a survival and reproductive success very similar to that recorded in Inagua (Rodríguez & Moreno, 2008; Delgado et al., 2016).

Habitat favourability outside the main distribution area

The favourable environmental conditions for the blue chaffinch identified in Inagua suggest other natural and historic Gran Canaria pine forests that are not suitable for the species, and should be discarded in the population management plans (i.e., habitat management-restoration or translocations of individuals). This is clearly the case of Tauro and Pilancones forests, for which the predicted very low habitat suitability maps (see Figure S3 of the supplementary material and Fig. 4) reinforces the lack of the species throughout the historical distribution of the species in Gran Canaria island (Martín & Lorenzo, 2001). On the other hand, Tamadaba forest has more favourable habitat for the species, especially in the upper part of the two main ridges. The existence of suitable habitat for the reproduction of the species agrees with the recorded historical presence in this area, although always in low numbers up to 1991 (Moreno and Rodríguez, 2007), and recent eventual sightings since 2010 (Pascual Calabuig and Felipe Rodríguez, pers. com.). Nevertheless, the antique photos available for the Tamadaba pine forests in the middle of the 20th century (little vegetation cover of a relatively young pine forest; www.fotosantiguascanarias.org), suggest that the species was not abundant in the past. The low amount of highly suitable habitat for the blue chaffinch in Tamadaba means that

this area could foster a smaller population than Inagua (see woodland area with habitat suitability >0.7 in Fig. 4; 658 ha in Inagua for a population of ca. 280 individuals vs. 195 ha in Tamadaba). The potential area could be further reduced considering the fragmentation of highly suitable woodland patches (see Fig. 4 and Figure S2). This is a concern as woodland specialists usually require large patches of continuous well-preserved forests (e.g., Santos, et al., 2002; Fahrig, 2003; Devictor et al., 2008), and habitat fragmentation negatively affects the abundance and suitability of an area for birds (e.g., Basile et al., 2016). Nonetheless, Tamadaba should be considered as a potential area for translocations of blue chaffinches, especially those sectors located at higher altitudes, with tallest pine trees and—with higher summer rainfall. Even if in low numbers, this area would add to the two current distribution areas of the species in Gran Canaria.

525 CONCLUSIONS

Given the preference of this species for mature pine forests that are suffering forest dieback as a consequence of climate change (Martín et al., 2015), we may be witnessing the vanishing existence of an endemic woodland bird species in the eastern limit of the Canary forests. Nevertheless, the reintroduction of the species in other suitable pine forests (especially if they are located at higher altitudes), and forest management practices directed to reduce woodland fragmentation and modify habitat structure according to blue chaffinch habitat preferences, may ameliorate or counteract this vanishing trend. Our results demonstrate that habitat suitability obtained from modelling the location of successful breeding attempts is a good surrogate of the observed local abundance. Thus, it-habitat suitability can be used for the identification of potential areas for translocations of blue chaffinches, or as a cost-effective tool to provide tentative population estimates.

561

538 ADDITIONAL INFORMATION AND DECLARATIONS 539 **Competing Interests** 540 The authors declare there are no competing interests. 541 **Author Contributions** 542 LMC undertook the data analyses, conceived, wrote and oversaw the paper. ACM 543 designed the census survey program, conducted all data preparation and generated the 544 figures with maps. ACM, AD, VS and DT obtained the field data. All authors read the 545 final draft of the manuscript. 546 **Funding** 547 The study was supported by the Conservation Program for the Blue Chaffinch 548 implemented by the Gobierno de Canarias throughout 1991-2004, Cabildo de Gran 549 550 Canaria (2005-2015), and was partially financed by European Union (1995-1996: LIFE94 NAT/E/ 001159), (1999-2002: LIFE98 NAT/E/005354) and (2016: LIFE14 551 NAT/ES/000077). 552 553 ACKNOWLEDGEMENTS 554 Our acknowledgments to Cartográfica de Canarias, S. A. (GRAFCAN, www.grafcan.es) 555 who did provide the cartographic information available in the Canarian Spatial Data 556 Infrastructure (http://www.idecanarias.es/). The solar radiation information available at 557 www.idecan.es belongs to the Instituto Tecnólogico de Canarias Foundation and Dobon`s 558 Technology, SL and its elaboration has been partially funded by the Ministerio de 559

