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ABSTRACT
We have developed a machine learning approach to predict stimulation-dependent
enhancer-promoter interactions using evidence from changes in genomic protein
occupancy over time. The occupancy of estrogen receptor alpha (ERα), RNA poly-
merase (Pol II) and histone marks H2AZ and H3K4me3 were measured over time
using ChIP-Seq experiments in MCF7 cells stimulated with estrogen. A Bayesian
classifier was developed which uses the correlation of temporal binding patterns at
enhancers and promoters and genomic proximity as features to predict interactions.
This method was trained using experimentally determined interactions from the same
system and was shown to achieve much higher precision than predictions based on
the genomic proximity of nearest ERα binding. We use the method to identify a
genome-wide confident set of ERα target genes and their regulatory enhancers genome-
wide. Validation with publicly available GRO-Seq data demonstrates that our predicted
targets are muchmore likely to show early nascent transcription than predictions based
on genomic ERα binding proximity alone.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Enhancer-promoter interaction, Bayesian classifier, Machine learning, Estrogen
receptor, ChIP-Seq

INTRODUCTION
Gene expression is dependent upon the binding of transcription factor (TF) proteins
to genomic regions which regulate transcriptional initiation (Nagarajan et al., 2014).
In eukaryotic cells, these regulatory genomic regions are referred to as promoters and
enhancers. The transcriptional competence of DNA in eukaryotes is determined by its
organization in chromatin. Chromatin structure is dynamically regulated at multiple levels,
including ATP-dependent chromatin remodelling and histone modifications (Bernstein et
al., 2005; Bannister & Kouzarides, 2011; Zhu et al., 2013; Stasevich et al., 2014). Enhancers
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can act upstream or downstream of their target gene promoters and are often distal,
separated by large inter-genic regions (Schoenfelder et al., 2010; Sanyal et al., 2012; Shen
et al., 2012). Enhancer-promoter interactions require protein-mediated physical contact
through formation of chromatin loops (Tolhuis et al., 2002). Although most contacts
are intra-chromosomal, there are some interactions between loci from different chromo-
somes (Fullwood et al., 2009; Li et al., 2010; Li et al., 2012). Interactions can also exist as part
of large multi-gene and multi-enhancer complexes (Fullwood et al., 2009; Li et al., 2012).

Recent progress in experimental techniques such as ChIA-PET, 3C and its derivatives
4C, 5C, and Hi-C (Fullwood et al., 2009; Dekker et al., 2002; Hagège et al., 2007; Zhao et
al., 2006; Dostie et al., 2006; Simonis, Kooren & de Laat, 2007; Van Steensel & Dekker, 2010;
Nagano et al., 2013; Jin et al., 2013) have mapped large numbers of chromatin interactions,
including enhancer-promoter interactions. However, these methods are technically
challenging and genome-wide methods, such as HiC, typically lack the resolution required
to identify individual interacting enhancer elements. Some methods are also thought
to produce a high false negative rate (in case of ChIA-PET, 5C; Li et al., 2012; He et al.,
2014) or cannot be applied on a genome-wide scale (3C, 4C; Simonis, Kooren & de Laat,
2007). Capture-HiC methods have recently been developed (Mifsud et al., 2015; Javierre et
al., 2016) to improve genomic resolution through focussing on predetermined genomic
regions, e.g., promoters, and show promise but are not yet widely used. Data from
these technologies can also be noisy and subject to various sources of bias which can be
problematic to correct (Van Steensel & Dekker, 2010). In addition, the physical contact
between two chromatin regions does not determine a functional interaction (Shlyueva,
Stampfel & Stark, 2014) with stimulus-dependant behaviour of chromatin looping adding
a further layer of complexity (Drissen et al., 2004; Vakoc et al., 2005). For these reasons,
complementary approaches to infer enhancer-promoter interactions by exploiting readily
available sources of genomic data, such as ChIP-Seq and RNA-Seq data, are of interest.

ChIP-seq experiments enable the discovery of the genomic location of transcriptionally
relevant proteins such as TFs, RNA polymerase and modified histones. Multiple ChIP-Seq
datasets can be combined with data from other relevant genomics assays to identify
active promoters and enhancers using genomic segmentation algorithms (Zhu et al.,
2013; Ernst et al., 2011). Others have also used ChIP-seq and RNA-seq datasets to infer
enhancer-promoter interactions. For example, Ernst et al. (2011) used histone mark
data from multiple cell-types to identify active enhancers and promoters from which
enhancer-associated data was correlated with expression data from genes within 125 kbp to
identify likely interactions.Thurman et al. (2012) usedDNase I hypersensitivity (DHS) data
from multiple cell-types to correlate and link distal DNase hypersensitivity sites (within
500 kbp) to those within putative gene targets. Similarly, Andersson et al. (2014) predicted
enhancer-promoter links by correlating CAGE enhancer RNA to CAGE promoter RNA.

