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ABSTRACT
High sensitivity methods such as next generation sequencing and polymerase chain
reaction (PCR) are adversely impacted by organismal and DNA contaminants.
Current methods for detecting contaminants in microbial materials (genomic DNA
and cultures) are not sensitive enough and require either a known or culturable
contaminant. Whole genome sequencing (WGS) is a promising approach for detecting
contaminants due to its sensitivity and lack of need for a priori assumptions about
the contaminant. Prior to applying WGS, we must first understand its limitations
for detecting contaminants and potential for false positives. Herein we demonstrate
and characterize a WGS-based approach to detect organismal contaminants using an
existing metagenomic taxonomic classification algorithm. Simulated WGS datasets
from ten genera as individuals and binary mixtures of eight organisms at varying
ratios were analyzed to evaluate the role of contaminant concentration and taxonomy
on detection. For the individual genomes the false positive contaminants reported
depended on the genus, with Staphylococcus, Escherichia, and Shigella having the
highest proportion of false positives. For nearly all binary mixtures the contaminant
was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though
F. tularensis was not detected in any of the simulated contaminant mixtures and
Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method
for detecting contaminants is characterized, it can be applied to evaluate microbial
material purity, in efforts to ensure that contaminants are characterized in microbial
materials used to validate pathogen detection assays, generate genome assemblies for
database submission, and benchmark sequencing methods.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Genomic purity, Whole genome sequencing, Bioinformatics, Biodetection, Microbial
materials, Reference materials

INTRODUCTION
Microbial materials such as cells and extracted genomic DNA from a presumably pure
culture should ideally be free of organismal contaminants, yet rarely are. High sensitivity
detection methods including polymerase chain reaction (PCR) and next generation
sequencing (NGS) can detect organismal contaminants previously undetectable by
traditional microbiological methods. Characterizing these contaminants in order to focus
efforts on reducing their level is critical to ensuring high-quality microbial materials are
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used to populate sequence databases (Parks et al., 2015), for mock communities to validate
metagenomic methods (Bokulich et al., 2016), to validate biodetection assays (Ieven, Finch
& van Belkum, 2013; Coates, Brunelle & Davenport, 2011), and for basic research using
model systems (Shrestha et al., 2013). Furthermore, tools to assess general contaminants are
also needed for the characterization of microbial genomic reference materials (Olson et al.,
2016), where contaminant profiles allow users to properly determine whether thematerial is
suitable for their application. Contaminants in microbial materials, as found in non-axenic
cellular materials or genomic materials with foreign DNA, have been addressed when
processing the sequencing data but not for general material characterization (Shrestha et
al., 2013; Tennessen et al., 2015). PCR and NGS can also detect reagent impurities. Reagent
contaminants can be addressed by producing negative controls (Jervis-Bardy et al., 2015),
improved methods for removing contaminants (Woyke et al., 2011; Motley et al., 2014),
and post-processing of sequence data in effort to distinguish these impurities from true
organismal contaminant in the microbial material (Mukherjee et al., 2015).

Current approaches for detecting contaminants in microbial materials such as culture,
microscopy, or PCR typically fail to meet all the requirements to characterize microbial
materials for routine applications. Culture- and microscopy-based methods lack the
required sensitivity for detecting contaminants in microbial materials being used in NGS
and PCR applications, are not appropriate for genomic DNA materials, and assume the
contaminants are phenotypically distinct from the material they contaminate. While
PCR-based methods can detect contaminants in genomic DNA, the methods are limited
to specifically targeted contaminants and are not amenable to highly multiplexed
applications (Heck et al., 2016; Marron, Akam &Walker, 2013). In contrast to these
methods, shotgun metagenomic methods, though unable to assess contaminant viability,
can be used to detect contaminants in both cell cultures and genomic DNAmaterials while
only requiring the contaminant has sequencing reads differentiating it from the material
strain. As whole genome sequencing can be performed on genomic DNA and cell cultures
(after DNA extraction), the method is appropriate for both types of microbial materials.