Insutria, Turismo y Comercio under the National Plan for Scientific Research,

Development and Technological Innovation and the European Regional Development

562	Fund (ERDF). We thank very much -to-Joachim Hellmich, Pascual Calabuig, Ruth de
563	Oñate and Felipe Rodríguez for the help provided in carrying out this work.
564	
565	
566	REFERENCES
567	Acevedo P, Jiménez-Valverde A, Aragón P, Niamir A. 2016. New developments in the
568	study of species distribution. In: Mateo, R, Arroyo, B, García, J.T. (Eds.), Current
569	trends in Wildlife Research, Springer Nature, pp. 151-175.
570	Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. 2012. Selecting pseudo-absences for
571	species distribution models: how, where and how many? Methods in Ecology and
572	Evolution 3:327–338.
573	Basile M, Valerio F, Balestrieri R, Possillico M, Bucci R, Altea T, De Cinti B, Matteucci
574	G. 2016. Patchiness of forest landscape can predict species distribution better than
575	abundance: the case of a forest-dwelling passerine, the short-toed treecreeper, in
576	central Italy. PeerJ 4:e2398.
577	BirdLife International. 2016a. Fringilla polatzeki. The IUCN Red List of Threatened
578	Species 2016: e.T103822640A104230366. <u>http://dx.doi.org/</u> 10.2305/
579	IUCN.UK.2016-3.RLTS.T103822640A104230366.en.
580	BirdLife International. 2016b. Sitta whiteheadi. The IUCN Red List of Threatened
581	Species 2016: e.T22711176A90417098. http://dx.doi.org/ 10.2305/IUCN.UK.2016-
582	3.RLTS.T22711176A90417098.en.
583	BirdLife International. 2016c. Pyrrhula murina. The IUCN Red List of Threatened
584	Species 2016: e.T22720676A90563705. http://dx.doi.org/ 10.2305/IUCN.UK.2016-
585	3.RLTS.T22720676A90563705.en.

609

Journal of Biogeography 19:383-390.

BirdLife International. 2016d. Sitta ledanti. The IUCN Red List of Threatened Species 586 e.T22711179A94282380. http://dx.doi.org/10.2305/IUCN.UK.2016-587 2016: 3.RLTS.T22711179A94282380.en. 588 Bock CE, Zach F. 2004. Avian habitat evaluation: should counting birds count? Frontiers 589 in Ecology and the Environment 2:403-410. 590 Brawn JD, Robinson SK. 1996. Source-sink population dynamics may complicate the 591 interpretation of long-term census data. Ecology 77:3-12. 592 Brook BW, Traill LW, Bradshaw CJA. 2006. Minimum viable population sizes and 593 global extinction risk are unrelated. Ecology Letters 9:375–382. 594 Buckland ST, Anderson DR, Burnham, KP, Laake JL. Borchers, DL, Thomas L. 2007. 595 596 Advanced distance sampling. Oxford University Press, New York. Carrascal LM. 1987. Relación entre avifauna y estructura de la vegetación en las 597 598 repoblaciones de coníferas de Tenerife (Islas Canarias). Ardeola 34:193-224. Carrascal LM, Aragón P, Palomino D, Lobo J.M. 2015. Predicting regional densities 599 from bird occurrence data: validation and effects of species traits in a Macaronesian 600 601 Island. Diversity and Distributions 21:1284-1294. 602 Carrascal LM, Palomino D. 2005. Preferencias de hábitat, densidad y diversidad de las 603 comunidades de aves en Tenerife (islas Canarias). Animal Biodiversity and Conservation 28:101-119. 604 Carrascal LM, Seoane J. 2009. Linking density, productivity and trends of an endangered 605 606 species: the Bonelli's in Spain. Acta Oecologica 35:341-348. Carrascal LM, Tellería JL, Valido A. 1992. Habitat distribution of Canary chaffinches 607 among islands: competitive exclusion or species-specific habitat preferences?