Approaches for discovering cell-type specific interactions include PreSTIGE (Corradin
et al., 2014), RIPPLE (Roy et al., 2015), and the method developed by Marstrand & Storey
(2014). PreSTIGE uses a method based on the Shannon entropy to identify cell-type
specific interactions between enhancers and genes using H3K4me1 and RNA-seq data
respectively. The regions are linked within promoter-centric domains, bounded on each
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side by the minimal distance of 100 kbp up to the first CTCF binding site from a TSS.
RIPPLE uses ENCODE data from four cell-lines each with 11 ChIP-Seq datasets (RNA-seq,
CTCF, RAD21, DNAse1, TBP and histone marks) to train a random forest classifier which
predicts enhancer-gene interactions within 1MB distance. The features used are two joint
binary vectors of presence/absence of dataset signal peak over a promoter and enhancer,
correlation of entries of the vectors, as well as gene expression of the promoter controlled
gene.Marstrand & Storey (2014) developed amethod to aggregate RNA-seq data over genes
and DHS data over ± 200 kb regions surrounding them for twenty different cell lines. The
method searches through each gene and cell-line for unexpected DHS/RNA-seq ratios and
once found, scans across the gene vicinities in search of causal, local DHS variabilities.
Lastly, a method proposed by He et al. (2014) uses a random forest classifier to find
enhancer-gene interactions. The method uses three features: evolutionary conservation,
correlation of enhancer scores derived from histone marks from RNA-seq data, and an
average of correlations between TF ChIP-Seq and gene expression across 12 cell-types. A
distance constraint is also imposed to aid inference.

The majority of the above methods require data from multiple cell-types and therefore
do not allow discovery of interactions given data from one cell-type. Most existing methods
also assume a stringent distance constraint and are therefore unable to discover distal links
beyond this constraint. Finally, these methods do not take into account evidence from time
course data.

We show how ChIP-Seq time course data that reports TF and RNA polymerase
occupancy at multiple time points after cellular stimulation can be used to predict
enhancer-promoter interactions within chromosomes. We have developed a Bayesian
classifier that combines evidence from the correlation of ChIP-Seq time course data at
enhancers and across gene bodies with the genomic separation of interacting elements as
features. We apply our method to time course data from MCF7 breast cancer cells after
stimulation with estradiol and we benchmark performance against publically available
ChIA-PET data from this system. We show that our method performs much better than
association by proximity, identifying many more interactions than predictions based
on proximity alone. Estrogen Receptor (ER-α) and RNA polymerase (Pol II) ChIP-Seq
time course data are shown to be highly informative for predicting interactions. We
also stratify our predicted interactions to those that lie within Topologically Associating
Domains (TADS; Dixon et al., 2012) and those that span TADs, showing that our classifier
can make useful predictions in both categories. Finally, we use our predictions to provide
a highly confident list of directly ER-regulated target genes in this system and validate
it against a GRO-seq dataset. Our predicted targets are much more likely to show early
nascent transcription than predictions based on genomic ER-α binding proximity alone
and predicted targets are involved in many biological processes associated with breast
cancer. Our model thus offers biologically meaningful insight into the early transcriptional
response to ER-α.
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MATERIALS AND METHODS
Data preparation
The aim of our experiment was to uncover the early response to estradiol (E2) in MCF7
breast cancer cells. Our previous studies included only the Pol-II and RNA-Seq time course
data from these experiments (WaMaina et al., 2014; Honkela et al., 2015) and here we
include additional ChIP-Seq datasets. The first step was to create a reference sample in a
ligand free environment. For that, the cells were placed into estradiol free media for three
days, which reduced the binding between ER-α and E2. The cells were then ready to be
re-exposed to E2. Following the introduction of E2, the resultant changes were tracked by
multiple ChIP-seq experiments. The experiments were performed at 0, 5, 10, 20, 40, 80, 160,
320, 640 and 1,280 min after the stimulation. Each ChIP-seq experiment was carried out
with a different antibody to measure genome-wide changes in genomic occupancy of their
specific protein targets. Specifically, the studied protein factors and histone modifications
were: ER- α, H3K4me3, and H2AZ (data available from GEO: accession GSM2467201).
Other previously published data from the same set of experiments are available for Pol-II
ChIP-Seq and RNA-Seq (GEO accession GSE62789 and GSE44800;WaMaina et al., 2014;
Honkela et al., 2015).

Preparation of MCF-7 cells
The MCF-7 human breast cancer cell line originates from a 69-year old Caucasian woman
and is estrogen receptor (ER) positive, progesterone positive (PR) andHER2 negative. Here
MCF-7 cells (a clonal isolate obtained from the ATCC (catalogue number HTB-22) kindly
provided by Prof. Edison Liu, Jackson Laboratories, Maine, USA) were grown in 15 cm
plates to 80% confluency. Plates were then washed two times with PBS and overlaid with
20ml of phenol-red free high glucose DMEM (Gibco) containing 2% charcoal stripped FCS
(Sigma). After 24 h of incubation, the cells were again washed with PBS and fresh media
containing 2% charcoal stripped FCS was added. This process was repeated over a three day
period to generate cells devoid of estrogen. The time course (5, 10, 20, 40, 80, 160, 320, 640
and 1280 min) was initiated by replacing media with prewarmed media containing 10 nM
E2. In addition, an untreated sample was included in the experiment as a zero time point.