Shotgun metagenomic sequencing is used to characterize environmental samples, detect
pathogens in clinical samples, and is suitable for detecting contaminants in microbial
materials. Shotgun metagenomics consists of two main steps, whole genome sequencing of
all DNA in a sample, and analysis of the resulting sequencing data, most commonly using
a taxonomic assignment algorithm (Thomas, Gilbert & Meyer, 2012). For genomic DNA
materials, the material itself is sequenced, whereas for cells the genomic DNA must first be
extracted from cell cultures prior to sequencing. After sequencing, a taxonomic assignment
algorithm is used to characterize the sequencing data. Currently, researchers use a variety of
classification algorithms with varying accuracy and computational performance (Bazinet
& Cummings, 2012; Menzel, Ng & Krogh, 2016; Sczyrba et al., 2017). Nearly all methods
require a reference database, where the contaminating organism (or an organism more
closely related to the contaminant than the material) must be in the database for it to be
detected. Bioinformatic methods have been developed and used to detect contaminant
reads in a whole genome sequencing dataset but to our knowledge have not been used to
detect contaminants in a microbial material (Kumar et al., 2013; Delmont & Eren, 2016).
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In order to confidently use metagenomics to detect contaminants in microbial materials,
one must first understand its limitations in doing so. We have developed a metagenomics-
based approach to evaluate contaminant detection capabilities. In this work, we present
results from an in-silico study demonstrating our approach using an existing taxonomic
assignment algorithm for detecting contaminant DNA in simulated microbial whole
genome sequence data. First, a baseline assessment of the method was performed using
simulated sequencing data from single microorganisms to characterize the types of false
positive contaminants the algorithm may report. The contaminant detection method was
then evaluated for its ability to detect organismal contaminants in microbial material
strains using sequencing data simulated to replicate microbial materials contaminated with
different organismal contaminants at a range of concentrations.

This manuscript is intended for users and maintainers of microbial material stocks
who are interested in validating material purity and understanding the limitations of their
validation method. A secondary audience is taxonomic classification algorithm developers,
as this work presents a novel approach to evaluating taxonomic classification methods and
an additional use case that developers may not have previously considered.

METHODS
Simulated whole genome sequence data and metagenomic taxonomic classification
methods were used to detect and identify foreign DNA in microbial materials (genomic
DNA and cultures). Simulated data from individual prokaryotic genomes were used to
characterize how well the method correctly classifies reads at the species level. To evaluate
contaminant detection we used datasets comprised of pairwise combinations of simulated
reads from individual genomes.

Simulation of sequencing data
To approximate real sequencing data, reads were simulated using an empirical error model
and insert size distribution. Whole genome sequence data were simulated using the ART
sequencing read simulator (Huang et al., 2012). Reads were simulated with the Illumina
MiSeq error model for 2 × 230 base pair (bp) paired-end reads with an insert size of 690 ±

10 bp (average ± standard deviation) and 20 X mean coverage. The insert size parameters
were defined based on the observed average and standard deviation insert size of the NIST
RM8375-MG002 MiSeq sequencing data (Olson et al., 2016) (NCBI Biosample accession
SAMN02854573).

Assessment of taxonomic composition
The taxonomic composition of simulated datasets was determined using the PathoScope
sequence taxonomic classifier (Francis et al., 2013). PathoScope was selected for two
reasons: (1) it uses a large reference database reducing potential biases due to
contaminants not represented in the database, and (2) it leverages efficient whole
genome read mapping algorithms. Additionally, PathoScope was successfully used
in our pilot study (https://doi.org/10.6084/m9.figshare.1200090.v1) and as part of
the pipeline developed to characterize the NIST microbial genomic DNA reference
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Table 1 Breakdown of the number of genomes by genus used to generate single genome simulated
datasets.N indicates the number of genomes (406 total), and Genome Size is presented as the median and
range (minimum to maximum). Species indicates the number of different species for each genus included
in the baseline assessment.

Genus N Species Genome size (Mb)