- 610 Carrascal LM, Tellería JL. 1991. Bird size and density: a regional approach. American
- 611 *Naturalist* 138:777-784.
- 612 Cody ML. 1985. Habitat selection in birds. Academic Press, London.
- 613 Conlisk E, Conlisk J, Enquist B, Thompson J, Harte J. 2009. Improved abundance
- prediction from presence-absence data. Global Ecology and Biogeography 18:1-
- 615 10.
- 616 Cribari-Neto F. 2004. Asymptotic inference under heteroskedasticity of unknown form.
- 617 *Computational Statistics and Data Analysis* 45:215–233.
- 618 De'Ath G. 2007. Boosted trees for ecological modeling and prediction. Ecology and
- 619 Society 88:243-251.
- 620 Delgado A, Calabuig P, Suárez V, Trujillo D, Suárez-Rancel MM. 2016. Preliminary
- assessment of the release of captive-bred Gran Canaria Blue Chaffinches Fringilla
- *teydea polatzeki* as a reinforcement population. *Bird Study* 63:554-558.
- 623 Devictor V, Julliard R, Jiguet F. 2008. Distribution of specialist and generalist species
- along spatial gradients of habitat disturbance and fragmentation. *Oikos* 117:50-514.
- 625 Diniz-Filho JA, Bini LM. 2005. Modelling geographical patterns in species richness
- using eigenvector-based spatial filters. Global Ecology and Biogeography 14:177–
- 627 185.
- 628 Dorman CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies G, Hirzel,
- A, Jetz W, Kissling D, Kühn I, Ohlemüller R, Peres-Neto P, Reineking B, Schröder
- B, Schurr FM, Wilson R. 2007. Methods to account for spatial autocorrelation in
- the analysis of species distributional data: a review. *Ecography* 30:609–628.
- 632 Elith J, Leathwick J, Hastie T. 2008. A working guide to boosted regression trees.
- 633 Journal of Animal Ecology 77:802-813.

634 Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34:487-515. 635 García-del-Rey E, Cresswell W. 2005. Density estimates, microhabitat selection and 636 foraging behaviour of the endemic blue chaffinch Fringilla teydea teydea on 637 Tenerife (Canary Islands). Ardeola 52:305-317. 638 García-del-Rey E, Gil L, Nanos N, López-de-Heredia U, Gil-Muñoz P, Fernández-639 Palacios JM. 2009. Habitat characteristics and seed crops used by Blue Chaffinches 640 Fringilla teydea in winter: implications for conservation management. Bird Study 641 56:168-176. 642 García-del-Rey E, Otto R, Fernández-Palacios JM. 2010. Medium-term response of 643 644 breeding Blue Chaffinch Fringilla teydea teydea to experimental thinning in a Pinus canariensis plantation (Tenerife, Canary Islands). Ornis Fennica 87:180-645 646 188. Gaston KJ, Blackburn T. 2000. Pattern and process in macroecology. Blackwell Science, 647 Oxford, UK. 648 González MN, Rodrigo JD, Suárez CS. 1986. Flora y vegetación del Archipiélago 649 650 Canario. Edirca, Las Palmas de Gran Canaria. GRASS Development Team. 2015. Geographic Resources Analysis Support System 651 (GRASS) Software, Version 6.4. Open Source Geospatial Foundation. 652 Hanski I, Haila Y. 1988. Singing territories and home ranges of breeding Chaffinches: 653 654 visual observation vs. radio-tracking. Omis Fennica 65:97-103. Hijmans RJ, Phillips S, Leathwick J, Elith J. 2016. Package 'dismo'. Versión 1.6.9. 655 Downloadable from https://cran.r-project.org/web/packages/dismo/dismo.pdf 656 IUCN 2001. IUCN red list categories and criteria: Version 3.1. Gland, Switzerland and 657

Cambridge, UK: IUCN Species Survival Commission.

559	Jiménez-Valverde A. 2011. Relationship between local population density and				
560	environmental suitability estimated from occurrence data. Frontiers of				
561	Biogeography, 3.2:59-61.				
562	Jiménez-Valverde A, Diniz F, de Azevedo EB, Borges PAV. 2009. Species distribution				
563	models do not account for abundance: the case of arthropods on Terceira Island.				
564	Annales Zoologici Fennici 46:451–464.				
565	Johnson MD. 2007. Measuring habitat quality: a review. Condor 109, 489–504.				
566	Koenker R. 2016. Package 'quantreg'. Versión 5.29. Downloadable from https://cran.r-				
567	project.org/web/packages/quantreg/quantreg.pdf				
568	Lifjeld JT, Anmarkrud JA, Calabuig P, Cooper JEJ, Johannessen LE, Johnsen A, Kearns				
569	AM, Lachlan RF, Laskemoen T, Marthinsen G, Stensrud E, Garcia-del-Rey E.				
570	2016. Species-level divergences in multiple functional traits between the two				
571	endemic subspecies of Blue Chaffinches Fringilla teydea in Canary Islands. BMC				
572	Zoology 1:4.				
573	Lumley T, Zeileiss A. 2015. Package 'sandwich'. Versión 2.3-4. Downloadable from				
574	https://cran.r-project.org/web/packages/sandwich/ sandwich.pdf.				
575	Martín A, Lorenzo JA. 2001. Aves del Archipiélago Canario. Francisco Lemus, La				
576	Laguna, Tenerife.				
577	Martín JL, Marrero MV, del Arco M, Garzón V. 2015. Aspectos clave para un plan de				
578	adaptación de la biodiversidad terrestre de Canarias al cambio climático. In:				
579	Herrero A, Zavala MA. (Eds.), Los Bosques y la Biodiversidad frente al Cambio				
580	Climático: Impactos, Vulnerabilidad y Adaptación en España. Ministerio de				
581	Agricultura, Alimentación y Medio Ambiente, Madrid, pp. 573-580.				
582	Miller DL. 2016a. Package 'Distance'. Versión 0.9.6. Downloadable from https://cran.r-				

project.org/web/packages/Distance/Distance.pdf.