ChIP-seq protocols and methods
Cells were fixed for 10 min at room temperature by the addition of formaldehyde to a
final concentration of 1%, after which glycine was added to a concentration of 100 mM.
Cells were then washed twice with PBS and collected into 2 ml of lysis buffer (150 mM
NaCl, 20 mM Tris pH 8.0, 2 mM EDTA, 1% triton X-100, protease inhibitor (complete
EDTA free, 04 693 132 001; Roche, Basel, Switzerland), 100 mM PMSF). The lysate was
sonicated for 3 × 30 s using a Branson ultrasonicator equipped with a microtip on a
power setting of 3 and a duty cycle of 90%. Samples were cooled on ice between rounds
of sonication. Alternatively, a Bioruptor sonicator was used (power high, 15 mins total,
30 s on 30 s off; total volume of sample—1 ml) to fragment chromatin. In either case, the
resulting sonicate was centrifuged at 4,000× g for 5 min, an aliquot of 10% retained for
input and the remaining material transferred to a fresh tube. Four mg of anti-ERaantibody
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(HC-20, rabbit polyclonal, sc-543; Santa Cruz Biotechnology, Santa Cruz, CA, USA), 2 µg
of anti-RNA Polymerase II antibody (AC-055-100, monoclonal, Diagenode, 001), 3 µg of
anti-H3K4me3 antibody (pAb-MEHAHS-024, rabbit polyclonal, Diagenode, HC-0010)
and 2µg anti-HistoneH2A.Z (acetyl K4+K7+K11) antibody (ab18262, sheep polyclonal,
Abcam, 659355) were added to the samples, which were then incubated overnight at 4 ◦C
with rotation. Chromatin antibody complexes were isolated, either by addition of 10 µL
of protein G labeled magnetic beads (Millipore Pureproteome protein G magnetic beads,
LSKMAGG10) prewashed in lysis buffer or with 20 µL protein A/G beads (Santa Cruz
Biotechnology). Afterwards, the complexes obtained with protein G magnetic beads were
washed three times with lysis buffer, then reverse crosslinked in 0.5 ml 5 M guanidine
hydrochloride, 20 mM Hepes, 30% isopropanol, 10 mM EDTA for a minimum of 4 h
at 65 ◦C. Recovered DNA was then purified using a Qiaquick spin column and eluted in
50 µL of 10 mM Tris pH 8.0. Where protein A/G beads were used, the complexes were
washed sequentially with three different buffers at 4 ◦C: two times with solution of
composition 0.1% SDS, 0.1% DOC, 1% Triton, 150 mM NaCl, 1 mM EDTA, 0.5 mM
EGTA, 20 mM HEPES pH 7.6, once with the solution as before but with 500 mM NaCl,
once with solution of composition 0.25 M LiCl, 0.5% DOC, 0.5% NP-40, 1 mM EDTA,
0.5 mM EGTA, 20 mM HEPES pH 7.6 and two times with 1 mM EDTA, 0.5 mM EGTA,
20 mM HEPES pH 7.6. A control library was generated by sequencing input DNA (non-
ChIP genomic DNA). Immunopurified chromatin was eluted with 200 µL of elution
buffer (1% SDS, 0.1 M NaHCO3), incubated at 65 ◦C for 4 h in the presence of 200 mM
NaCl, isolated using a Qiaquick spin column and eluted in 50 µL of 10 mM Tris pH 8.0.
Libraries were prepared for Illumina sequencing according to the manufacturer’s protocols
(Illumina). Briefly, DNA fragments were subject to sequential end repair and adaptor
ligation. DNA fragments were subsequently size selected (approx. 300 base pair (bp)).
The adaptor-modified DNA fragments were amplified by limited PCR (14 cycles). Quality
control and concentration measurements were made by analysis of the PCR products
by electrophoresis (Experion, BioRad) and by fluorometric dye binding using a Qubit
fluorometer with the Quant-iT dsDNA HS Assay Kit (Q32851; Invitrogen, Carlsbad, CA,
USA) respectively. Cluster generation and sequencing-bysynthesis (36 bp) was performed
using the Illumina Genome Analyzer IIx (GAIIx) according to standard protocols of the
manufacturer (Illumina).

Alignment to a reference human genome
Raw reads from the experiments were mapped onto the human reference genome
(NCBI_build37) using the Genomatix Mining Station (version 3.5.2; https://www.
genomatix.de/solutions/genomatix-mining-station.html) to enable further analysis. The
sequencing depth, i.e., the total number of sequenced reads, was very similar for each
dataset, however, on average only 81%, 76%, 67%, 61%, 64% of ER-α, Pol-II (rep 1),
Pol-II (rep 2), H3K4me3, and H2AZ ChIP-seq reads were mapped uniquely to the
genome. The non-uniquely mapped reads were discarded from further analysis. Using the
statistical criterion provided by MACS, we established that our sequencing depth allows
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for no duplicates of reads, thus we discarded any duplicated reads as they are most likely
an artefact in ChIP-Seq.

ER-α binding locations
The MACS package (v2.0, p-value: 1e−7, no control, estimation of λlocal off) Zhang et al.
(2008) was used for peak-calling and applied to each of the 0,5,10,20,...,320 min time
course datasets to estimate ER- α binding locations. The last two time points (640 and
1,280 mins) were not included as the number of ER-α mapped reads was found to be
very low at these times compared to earlier times. Persistent co-occurring ER-α binding
locations (i.e occurring at least twice across two time points after t = 0) were merged by
a union operation (similar to the mergeBED method from BEDTools (Quinlan & Hall,
2010)), otherwise they were discarded. The method is illustrated in Fig. S1. Since our
analysis is aimed at intergenic ER-α-bound enhancers, we ignored the consensus peaks
which overlapped with either gene bodies or upstream 300 bp-long regions by which the
genes were extended to account for a promoter region. This is a limitation of the data
used and the method could potentially work with different ChIP-Seq data. With other
enhancer-associated ChIP-Seq data then we could also potentially apply the method to
intronic enhancers.