Bacillus 76 19 5.05 (3.07–7.59)
Clostridium 32 15 4.02 (2.55–6.67)
Escherichia 62 1 5.11 (3.98–5.86)
Francisella 18 4 1.89 (1.85–2.05)
Listeria 39 5 2.97 (2.78–3.11)
Pseudomonas 57 21 6.18 (4.17–7.01)
Salmonella 44 2 4.88 (4.46–5.27)
Shigella 10 4 4.74 (4.48–5.22)
Staphylococcus 49 2 2.82 (2.69–3.08)
Yersinia 19 3 4.73 (4.62–4.94)

material (Olson et al., 2016). This method uses an expectation maximization algorithm
where the sequence data are first mapped to a database comprised of all sequence
data in the Genbank nt database. Then, through an iterative process, it re-assigns
ambiguously mapped reads based on the proportion of reads mapped unambiguously
to individual taxa in the database. The PathoScope 2.0 taxonomic read classification
pipeline has three steps; (1) PathoQC—read quality filtering and trimming using the
PRINSEQ algorithm (Schmieder & Edwards, 2011), (2) PathoMap—mapping reads to a
reference database using the bowtie2 algorithm (Langmead & Salzberg, 2012), and (3)
PathoID—expectation–maximization classification algorithm. The annotated Genbank
nt database provided by the PathoScope developers was used as the reference database
(ftp://pathoscope.bumc.bu.edu/data/nt_ti.fa.gz).

Baseline assessment using individual genomes
Simulated sequencing data from individual genomes was used to characterize the false
positive contaminants reported by PathoScope. Sequence data was simulated for 406
strains, from ten genera (Table 1, Table S1). These genera were selected based on relevance
to public health and biothreat detection. We will refer to the genome used to generate the
reads as the material genome. The genomes included in the simulation study were limited
to closed genomes in the Genbank database (http://www.ncbi.nlm.nih.gov/genbank/,
accessed 10/18/2013) belonging to genera of interest (Table 1). Due to the large number
of Escherichia and Staphylococcus genomes, genomes from these genera were limited to
the species Escherichia coli, and Staphylococcus aureus respectively. We note that after
the genomes were selected one of the Staphylocuccus aureus genomes was renamed S.
argenteus, Genbank taxid 985002 (Tong et al., 2015). Average nucleotide identity for all
pair-wise comparisons was calculated using MUMMER3 and the ani_pairs.R script in
the project github repository (Kurtz et al., 2004). The taxonomic hierarchy for the material
genome and simulated read assignment match levels were determined using the R package,
Taxize (Chamberlain & Szöcs, 2013; Chamberlain et al., 2016).
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Table 2 Representative strains used in simulated contaminant datasets, based on available type
strains. Match proportion indicates the estimated proportion of the material assigned to the correct
species by PathoScope. Aligned Reads is the number of simulated reads aligned to the database by
PathoMap. DNA size is the total size of the genome, chromosome and plasmids in Mb.

Representative strain Match
proportion

Aligned
reads

Mb

Bacillus anthracis str. Ames 1.00 227,270 5.23
Clostridium botulinum A str. Hall 1.00 163,500 3.76
Escherichia coli O157:H7 str. EC4115 0.98 247,990 5.70
Francisella tularensis subsp. tularensis SCHU S4 1.00 82,290 1.89
Pseudomonas aeruginosa PAO1 1.00 272,360 6.26
Salmonella enterica subsp. enterica serovar Typhimurium
str. D23580

1.00 212,140 4.88

Staphylococcus aureus subsp. aureus ED133 0.98 123,150 2.83
Yersinia pestis CO92 1.00 209,970 4.83

Contaminant detection assessment
Simulated contaminated datasets were used to evaluate how contaminant detection
varied by material and contaminant genome over a range of contaminant concentrations.
Representative genomes for eight of the 10 genera were used to generate the simulated
contaminant datasets (Table 2, Table S2). An Escherichia coli strain was selected as a
representative of both Escherichia and Shigella, as the genus Shigella and species Escherichia
coli are not phylogenetically resolved (Lan & Reeves, 2002). No representative genome
for Listeria was included in this part of the study. For each pairwise combination of
representative genomes, the simulated contaminant dataset was comprised of a randomly
selected subset of reads from the material and contaminant (Fig. 1). The simulated datasets
were randomly subsampled at defined proportions, with p representing the proportion
of reads from the contaminant, and 1− p the proportion of reads from the material
dataset. A range of contaminant proportions at 10-fold increments was simulated with p
ranging from 10−1 to 10−8, resulting in 512 simulated contaminant datasets. This approach
simulates the proportion of cells in a contaminated material and not the amount of DNA,
assuming unbiased DNA extraction. Organisms with larger genomes, therefore, have more
simulated reads.