- Miller DL. 2016b. Package 'mrds'. Versión 2.1.17. Downloadable from https://cran.r-684 685 project.org/web/packages/mrds/mrds.pdf Moreno AC, Rodríguez F. 2007. Pinzón azul. In: J.A. Lorenzo, J.A. (Ed.), Atlas de las 686 aves nidificantes en el archipiélago canario (1997-2003). Dirección General de 687 Conservación de la Naturaleza-SEO/BirdLife. Madrid, 431-434. 688 Pérez I, Anadón JD, Díaz M, Nicola GG, Tella JL, Giménez A. 2012. What is wrong with 689 current translocations? A review and a decision-making proposal. Frontiers in 690 Ecology and the Environment 10:494-501. 691 Pestano J, Brown RP, Rodríguez F, Moreno A. 2000. Mitochondrial DNA control region 692 diversity in the endangered blue chaffinch, Fringilla teydea. Molecular Ecology 693 694 9:1421-1425. Pulliam HR, Danielson BJ. 1991. Sources, sinks and habitat selection, a landscape 695 696 perspective on population dynamics. American Naturalist 137:50-66. R Core Team. 2014. R: A language and environment for statistical computing. R 697 Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ 698 Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: a comprehensive application for 699 700 spatial analysis in macroecology. Ecography 33:46-50. Revelle W. 2016. Package 'psych'. Versión 1.6.9. Downloadable from https://cran.r-701 project.org/web/packages/psych/psych.pdf 702 Ridgeway G, 2016. Package 'gbm'. Versión 2.1.1. Downloadable from https://cran.r-703 704 project.org/web/packages/gbm/gbm.pdf
- Rodríguez F. 2016. Translocación del pinzón azul de Gran Canaria Fringilla polatzeki.
 Technical Report, LIFE14 NAT/ES000077.
 Rodríguez F, Moreno AC. 2004 Pinzón Azul de Gran Canaria *Fringilla teydea* polatzeki.
 In: Madroño, A, González, C, Atienza, J.C. (Eds.), Libro Rojo de las Aves de

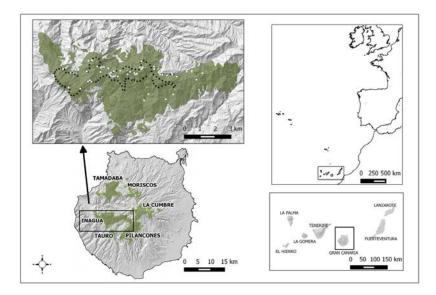
- 709 España. Dirección General para la Biodiversidad y SEO/BirdLife, Madrid, 207-
- 710 209.
- 711 Rodríguez F, Moreno AC. 2008. Breeding biology of the endangered blue chaffinch
- 712 Fringilla teydea polatzeki in Gran Canaria (Canary Islands). Acta Ornithologica
- 713 43:207-215.
- 714 Rummel L, Martinez-Abrain A, Mayol J, Ruiz-Olmo J, Mañas F, Jiménez J, Gómez JA,
- 715 Oro D. 2016. Use of wild-caught individuals as a key factor for success in
- vertebrate translocations. *Animal Biodiversity and Conservation* 39:207-219.
- 717 Sangster G, Rodríguez F, Roselaar CS, Robb M, Luksenburg JA. 2016. Integrative
- 718 taxonomy reveals Europe's rarest songbird species, the Gran Canaria blue chaffinch
- 719 Fringilla polatzeki. Journal of Avian Biology 47:159–166.
- 720 Santos T, Tellería JL, Carbonell R. 2002. Bird conservation in fragmented Mediterranean
- forests of Spain: effects of geographical location, habitat and landscape
- 722 degradation. *Biological Conservation* 105:113–125.
- 723 Santos A. 2000. La vegetación. In: Morales, G, Pérez-González, R. (Eds.), Gran Atlas
- 724 Temático de Canarias. Arafo, Tenerife, pp. 121-146.
- 725 Sing T, Sander O, Beerenwinkel N, Lengauer T. 2015. Package 'ROCR'. Versión 2.1.1.
- Downloadable from https://cran.r-project.org/web/packages/ROCR/ROCR.pdf
- 727 Suárez NM, Betancor E, Fregel R, Rodríguez F, Pestano J. 2012. Genetic signature of a
- severe forest fire on the endangered Gran Canaria blue chaffinch (Fringilla teydea
- 729 polatzeki). Conservation Genetics 13:499-507.
- 730 Traill LW, Bradshaw CJA, Brook BW. 2007. Minimum viable population size A meta-
- analysis of 30 years of published estimates. *Biological Conservation* 139:159-166.
- 732 IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition.
- Gland, Switzerland and Cambridge, UK: IUCN. iv + 32pp.