Time-series construction
We calculated the mapped read counts for each individual time point ChIP-seq dataset
over the consensus ER-α binding sites to create time series over enhancer regions for
each of our antibodies. To normalise the counts, we divided each read count over the
total number of uniquely mapped and non-duplicated reads across all time points and
multiplied the resultant values by the total number of mapped reads in the t = 0 min
dataset. We concatenated the normalised counts to produce time series for each ChIP-seq
dataset. We refer to each enhancer time series as Xj,n, where j ∈ J (number of intergenic
enhancers) and n∈N (number of time course ChIP-seq datasets). We repeated the process
for the gene regions to create the analogous time series over gene regions, extending the
genes by 300 bp upstream from their canonical TSS. We refer to each time series over gene
as Yk,n where k ∈K (number of genes). We filtered out genes and intergenic enhancers
from consideration if the total number of mapped reads across all time series was less
than 30.

Clustering
To help visualise the occupancy dynamics of Pol II and ER- α at enhancers and genes
we clustered the data with the R-implementation of Affinity Propagation (AP) (Frey &
Dueck, 2007). AP is a clustering method based on belief propagation and works iteratively
by passing messages between data points until exemplars (cluster centres) automatically
emerge. A preference parameter p has an effect on the final number of clusters. The
R implementation of AP can search through values of p to achieve an approximately
pre-specified number of clusters. The method is similar to k-means but can achieve much
better optimisation of the k-means objective function than the standard EM algorithm.
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To reduce the effect of noise, for Pol II we clustered only the pairs of the time series
for which the Pearson correlation coefficient was at least 0.2 between replicates and the
total number of mapped reads was at least 30. For ER-α, due to lack of replicates, we
only clustered the time series with more than 100 reads in total across all times. Prior to
the clustering we standardized each time series to z-scores to bring all time series onto
the same scale. We obtained 20 and 22 clusters for Pol II time series over enhancer and
genes, respectively. Similarly we obtained 21 and 21 clusters for ER-α time series over
enhancer and genes. We also jointly clustered time series of PolII and ER-α. The results of
the clustering can be seen in Fig. S2.

Enhancer-centric model
Suppose that an enhancer j = 1,...,J regulates a gene k = 1,...,K at a number of time
points, and that their contact is mediated by a protein. We can expect that the time
course data of ChIP-seq data at an enhancer j i.e., Xj = (xj,1,...,xj,D) and gene k
i.e., Yk = (yk,1,...,yk,D) would on average be more correlated for interacting pairs than
their non-interacting counterparts. Here, we intend to learn the underlying distribution of
correlations of the two classes of pairs for four complementary datasets and on their basis
jointly classify a new unobserved instance. In addition, we combine the time course derived
attributes with the corresponding distribution of genomic separation for interacting and
non-interacting elements.

Definition of the model
Our model is defined in terms of two K -dimensional random variables Ij = Ij,1,...,Ij,K
and Dj =Dj,1,...,Dj,K . The first variable Ij encodes a structure of simultaneous contacts
of a given enhancer j with its surrounding K putative target genes. It has K binary entries
Ij,k indicating whether (Ej,Gk) forms an interacting (Ij,k = 1) or non-interacting pair
(Ij,k = 0). The variable Dj is a K ×N -dimensional matrix of observed attributes with each
row (Dj,k) consisting of N values of pair-wise comparisons between time series of an
enhancer j and a gene k, and their genomic location. The first set of comparisons rely on
Pearson correlation and involves calculating its value cj,k,n for each pair (Ej,Gk), i.e., its
time series (Xj,n,Yk,n), and for each dataset n∈N , where N is a number of time course
ChIP-seq datasets. Additionally, the data vector also contains the Euclidean distance dj,k
calculated between the genomic coordinates of the canonical TSS of a gene k to the centre
of an enhancer j.

The joint likelihood of the model can be written as:

P(Dj,Ij)= P(Dj |Ij)P(Ij). (1)

The model provides a probability of observing a particular Dj under a given structure Ij .
Due to its regulatory role, an enhancer is unlikely to regulate a high number of genes, thus
we can expect that the true P(Ij), which in the Bayesian treatment is a prior distribution
over the structures, would be sparse. Moreover, we could expect that Dj,k and Dj,k ′ of any
two interacting pairs k,k ′ would be interlinked, as correlations between gene-enhancer
pairs are not independent variables. These dependencies would be reflected in a true
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form of the likelihood P(Dj |Ij). Lastly, we could also expect that the N +1 attributes i.e
correlations cj,k,n and distance dj,k of a pair j,k of the vector Dj,k would also be correlated.

Simplifying the likelihood and Naive Bayes
The modelling of all dependencies however is difficult given the relative sparsity of our
training data. We therefore restrict the form of the joint distribution and construct an
approximate joint probability of enhancer-gene contacts. Pairwise correlations provide a
valid likelihood if we restrict our model to consider one gene per enhancer.