To generate the simulated contaminant datasets, single organism simulated datasets
were first generated for the 8 representative genomes using the same methods as baseline
assessment (Fig. 1 and Table 2). The resulting simulated sequencing data was first processed
using the PathoQC and PathoMap steps in the PathoScope pipeline. The output from
the PathoMap step (SAM file, sequence alignment file: https://samtools.github.io/hts-
specs/SAMv1.pdf) for the material and contaminant datasets were subsampled as described
above then combined. The resulting SAM file was processed by PathoID, the third step
in the PathoScope pipeline. Subsampling the SAM files instead of the simulated sequence
files greatly reduces the computational cost of the analysis, as the simulated reads were
only processed once by the first two steps in the PathoScope pipeline rather than for every
simulated contaminant dataset. For simulated datasets with contaminant proportions
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Figure 1 Diagram of simulated contaminant dataset workflow for two individual genomes. Contam-
inant proportions (p) of 0.2 and 0.4 are used for demonstration purposes. The reads were initially sim-
ulated from individual genomes. The blue genome is twice the size of the orange genome, and twice as
many reads are simulated for the blue genome compared to the orange in order to obtain the same cover-
age. The simulated reads were aligned to the reference database using PathoMap. The resulting alignment
file, in SAM file format, was randomly subset based on the desired proportions. Complementary subsets of
SAM files (e.g., 0.8 material and 0.2 contaminant) from the two genomes were merged to create individual
simulated contaminant datasets. Due to the different sized genomes, the simulated contaminant datasets
have different numbers of reads. Taxonomic assignment summary tables were generated from simulated
contaminant datasets using PathoID.

greater than 10−5, the quantitative accuracy of the contaminant detection method
was assessed by comparing the defined contaminant proportion (true proportion) to
the PathoScope contaminant proportion (estimated proportion). Pearson’s correlation
coefficient was used to evaluate agreement between the true and estimated proportions.
The error rate, (estimated−true)/true, was compared across material and contaminant
combinations.

Bioinformatics pipeline
To facilitate repeatability and transparency, a Docker (http://www.docker.com)
container is available with pre-installed pipeline dependencies (https://hub.docker.
com/r/natedolson/docker-pathoscope/). The scripts used to run the simulations
are available at https://github.com/nate-d-olson/genomic_purity. Additionally, seed
numbers for the random number generator were randomly assigned and recorded
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Figure 2 Dendrogram depicting the taxonomic lineage of genera used in baseline assessment.

for each dataset so the simulated datasets used in the study could be regenerated.
PathoScope results were processed and analyzed using the statistical programming
language R (R Core Team, 2016), and intermediate analysis and data summaries were
organized using ProjectTemplate (White, 2014) and archived in a GitHub repository
(https://github.com/nate-d-olson/genomic_purity_analysis) along with the source files for
this manuscript.

RESULTS
Baseline assessment using individual genomes
First, we assessed the baseline performance of the proposed contaminant detectionmethod.
We applied our method to simulated sequencing data from individual genomes. All reads
assigned to a different taxa than the genome the reads were simulated from were defined as
false positive contaminants. (This assumes the genome sequence is contaminant free.) Our
analysis included taxonomic classification results for simulated sequencing data from 406
genomes, representing 10 different genera (Table 1, Fig. 2, Table S1). The 10 genera were
from the Gammaproteobacteria Class and Firmicutes phylum with 1 to 21 species from
each genera representing a range of genomic similarity within the genus (Fig. 3). For the
genomes included in the study, Escherichia, Shigella, Salmonella, and Staphylococcus have
higher within genus similarity whereas Clostridium and Pseudomonas had lower within
genus similarity.

The taxonomic classification method was evaluated using the estimated proportion of
species level matches. The estimated match proportion is the sum of the Final Guess values,
proportions reported by PathoScope for a taxa, for all correct species level matches. For
301 of the 406 genomes, PathoScope estimated that greater than 0.99 of the material was
the expected species (Fig. 4). Of the remaining 105 genomes, the estimated proportion
identified as the correct species varied by material genus. All of the Shigella genomes
and only 44 of the 49 Staphylococcus genomes had estimated proportions for the correct
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Figure 3 Genomic diversity of strains used in baseline study by genus. The percent of the genome
aligned is represented on the x-axis with average nucleotide identity (similarity of aligned regions) on the
y-axis. More similar genomes will have a higher percent aligned and average nucleotide identity.