- 734 Van Horne B. 1983. Density as a misleading indicator of habitat quality. *Journal of*
- 735 *Wildlife Management* 47:893–901.
- 736 VanDerWal J, Shoo LP, Johnson CN, Williams SE. 2009. Abundance and the
- 737 environmental niche: environmental suitability estimated from niche models
- predicts the upper limit of local abundance. *American Naturalist* 174:282-291.
- 739 Vickery PD, Hunter ML, Wells JV. 1992. Is density an indicator of breeding success?
- 740 The Auk 109:706–710.
- 741 Warton D, Aarts G. 2013. Advancing our thinking in presence-only and used-available
- analysis. Journal of Animal Ecology 82:1125–1134.
- 743 Weber MM, Stevens RD, Diniz-Filho JAF, Grelle AEV. 2016. Is there a correlation
- 744 between abundance and environmental suitability derived from ecological niche
- modelling? A meta-analysis. *Ecography* 39:1-12.
- 746 Wiens J. 1989. The ecology of bird communities. Volume I: foundations and patterns.
- 747 Cambridge University Press, Cambridge.
- 748 Yañez-Arenas C, Guevara S, Martínez-Meyer E, Mandujano S, Lobo JM. 2014.
- 749 Predicting species' abundances from occurrence data: effects of sample size and
- 750 bias. Ecological Modelling 294:36–41.
- 751 Zeileis A. 2004. Econometric computing with HC and HAC covariance matrix
- estimators. *Journal of Statistical Software* 11:1–17.

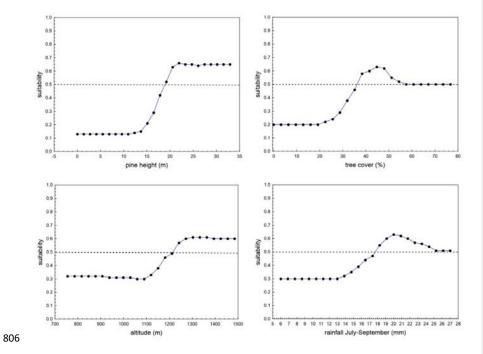
	G 1		T 6 4.	
754	Silinn	lemental	Information	1

- **Table S1.** Environmental characteristics of the four studied pine forests.
- 756 Figures S1, S2 and S3: Contour line maps representing the habitat suitability for the
- 757 successful breeding of the blue chaffinch in four pine forests of Gran Canaria
- 758 island.

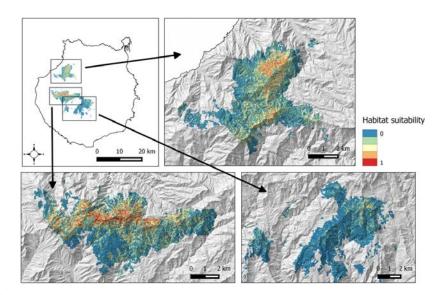
Table 1. Summary of the 20 randomized runs of the boosted classification tree (BCT) models analysing habitat suitability of the nesting location of successful breeding pairs (at least one fledgling per season). The BCT models compare the habitat characteristics in pixels of 50x50 m around nests (59 nests with breeding success recorded in six years from 2011 to 2016) against the same number of pixels of the same size randomly obtained from the pine forests of Inagua reserve. Twelve environmental variables were used in all BCT models (see Table 2).