(a) The joint distribution factorises
We assume that the likelihood P(Dj |Ij) can be factorised and written in the form:

P(Dj |Ij)=
∏

{k:Ij,k=1}

P(Dj,k |Ij,k = 1)
∏

{k:Ij,k=0}

P(Dj,k |Ij,k = 0) (2)

where Ij = Ij,1,...,Ij,K and Dj = Dj,1,...,Dj,K . Hence the distribution of each Dj,k is
conditionally independent of other allocations and conditional only on the indicator
variable Ij,k .

(b) An enhancer regulates a single gene
We assume further, that an enhancer j can interact with only one gene k. We restrict the
event space of P(Dj,Ij) to its subspace P(Dj,I

(1)
j,k ), where I

(1)
j,k = 0,..., 1

kth
,...,0 . From (2)

the events are given by:

P(Dj |I
(1)
j,k = 0,..., 1

kth
,...,0)= P(Dj,k |Ij,k = 1)

∏
{l:l 6=k}

P(Dj,l |Ij,l = 0). (3)

The prior distribution P(Ij) follows a multivariate Bernoulli distribution, and thus the
restriction is equivalent to setting the probabilities of all the structures Ij with non-singular
number of contacts i.e., I (2)j ,I (3)j ,...,I (K )

j to zero. For the remaining I (1)j,k we assume that
the prior is uniform across these sparse vectors, i.e.,

P(I (1)j,k = 0,..., 1
kth
,...,0)= 1/K , (4)

so that each I (1)j,k is equally likely a priori.

(c) The distribution of attributes is independent
Assuming that the attributes are conditionally independent, the likelihood component
P(Dj,k |Ij,k) becomes:

P(Dj,k |Ij,k)= P(dj,k,cj,k,1,...,cj,k,N |Ij,k)= P(dj,k |Ij,k)
∏
n∈N

P(cj,k,n|Ij,k) (5)

where dj,k is a distance from the centre of an enhancer j to the TSS of a gene k, whereas
cj,k,n is a correlation between the time series of the nth time course dataset between an
enhancer j and gene k.

Combining the assumption of the factorisable likelihood (2) with the conditional
independence of attributes (5) yields,

P(Dj |Ij)=
K∏
k=1

P(Dj,k |Ij,k)=
K∏
k=1

[
P(dj,k |Ij,k)

∏
n∈N

P(cj,k,n|Ij,k)

]
. (6)
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Restricting the event space to single enhancer-gene events (3) results in,

P(Dj |I
(1)
j,k )=

[
P(dj,k |Ij,k = 1)

∏
n∈N

P(cj,k,n|Ij,k = 1)

]

×

∏
{l:l 6=k}

[
P(dj,l |Ij,l = 0)

∏
n∈N

P(cj,l,n|Ij,l = 0)

]
. (7)

The assumption of conditional independence of features in (5) and the fact that each
vector I (1)j,k is a 1-of-K (i.e., one-to-one relation) representation of K class indicators makes
this algorithm a special case of Naive Bayes (NB) model.

Posterior
The posterior distribution under the model is:

P(I (1)j,k |Dj)=
P(Dj |I

(1)
j,k )P(I

(1)
j,k )∑K

k=1P(Dj |I
(1)
j,k )P(I

(1)
j,k )

. (8)

The posterior distribution can be used to find the probability of each structure I (1)j,k given the
pair-wise comparisons in Dj , i.e., the values of the data-specific correlations and distance
for each pair (Ej,Gk) and all complementary pairs (Ej,G{l:l 6=k}). The posterior probabilities
can be used to infer the most likely target of an enhancer j out of K genes.

Positive set of interactions and background negatives
We overlap the distal enhancers and promoter-extended-genes with the combined set of
ChIA-PET predicted links using both ER- α and Pol II antibodies from ENCODE/GIS-
Ruan (Li et al., 2012) (GEO accession numbers GSM970209 and GSM970212). The overall
design and processing of the datasets is described under GEO accession number GSE39495.
The sources contain the high-confidence binding sites and protein-mediated chromatin
interactions with three and four replicates for ChIA-PET with antibodies for ER-α and
Pol II respectively. Overlapping the enhancers and genes with the concatenated set of
empirically confirmed interactions revealed a total of 2,733 enhancer-promoter links, and
shows that 2,087 of our distal enhancers interact with at least one promoter.

To define the negative set, we restricted ourselves to all enhancer-gene pairs involving
known interacting enhancers coming from the positive set and all the remaining non-
targeted genes. Enhancers without any confirmed interactions from ChiA-PET data were
not used for training as we have no information about their target genes.

Data features and their distributions
The method uses five features of two types, i.e., four correlations and one distance.
To obtain the first four we correlated ChIP-seq time series at enhancers with those at
promoter-extended genes, for each dataset, for all enhancer-gene pairs in the positive and
negative set (as defined above). For Pol II we used the average correlation across the two
replicates. For the distance feature we used the log10 of genomic distance between the
centre of the enhancer and the canonical TSS of an extended gene. We used the training set
to estimate the distributions P(cj,k,n|Ij,k) and P(dj,k |Ij,k) using kernel density estimation
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(KDE) with a Gaussian kernel. To ensure that the bandwidths of positive distributions
are biologically meaningful and robust, we used cross-validation. As part of the approach,
we sequentially removed all features of each chromosome from their total set across all
chromosomes and at each time calculated the log-likelihood of KDE for the reduced set
of features. We then used the value of the bandwidth with the highest log-likelihood over
left-out data. In contrast, due to a large number of negative examples and computational
cost associated with KDE, employing the same approach for negatives was infeasible. Their
size, however, also entails less requirement for optimised fitting, and thus to select the
bandwidth we resorted to the Scott’s rule (Scott, 2015).