species less than than 0.9. 87 of those 105 genomes come from Shigella, Staphylococcus,
or Escherichia. Excluding Shigella, Escherichia, and Staphylococcus, the median estimated
proportion matching at the species level or higher is 0.9996. We characterized false
positive contaminants detected in genomes from the genera Shigella, Escherichia, and
Staphylococcus, as well as genomes of other species with match proportions less than 0.9.
Two types of false positive contaminants were identified: (1) contaminants that were
genomically indistinguishable from the material and (2) contaminants due to errors in the
reference database. Sequences can be genomically indistinguishable due to phylogenetic
relatedness of the organisms as well as the transfer of sequences horizontally transferred
between organisms such as plasmids and genes involved in horizontal gene transfer events
(Shintani, Sanchez & Kimbara, 2015; Polz, Alm & Hanage, 2013).
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Final Guess values in the PathoScope results table. Each point is calculated for a genome from a
different isolate within the genus. The vertical dashed line indicates the 0.99 estimated match
proportion. Orange points are genomes with species level estimated match proportions less than 0.90
and blue points greater than or equal to 0.90.
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Figure 4 Species level or higher estimated match proportion varies by material genus. The estimated
match proportion is the total proportion of the material with correct taxonomic assignments to the
genome species, subspecies, strain, or isolate level. The Estimated Match Proportions shown are the Final
Guess values in the PathoScope results table. Each point is calculated for a genome from a different isolate
within the genus. The vertical dashed line indicates the 0.99 estimated match proportion. Orange points
are genomes with species level estimated match proportions less than 0.90 and blue points greater than or
equal to 0.90.

Two genomes can be genomically indistinguishable if the majority of the two genome
sequences are highly similar. Phylogenetically closely related organisms are expected
to have large genomic regions with high levels of similarity. Phylogenetic similarity is
at least partially responsible for the low species level estimated match proportion for
Shigella and Escherichia, as Shigella is not phylogenetically distinct from E. coli (Lan &
Reeves, 2002). When including matches to E. coli as species level matches, the median
estimated match proportions for Shigella genomes increases from 0.66 to 0.92. Another
example of false positives at the species level due to phylogenetic similarity was low
match percentage for Clostridium autoethanogenum strain DSM10061, where Clostridium
ljungdahlii strain DSM13528 was assigned the top proportion of reads (0.998) instead
of C. autoenthanogenum. False positive contaminants due to phylogenetic similarity are
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Figure 5 Estimated proportion of phage in the simulated single genome datasets by genera. Final
Guess values reported by PathoScope used to calculate estimated proportions. No phage were reported by
PathoScope for any Francisella genomes.

not limited to closely related species or genus. Escherichia coli strain UMNK88 low match
proportions were due to two bacteria in the same family as E. coli (Enterobacteriaceae):
Providencia stuartii and Salmonella enterica subsp. enterica serovar Heidelberg, which had
estimated match proportions of 0.11 and 0.03, respectively. False positives were also due
to shared genetic material between bacteria and their phage. Phage were identified as false
positive contaminants at varying proportions for genomes from all genera investigated,
excluding Francisella (Fig. 5). The low proportions of species level matches for E. coli
and Staphylococcus are partly due to relatively higher proportions of matches to phage,
compared to the other genera investigated. Based on phage names, all of the false positive
phage contaminants were specific to the taxonomy of the material genome.