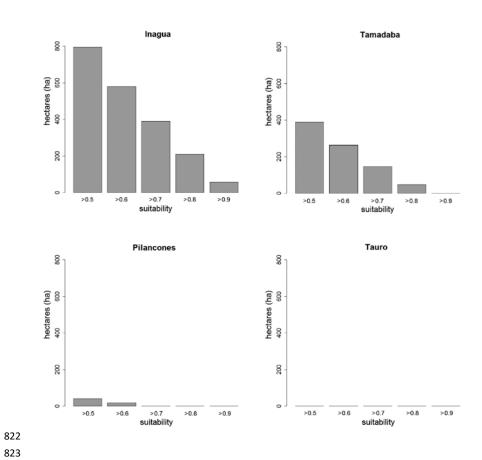

7	6	6
7	6	7

	mean	sd	minimum	maximum
Number of boosted trees	4640	996.1	2800	6400
Ten-fold cross-validation AUC	0.905	0.024	0.869	0.938
Sensitivity	0.999	0.004	0.983	1.000
Specificity	0.979	0.015	0.932	1.000
Negative predictive value	0.999	0.004	0.983	1.000
Positive predictive value	0.979	0.015	0.937	1.000


Table 2. Average relative importance (in %) of 12 environmental variables in boosted classification trees models (for more details see Table 1). Results are for 20 randomized runs analysing habitat suitability of the nesting location of successful breeding pairs against the same number of pixels of the same size randomly obtained from the pine forests of Inagua reserve.

780	
781	


782		mean	sd	minimum	maximum	
783	Altitude	13.7	5.8	2.2	24.3	
784	Slope	5.6	2.5	2.8	9.6	
785	Northern orientation	4.4	1.7	2.1	7.9	
786	Western orientation	2.6	0.8	1.6	4.8	
787	Incident solar radiation	5.0	3.1	1.7	14.5	
788	Average temperature in May	2.9	1.0	1.5	4.6	
789	Average temperature in July	2.0	0.6	1.3	3.4	
790	Rainfall in July-September	11.7	6.1	3.7	25.6	
791	Cover of the canopy (pine) layer	19.2	7.9	7.7	37.5	
792	Average pine height	26.4	9.2	10.2	49.2	
793	Cover of the shrub layer	4.3	1.4	1.5	7.4	
794	Average height of shrubs	2.2	1.3	0.5	5.3	


Figure 1. Study areas in Gran Canaria island. Other pine forests, outside the altitudinal range of the core distribution area of the blue chaffinch in Inagua, are also shown (Moriscos and La Cumbre; they are pine plantations mainly established after 1960). White dots in Inagua show the location of nests with successful breeding attempts (at least one chick fledged, and only one nest per breeding pair and year). Black dots show the centre of 100 units of 229 m in length of a <u>censussurvey</u> trail of 22.9 km repeated from 1994 to 2016.

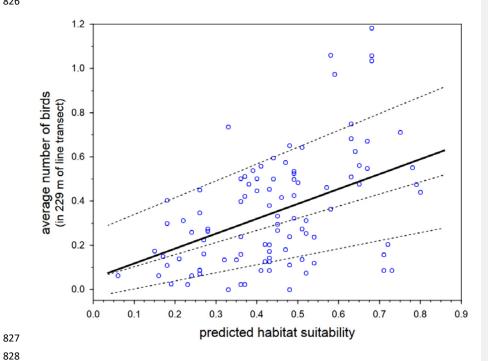

Figure 2. Average partial dependence plots for the four most influential variables in the 20 randomized runs of boosted classification trees models analysing habitat suitability of the nesting location of successful breeding pairs of blue chaffinches against the same number of pixels of the same size randomly obtained from the pine forests of Inagua reserve. Suitability value of 0.5 denotes random distribution according to each predictor (depicted by means of a dashed line). Values of the predictors with low suitability figures show that those environmental conditions are not favourable for the breeding success of the blue chaffinch in Inagua reserve. See Tables 1 and 2 for more details.

Figure 3. Habitat suitability map for the successful breeding of the blue chaffinch in four pine forests of Gran Canaria island located within the altitudinal range of Inagua. The map resolution is 50×10^{12} cells. Tamadaba in right upper panel; Inagua in left lower panel; Pilancones and Tauro in right lower panel.

Figure 4. Surface of four pine forests of Gran Canaria Island with different levels of habitat suitability for the successful breeding of the blue chaffinch.

Figure 5. Relationship between the predicted breeding habitat suitability of BCT models and the average number of blue chaffinches counted during the breeding season in 100 transect units of 229 m along the same 22.9_z-km <u>censussurvey</u> trail in Inagua reserve during 15 years (1994-2006 and 2011-2016 in those years when the pine forest was not affected by the devastating forest fire of July 2007). The thick line shows the partial OLS regression slope, and the three dashed lines the regression slopes for 90%, 50% and 10% quantile regressions, after controlling by three spatial filters obtained by means of spatial eigenvector mapping (i.e., the residuals of models do not manifest statistically significant spatial autocorrelation according to Moran's I).