Model validation
We trained the classifier on the odd chromosomes and estimated the training error.
Similarly, we tested the method on the even chromosomes and obtained the test error.
Since the test data is not used to build the classifier (i.e., fit the feature densities), its
predictions on the test data can be considered unbiased. We measured the performance
in two ways. Firstly, we evaluated and plotted precisions against the True Positive Rate
(TPR or recall) of 10%, 20%, and 30% for various combinations of features. Secondly, we
used an alternative MAP measure. Under our model each enhancer possesses a maximum
a posteriori (MAP) gene which is our best guess of enhancer’s target. The MAP measure
is the percentage of times the MAP inferred target gene is confirmed by the positive set of
interactions in the ChIA-PET data.

Performance within and outside TADs
We stratified our predicted interactions at 10%, 20%, and 30% thresholds into those that
lie within domains and those that crossed domain boundaries. Each TPR threshold maps
to a subsets of negative and positive links, and therefore each subset was partitioned into
inter- and intra- domain interactions. We then tested precisions for each of the subsets. For
details of TAD preparation refer to the SupplementaryMaterial (suppl: Domains conserved
between mESC, mouse Cortex, hESC and IMR90 converted from hg18 to hg19 using the
NCBI Genome Remapping Service; http://www.ncbi.nlm.nih.gov/genome/tools/remap)

Prediction of target genes
We used our model to infer gene targets with strong evidence of being regulated by at least
one enhancer. The probability of gene k having at least one active regulatory link from an
enhancer under our model is defined,

P(card({j ∈ J : Ij,k = 1})> 0)= 1−
∏

{j∈J :Ij,k=1}

(1−P(I (1)j,k |Dj)) (9)

where the product above is equal to the probability that no enhancers regulate the gene.
Hah et al. (2011) carried out GRO-Seq experiments (GEO accession number

GSM678536) to detect whether Pol II molecules are engaged in transcription at the
start of the experiment. The experiments were performed with the same cell-line and
stimulation as ours and were used to determine the early transcriptional response of genes
following E2 treatment. Using these data and the regulation probability scores defined in
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Eq. (9), we assessed how many of our predicted distally regulated genes were differentially
expressed at early time points. Using the EdgeR processed GRO-seq data we filtered
the GRO-seq determined DE genes at 10, 40, 160 min after E2 stimulation with q-value
(multiple hypotheses testing adjusted p-values from EdgeR) of less than 0.05, 0.01, 0.001.
For each q-value, we combined the DE genes from each of the time points into a single list.

RESULTS AND DISCUSSION
We demonstrate our method using ChIP-Seq time course data collected from the MCF7
breast cancer cell-line stimulated by estrogen. After stimulation, the ER-α TF associates with
numerous enhancers to regulate transcription of target genes. ER- α, encoded by the ESR1
gene, is a particularly well studied example of a nuclear receptor due to its role in breast
cancer development. Its genome-wide binding pattern under stimulation with estrogen has
been established through ChIP-seq experiments (Liu & Cheung, 2014; Magnani & Lupien,
2014; Ross-Innes et al., 2012). Here, the genome-wide occupancy of ER-α along with
RNA polymerase (Pol II) and two histone marks (H3K4me3 and H2AZ) associated with
transcriptional competence, were measured via ChIP-seq at eight consecutive time-points
after exposure of cells in estrogen free media to estradiol. ChIA-PET data are also available
in this system and were used to evaluate our method’s performance (Fullwood et al., 2009;
Li et al., 2010; Li et al., 2012).

ER-α bound enhancers overlap experimentally determined promoter
interaction regions
To locate binding events formed after stimulation with estradiol, we determined a set of
genomic loci associated with ER-α in at least two time points. Among these 47,921 regions,
21,336 overlapped with a known gene or within a 300 bp region upstream from its TSS
(promoter-extended gene region) while 26,585 were distant from genes (distal enhancers).

Next, we determined howmany of our distal ER-α-bound enhancers are known to form
links with promoter-extended genes. Overlapping regions with interactions derived from
two public ChIA-PET datasets that used the same ER-α and Pol II antibodies revealed a
total of 2,733 enhancer-promoter links. These interactions were used as a positive set for
the purpose of developing our classifier. Missing interactions involving the same enhancers
and other promoters in the same chromosome were used as the negative set. When training
and testing the classifier, we did not include enhancers that did not have any interactions
according to the ChIA-PET data. These enhancers are most likely not detected by the
ChIA-PET method due to its limited sensitivity and their inclusion would introduce many
false negatives into our training and testing data. However, we apply the classifier to all
enhancers when making target gene predictions.