False positive contaminants were also due to potential errors in the database such as
unclassified or misclassified sequences and genome assemblies in the database containing
sequence data from organismal or reagent contaminants. Low estimatedmatch proportions
can also be due to the database containing unclassified sequence data for organisms
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with genomic regions that are highly similar to regions of the material genome. For
example, the low estimated match proportion for Pseudomonas strain FGI182 was due
to matches to unclassified bacteria, bacterium 142412, and unclassified Pseudomonas
species, Pseudomonas sp. HF-1. The low estimated match proportion of species level
matches for Pseudomonas strain TKP was also due to potentially misclassified sequences
(Thioalkalivibrio sulfidophilus strain HL-EbGr7, estimated match proportion 0.0648).
Bacillus subtilis BEST7613 genome had low species level estimated match proportion due
to Synechocystis sp. PCC 6803 substr. PCC-P being estimated as comprising 47% of the
material. Synechocystis is in a different phylum compared to Bacillus (cyanobacteria versus
firmicutes) and is a false positive due to a misclassification. The Bacillus subtilis BEST7613
genome in the database is a synthetic chimeric genome constructed from Bacillus subtilis
BEST7613 and Synechocystis sp. PCC 6803 substr. PCC-P not Bacillus subtilis BEST7613
(Watanabe et al., 2012). The Bacillus subtilis BEST7613 genome assembly (GenBank
Accession GCA_000328745.1) was flagged by the databases curators as an anomalous
assembly and removed from the RefSeq database. The genome sequences used to populate
the reference database can contain contaminants themselves (Parks et al., 2015). These
database contaminants are responsible for additional false positive contaminants. The
species level estimated match proportion for Pseudomonas strain TKP was partially due
to contaminated genome sequences in the database (wheat—Triticum aestivum estimated
match proportion 0.087). The eukaryotic false positive contaminants are likely due to
contaminants in the eukaryotic DNA extract or reagents used to generate the sequencing
data for the assembly (Parks et al., 2015).

Contaminant detection assessment
Finally, contaminant detection was assessed by combining subsets of simulated data
from two organisms at defined proportions, with the larger proportion representing
the microbial material and smaller proportion the contaminant (Fig. 1). We simulated
contaminant datasets as pairwise combinations of representative genomes from eight of
the genera used in the baseline assessment section of the study (Table 2, Fig. 6). All of
the genomes selected have a species level estimated match proportion greater than 0.98
(Table 2). The representative genomes had low pairwise similarity based on the average
nucleotide identity analysis (Fig. 6) with average identity between 82% and 86% with
greater than 1% of the genomes aligned for four of the 28 organism pairs. The Salmonella
and E. coli had the highest percent of their genomes aligned to each other at 36% and 30%,
respectively.

The minimum contaminant proportion detected was 10−3 and 10−4 for most pairwise
comparisons with a few exceptions (Fig. 7). The similarity between the material and
contaminant genomes did not appear to impact the minimum contaminant proportion
detected (Fig. 6). However, this is likely due to the overall low level of similarity between
the representative genomes. When Y. pestis was the simulated contaminant, the minimum
detected proportion was 0.1 for all material strains. For all simulated datasets where
F. tularensis was the contaminant, the contaminant was not detected. It is unclear why
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Figure 6 Genomic similarity as percent of genome aligned and average nucleotide identity,
between pairs of representative strains used in contaminant detection assessment. Plots are split
by representative genomes of the material species and point colors indicate values (ANI and percent of
aligned genomes) of contaminant species when aligned to the representative genome.

Y. pestis was only detected at a higher proportion relative to the other datasets, 10−1

versus 10−3, and F. tularensis was not detected at all. One possible reason for the lower
contaminant detection for these two organisms is that there are fewer genomes in the
database for these two genera. Another potential reason is that genomes from both Y. pestis
and F. tularensis have high insertion sequence content and readily undergo intragenomic
recombination (Larsson et al., 2005; Chain et al., 2004). These genomic rearrangements
have been attributed to these organisms’ highly pathogenic nature and challenge taxonomic
classificationmethods due to relatively high levels of sequence similarity between seemingly
unrelated organisms. Additionally, the F. tularensis dataset is much smaller relative to the
other genera, less than 90,000 reads. Therefore, with fewer reads in the dataset and
genomes in the database, the probability that the randomly selected subset of reads spiked
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Figure 7 The relationship between the proportion of reads matching the contaminant species and the
proportion of simulated contaminant reads. Plots are faceted on the x-axis by material species and on
the y-axis by contaminant species. Point color indicates contaminant species and line color indicates ma-
terial species. Dashed line indicates the expected 1:1 correlation between the proportion of reads matching
the expected contaminant and the proportion of reads simulated from the contaminant. The contaminant
proportion was underestimated for points below the dashed line and overestimated for points above the
dashed line.

into the simulated material dataset contains reads allowing for contaminant detection is
lower. A few contaminants were detected at proportions as low as 10−8, such as when
Yersinia contaminated with E. coli or S. enterica. However, contaminants detected at lower
proportions were due to reads simulated from the material genome incorrectly assigned
to the contaminant. The simulated contaminant-free Y. pestis material dataset had false
positive reads assigned to two of the contaminants resulting in artificially low contaminant
detection proportions for Salmonella enterica subsp. enterica serovar Typhi str. CT18
and Escherichia coli O104:H4 str. 2011C-3493 with estimated proportions of 1.76×10−5

and 3.77×10−8, respectively. The simulated dataset coverage accounts for the observed
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minimum detected contaminant proportion. As the individual datasets were simulated at
20X coverage, <300,000 reads were simulated for each dataset, and on average <3 reads were
spiked into the material datasets for simulated contaminant proportions ≤10−5 (Fig. 7).