842

843

844

845 846

Supplemental Information

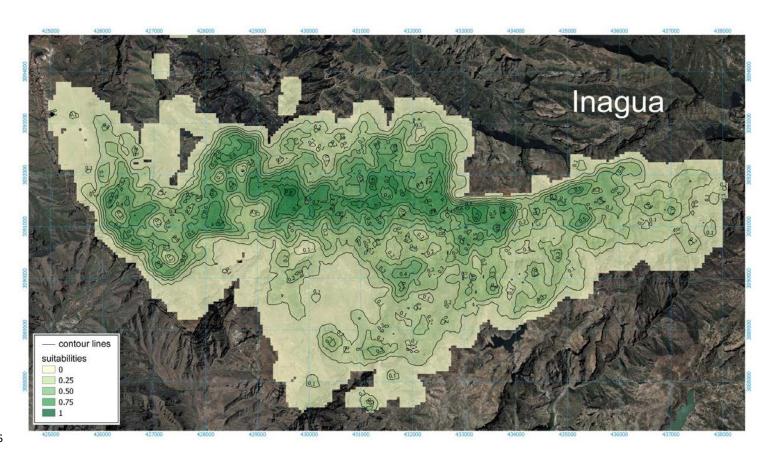
Table S1. Environmental characteristics of the four studied pine forests.

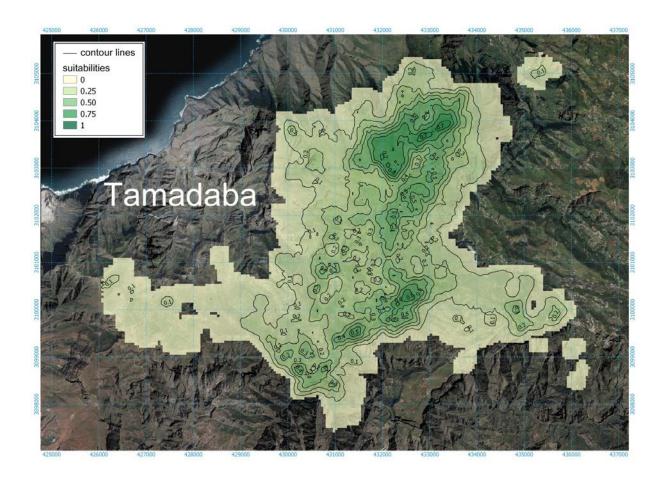
Figures S1, S2 and S3: Contour line maps representing the habitat suitability for the successful breeding of the blue chaffinch in four pine

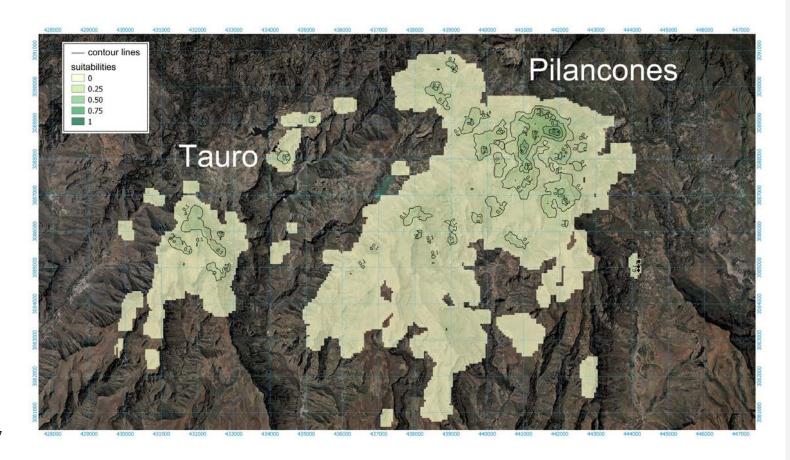
forests of Gran Canaria island.

Supplementary material.

Table S1. Environmental characteristics of the four studied pine forests (Inagua, $50 \times *50$ m cells = 15,037; Tamadaba, 11,246; Pilancones, 12,667; Tauro, 1,880), the areas traversed by the <u>census survey</u> trail in Inagua reserve (n = 100), and of the nests with successful breeding attempts in Inagua (n = 59).