ChIP-seq time series data
We calculated the number of mapped reads for each of our ChIP-seq datasets over
promoter-extended-gene bodies and over our consensus ER-α binding sites to create time
series data for genes and enhancers (see ‘Materials and Methods’). We clustered the ER-α
and Pol II data to help visualise the occupancy dynamics at enhancers and genes. As shown
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Figure 1 ChIP-seq time course data show a variety of dynamic profiles which are exploited by
our classifier. (A, C) show profiles of the first (blue) and the second (magenta) replicate of Pol-II for
enhancers and genes, respecively. (B, D) show profiles of ER-α for enhancers and genes, respectively.
X-axis shows time, Y -axis shows+/− one standard deviation of z-scores in each cluster. The headers
show the number of time series in each cluster.

in Fig. 1, the clusters show substantial differences in occupancy dynamics across both genes
and enhancers. This is expected for Pol II which shows a broad range of response profiles in
this system (Honkela et al., 2015). Additionally, some differences in ER-α profiles were also
detected, suggesting that occupancy is not solely determined by the nuclear concentration
of ER-α.

Time series correlation and distance-based features are informative
about enhancer-promoter interactions
We calculated the Pearson correlation coefficient between enhancer and gene time series
data for every enhancer-promoter pair in the positive and negative set. Figure 2 shows
the distribution of correlations for each dataset in our training data (odd chromosomes).
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Figure 2 Distribution of correlation of time series data (A–D) and genomic distance (E) for promoter-
enhancer pairs and for non-interacting pairs.Here we define positive links as those confirmed by ChIA-
PET experiments while negative links are defined as those not supported by ChIA-PET and involving the
same set of enhancers. We observe that positive links tend to have higher correlations in the ChIP-Seq
data compared to negative links, with the effect strongest for ERα and Pol-II.

The distribution for positive interactions differs substantially from the background for all
four datasets, with interacting regions more highly correlated on average. This difference
is most pronounced for ER-α and Pol II (Figs. 2A and 2B) while there is a much smaller
difference for the histone marks H2AZ and H3K4me3 (Figs. 2C and 2D). We also compare
the distribution of genomic separation for interacting and non-interacting promoters and
enhancers in Fig. 2E. Although a highly informative feature, there is a substantial overlap
in the positive and background distance densities due to a large separation of many ER-α
bound enhancers from their target promoters; therefore, distance alone is insufficient for
accurate prediction of interactions. We note that our ChIA-PET data does not contain
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Figure 3 An example of predictios with posterior probabilities above cut-off thresholds with FDR of
20%,25%,30% (indicated by different shades of green/gray). The green/grey colour of each link indi-
cates whether the prediction is confirmed/unconfirmed by the ChIA-PET data.

very short ChIA-PET links. Links of a size shorter than 4.5 kB are usually considered to
be the result of self-ligations and are filtered out Li et al. (2010). In Fig. S3 we plotted
the corresponding histograms using data from all chromosomes. We observe that the
distribution does not change with the addition of data from even chromosomes.

Naive Bayes classifier performance
We developed a Naive Bayes classifier which integrates several discriminative features
to estimate the probability of interactions between enhancer and putative target genes.
Figure 3 shows predicted interactions with only a small number confirmed by ChIA-PET
(green). Interactions are shown using different shading for classification probabilities above
0.72, 0.54, 0.49 thresholds corresponding to 0.2, 0.25, 0.3 FDR levels (posterior probabilities
with the highest TPR which are associated with the selected FDRs (1-precision)) estimated
using the training data (combination of features: Pol II, ER, distance).

We evaluated classifier performance using precision-recall (PR) curves (Figs. 4A–E and
4F). The classifier was trained on data from odd chromosomes and the results were used to
establish which combination of features is most informative. Data from even chromosomes
was then used as an unbiased test set to establish the performance of the selected model
and to estimate decision cut-off levels. However, we do not observe significant over-fitting,
probably due to the small number of features used by the classifier. Comparison of
different combinations of correlations and distance features, including distance-alone and
correlation-alone variants, shows that data from ER-α can be combined with distance
to greatly enhance predictive performance (results for all possible feature combinations
are shown in the Supplemental Information) while data from Pol II provides a smaller
improvement in performance. The H2AZ and H3K4me3 time course data were found to
not be particularly informative, consistent with Fig. 2 which shows these histone marks to
have a less pronounced difference in distribution for positive and negative links. Table 1
shows that using the probability cut-offs to infer links across 23 chromosomes our model
(combination of features: PolII, ER, distance) consistently outperforms the distance-alone
model in terms of the number of uncovered true links. We show that at FDR equal to 0.20
our model infers 26.7 times more interactions than predictions based on proximity alone
(see Table 1). In addition to considering precision-recall curves, we also tested how often
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Figure 4 Graphs (A–R) show the performance of the model, measured by Precision-Recall andMAP
scores. The precisions are plotted againsts TPR of 0.1, 0.2, 0.3. Each column shows the performance of
the model with a variant of correlation-based feature/s (i.e., data, see header) and proximity-based feature
(i.e., distance, see header). The first five columns of each row show the performance on the training data.
The last column shows the performance on the test data.
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Table 1 True links uncovered at decreasing false discovery rates for distance alone and distance as-
sisted models.

FDR Data/distance Distance Ratio

0.4 14,217 6,041 2.4
0.3 7,531 1,124 6.7
0.2 2,800 105 26.7
0.1 109 49 2.2

using maximum a posteriori probabilities (MAP) to link all enhancers (in the training and
test data) to their most probable promoters would result in correct assignments according
to the ChIA-PET data (right-most column of plots in Figs. 4A–E and 4F). The mean
performance in the MAP case is reduced and the added value of the ChIP-Seq data relative
to the proximity information is also reduced. This is because for many enhancers the
ChIP-Seq data signal is relatively weak and therefore focussing on the enhancer-promoter
pairs with higher classification probabilities (as in the PR curves approach) produces better
quality prediction on average than when we make predictions for all enhancers.