In addition to the minimum detected contaminant proportion, we also evaluated
the quantitative accuracy of the contaminant detection method. Pearson’s correlation
coefficient was used to determine the correlation between the estimated contaminant and
true contaminant proportions for simulated contaminant proportions greater than 10−6.
The estimated and true proportions were strongly correlated for all pairwise comparisons,
with an overall median and 95% confidence interval of 0.99945 (0.96945–1) (Fig. 7). Eight
of the pairwise comparisons have correlation coefficients below 0.99, all of which have
S. aureus as either the contaminant or the material. Two coefficients were below 0.98: S.
aureus contaminated with P. aeruginosa and S. enterica, 0.952 and 0.969 respectively. The
total error rate was used to assess the accuracy of the PathoScope contaminant proportion
estimates (Fig. 8). The material genome strongly influenced the total error rate with E. coli
and S. aureus having consistently higher total error rates compared to the other genomes,
indicating a reduced accuracy for the two species. The proportion of reads from E. coli and
S. aureus in the simulated contaminant datasets is consistently overestimated by PathoScope
(Fig. 7). Both genera had a higher proportion of false positives due to phage relative to
the other genera analyzed in this study (Fig. 5). Higher phage content or mobile elements
due to HGT and plasmids are potentially responsible for the overestimated proportions.
In this study, the similarity between the material and contaminant genome did not impact
the quantitative accuracy of the method. However, one would expect significantly lower
quantitative accuracy for highly similar genomes.

DISCUSSION
We developed an in-silico approach to evaluate the ability of an existing taxonomic
sequence classification algorithm to detect contaminant DNA in whole genome sequence
datasets frommicrobial materials. The use of in-silico data allows for a known contaminant
taxonomy and concentration to challenge the algorithm. Here we used single and binary
mixtures of organisms. While binary mixtures of organisms do not necessarily capture the
complexity of real-world samples, they do serve as an appropriate model system to evaluate
the algorithm and our approach to detecting contaminants. This approach could easily be
adapted for in-silico datasets with multiple contaminants.

There are three basic steps to using this method to detect contaminants in a microbial
material. Baseline assessment is the first step. For a baseline assessment, reads are simulated
from the reference genome of the organism of interest and processed using a taxonomic
classification algorithm. Performing a baseline assessment allows one to identify the
false positive contaminants you can expect to observe due to methodological limitations.
Simulating data with realistic error profiles, read length, and fragment distribution is
likely to yield results more representative of what one would expect from real sequencing
data. Next, sequencing data generated for binary mixtures of the microbial materials
is processed using the same taxonomic classification algorithm as used in the baseline

Olson et al. (2017), PeerJ, DOI 10.7717/peerj.3729 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.3729


A: Pseu B: Baci C: Yers D: Clos E: Salm F: Fran G: Esch H: Stap

0

25

50

75

100

Material

E
rr

or
 R

at
e

Contaminant
Baci

Clos

Esch

Pseu

Salm

Stap

Yers

Figure 8 Error rate, (estimated − true)/true, for pairwise combinations of material and contaminant.
Points and error bars represent the median and range (minimum–maximum) error rate for each material
and contaminant combination.

assessment. The last step is a critical evaluation of results for potential false positives. For
all settings including basic research, clinical, regulatory, and attribution, the contaminant
detection method should be validated for the intended application. Appropriate validation
approaches may include experiments with simulated contaminants like those performed as
part of this study and sequencing genomic DNA or cells spiked with varying contaminant
concentrations. It is important to note that the method if routinely deployed cannot
determine if the contaminants are viable and/or culturable as only the DNA is evaluated.
Separate culture techniques would have to be performed in parallel to determine if the
contamination was viable.