		Inagua	Tamadaba	Pilancones	Tauro	<u>y</u> trail	nests
Altitude	mean	1115.50	1013.38	1008.15	911.99	1259.00	1264.92
(m)	min	250.00	360.00	300.00	295.00	1075.00	865.00
	max	1550.00	1435.00	1510.00	1215.00	1450.00	1485.00
·	sd	168.13	198.93	178.15	167.79	95.07	142.43
Slope	mean	45.83	48.08	44.54	54.05	58.05	50.39
(%)	min	0.00	0.00	0.00	0.00	17.78	22.44
	max	183.75	260.19	155.72	219.95	120.20	118.25
	sd	23.44	24.95	22.78	32.90	23.10	15.96


Western orientation	mean	-0.09	0.16	-0.05	-0.08	-0.07	0.01
(sin cardinal orientation)	min	-1.00	-1.00	-1.00	-1.00	-0.98	-0.97
	max	1.00	1.00	1.00	1.00	0.98	0.95
	sd	0.70	0.68	0.64	0.65	0.71	0.73
Northern orientation	mean	0.03	-0.06	-0.03	0.02	-0.03	-0.16
(cos cardinal orientation)	min	-1.00	-1.00	-1.00	-1.00	-0.98	-0.94
	max	1.00	1.00	1.00	1.00	0.99	0.97
	sd	0.70	0.71	0.77	0.76	0.58	0.57
-	•	-		•	•	census surve	
		Inagua	Tamadaba	Pilancones	Tauro	<u>y</u> trail	nests
Cover of the canopy (pine) layer	mean	25.79	42.74	18.38	16.78	29.56	34.43
(%)	min	0.00	0.27	0.41	0.39	2.91	17.65
	max	97.26	99.29	82.00	80.49	46.69	52.64
	sd	13.87	20.10	10.33	11.32	8.46	5.86
Average pine height	mean	16.50	14.26	13.57	13.49	17.84	21.04
(m)	min	0.00	2.16	2.00	2.30	6.50	14.32
	max	40.23	36.66	31.64	29.96	26.64	25.95
	sd	6.38	4.66	4.15	4.88	4.96	2.41
Cover of the shrub layer	mean	8.83	13.42	6.05	8.67	8.47	9.81
(%)	min	0.00	0.00	0.00	0.00	0.67	0.7
	max	75.00	64.00	59.00	63.00	22.55	44.17


	sd	9.98	10.70	7.63	9.63	6.16	8.43
Average height of shrubs	mean	0.70	0.74	0.68	0.71	0.70	0.71
(m)	min	0.00	0.57	0.53	0.49	0.62	0.62
	max	1.25	1.22	1.21	1.25	0.83	1.01
•	sd	0.09	0.10	0.07	0.09	0.06	0.07
Incident solar radiation	mean	7008.74	6796.56	6788.95	6972.34	7030.16	7062.41
(average April-August; kWh/m²)	min	5230.27	4567.25	5260.99	5282.73	6197.41	6180.29
	max	7435.98	7221.65	7208.58	7514.96	7317.35	7268.68
	sd	264.54	280.17	252.71	400.39	238.69	171.37
		<u>-</u> -	-	-		census surve	
		Inagua	Tamadaba	Pilancones	Tauro	<u>y</u> trail	nests
Average temperature in May	mean	19.42	18.54	19.35	20.28	19.62	19.44
(°C)	min	17.89	16.98	17.82	18.80	18.53	17.94
·	max	20.37	19.92	20.70	21.23	20.19	20.16
,	sd	0.67	0.68	0.66	0.41	0.46	0.59
Average temperature in July	mean	24.48	23.85	24.98	24.55	24.47	24.44
(°C)	min	23.95	23.61	24.44	24.25	24.25	24.07
	max	25.19	23.98	25.91	25.14	24.95	25.18
	sd	0.26	0.08	0.35	0.19	0.19	0.20
Rainfall in July-September	mean	15.87	23.88	8.36	14.48	20.02	19.57
(mm)	min	3.00	11.00	0.00	1.00	13.18	8.07

max	28.00	34.00	17.00	20.00	27.00	26.85
sd	6.44	4.63	4.04	4.31	3.91	4.45

 Figures S1, S2 and S3: Contour line maps representing the habitat suitability for the successful breeding of the blue chaffinch in four pine forests of Gran Canaria island. The suitability level of 0.5 denotes random distribution of the species. The contour lines have been applied to a map of 50x50 m cells. The suitability of each cell was obtained after smoothing the original prediction of the boosted classification trees (BCT), considering a larger square of 5x5 cells where the cell of interest was located in its center. BCT models were carried out with the habitat characteristics in pixels of 50x50 m around nests (59 nests with breeding success recorded in six years from 2011 to 2016) against the same number of pixels of the same size randomly obtained from the pine forests of Inagua reserve.