Inter-domain and intra-domain predictions
Most enhancer-promoter interactions are thought to occur within the same Topologically
Associating Domain (TAD) and we were interested in whether our method can discover
interactions across TAD boundaries. In order to assess the performance of the model on
discovery of intra-domain interactions and the ones involving elements from two different
domains, we stratified our predicted interactions into those two groups, and recomputed
precision-recall and MAP performance (Figs. 4G–K/L–4M–Q/R).

The majority (79%) of enhancer-promoter interactions lie within domains. The PR
curves in Figs. 4G–K and 4L show that the ER- α and distance features provide the greatest
contribution to performance. The Pol-II feature is also informative but does not add much
to performance when combined with the ER-α data. Interestingly, within domains the
‘‘data-alone’’ model possesses much higher predictive power than in the chromosome-wide
model. By excluding the possibility of long-range interactions beyond domain boundaries,
the number of false positives is greatly reduced. Nevertheless, we see that incorporation of
the distance feature still improves classification performance within domains.

On the contrary (see Figs. 4M–Q and 4R) focusing on the remaining inter-domain
interactions we notice that, in consequence of a large number of negative interactions, the
correlation data alone is insufficient for classification. The proximity data, despite being
much better than the data-alone, also does not offer the performance that we achieved
for the intra-domain cases. However, distance-assisted models perform much better than
data-alone and distance-alone models and the top-ranked links have similar precision
than in the intra-domain case. Note however that the MAP results are much lower for
the inter-domain predictions, suggesting that many enhancers linking to promoters across
TAD boundaries according to the ChIA-PET data do not have this as their top-scoring
interaction according to the model.
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Figure 5 The Precision-Recall curves assess the model on the ability to predict differentially expressed
genes (as derived fromGRO-Seq data), given a number of model-assigned regulators of each gene and
the confidence of each prediction.

Testing alternative dataset design choices
Our selection of data features involved some arbitrary choices and therefore we considered
robustness to varying some of the parameters used. We first investigated alternative
promoter region sizes for promoter-gene regions, their effect on test and training sets and
the effect on the performance of the model. The comparison between the distributions
of features in Figs. 2 and S4 and between PR curves in Figs. S5–S8 show that increasing
the promoter size up to 1,500 bp upstream from a gene causes neither no changes to the
distributions of features nor to the overall performance, and thus the model is robust to
changes in promoter region size. Similarly, Figs. S9 and S10 show that using alternative
parametrisation ofMACS in which we switched on λlocal parameter produces similar results
to our default parametrisation where we switched that parameter off. Figure S11 shows
that the distributions of features remain similarly unchanged.

We have used eight timepoints for this study, but most epigenomic time course datasets
from a single stimulation have fewer available timepoints. We therefore assessed the
performance for reduced datasets with six and four timepoints in Fig. S12. Inclusion of
data with less timepoints reduced the performance of the data-only method substantially,
but combining data with the prior still leads to a significant improvement over the
prior-only model even with only four timepoints.
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Validation of ER-regulated target gene predictions
Finally, we used our method to provide a highly confident (FDR of 0.25) list of directly
ER-regulated target genes in this system. This list (Table S1) includes 1,978 genes with at
least one predicted enhancer link.

In Fig. 5 we compared our set of predicted distally regulated genes against a list of early
differentially expressed genes obtained from GRO-seq experiments (Hah et al., 2011). PR
curves showed that the larger the value of the score (see Materials and Methods), which
is roughly proportional to the number of times a gene is predicted to be a target of distal
enhancer, the higher the chance that the gene is differentially expressed. Using a score
based only on proximity of ER-α binding events is much less predictive of early differential
expression.

CONCLUSIONS
We have developed a Bayesian method which is capable of integrating genomic distance
with a correlation of ChIP-seq time series in order to predict physical interactions between
enhancers and promoters. We evaluated the performance of our method against ChIA-PET
predicted links and using different combinations of features. Using complementary GRO-
seq data from the same cell-line and stimulation we show that our model can accurately
predict distally regulated, differentially expressed genes under stimulation with estrogen.

Experimental approaches to identifying ehancer-promoter interactions genome-wide are
increasingly popular but have some limitations. ChIA-PET datasets typically only identify a
relatively small number of enhancer-promoter interactions with confidence, while HiC data
typically has too low genomic resolution to resolve specific enhancer interactions. Even the
more focussed Capture-HiC protocals are limited to restriction fragments of several kb and
HiC data are generally associated with complex noise characteristics requiring sophisticated
corrections for background. Our model can therefore serve as a useful complementary
approach to these techniques and offers insight into stimulation-dependent, and cell-type
specific transcriptional regulation.

In this work we have focussed on intergenic enhancers, because our data contains Pol-II
ChIP-Seq data which has transcriptional signal on introns and is therefore not ideally suited
for identifying intronic enhancers. However, the computational method could potentially
work for intronic enhancers with different ChIP-Seq data combinations. For example, with
access to enhancer enriched epigenomic marks such as H3K27ac or H3K4me1 then the
data may be suitable for identifying links involving intronic enhancers.
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