False positive contaminants identified in steps 1 and 2 were split into two categories:
(1) those due to an inability of the method to differentiate the material genome from the
contaminant genome, and (2) errors in the reference database. Contaminant detection
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performance was characterized for different materials, contaminants, and contamination
levels. Overall the method was able to identify contaminant proportions at 10−3 for most
contaminant-material combinations. This level of detection is dependent on not just
the classification method but also the simulated coverage. Therefore a lower detection
proportion is expected for increased coverage. A contaminant proportion of 10−3 is
equivalent to 1 contaminant cell per 1,000 cells in amicrobialmaterial, or 1,000 contaminant
cells in 1 mL of a 106 cells/mL culture. The estimated contaminant proportion accuracy
for the simulated contaminated material varied by contaminant and material strain.

Quantitative accuracy in contaminant proportions is important for applications where
acceptable contaminant proportion thresholds are established. For example, a microbial
material with a contaminant proportion of 10−5 may be acceptable for use in an assay
where the contaminant adversely impacts an assay when present in proportions greater than
10−4. Quantitative accuracy is also relevant when performing a general characterization of
the microbial material. General contaminant characterization is appropriate for reference
materials with more than one use case such as the microbial genomic reference materials
(NIST RM8375) (Olson et al., 2016). Similar to the false positive contaminant baseline
assessment, simulated data can be used to evaluate the minimal detectable contaminant
proportion for specific organisms using different taxonomic assignment algorithms and
databases. A primary limitation of the proposed method is the observed false positive
contaminants identified in the baseline assessment.

The reference database and taxonomic assignment algorithm are likely to impact the
number and types of false positives. There are three primary types of taxonomic read
classification algorithms: sequence similarity search, sequence composition methods, and
phylogenetic methods (Bazinet & Cummings, 2012). The example algorithm used in this
study, PathoScope, is a type of sequence similarity search algorithm. Evaluating different
types of algorithms using simulated data for the material genome of interest, similar to
what was done in the baseline assessment part of this study, would help determine the
optimal classification algorithm for a specific microbial material. Furthermore, recent
advances in taxonomic classification algorithms have led to the development of faster
methods, including Kaiju, a sequence composition method, and Centrifuge, a sequence
similarity search method (Menzel, Ng & Krogh, 2016; Kim et al., 2016). Application of
these new algorithms would lower the computational cost of the method. Similarity-based
taxonomic classifications methods are not robust to horizontal gene transfer events and
therefore alternative classification algorithms may be more suitable for contaminant
detection than PathoScope (Kunin et al., 2008; Weng et al., 2010). Other methods such
as MicrobeGPS and DUDes are alternative similarity based taxonomic classification
methods developed to better handle organisms not in a reference database and are also
suitable alternatives to PathoScope (Lindner & Renard, 2015; Piro, Lindner & Renard,
2016). Previous work for detecting contaminants in whole genome sequencing datasets
calculate summary statistics including coverage, nucleotide composition (e.g.,%GC), and
taxonomic classification of scaffolds (Kumar et al., 2013; Delmont & Eren, 2016). These
methods while computationally more expensive than taxonomic classification algorithms
may be better able to detect and identify microbial material contaminants. Similar studies
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to the one presented here are warranted to evaluate the suitability of alternative taxonomic
classificationmethods for contaminant detection. Incorporating baseline assessments using
simulated data from single genomes into large benchmarking challenges such as the Critical
Assessment of Metagenomic Interpretation could help improve our understanding of the
limitations of taxonomic classificationmethods (http://www.cami-challenge.org/) (Sczyrba
et al., 2017). This type of large-scale benchmarking challenge would help identify and
characterize common causes of false positive classification errors. Though not investigated
in this study, plasmids and horizontal gene transfer are likely a significant source of false
positive classification errors. Results from such large-scale benchmarking challenges could
be used to better characterize the extent to which mobile elements are responsible for false
positive classification errors.

A number of the observed false positives were due to errors in the database and inability
of the taxonomic classification algorithm to correctly identify the source of the sequence
when it matches multiple organisms in the database. Users can generate application specific
databases by preparing a custom database without sequences for irrelevant contaminants,
such as phage, plasmids, vectors, multicellular eukaryotes, and genes known to undergo
horizontal gene transfer in order to reduce the proportion of false positives. By excluding
irrelevant contaminants and genes involved in horizontal gene transfer, sequencing reads
aligning to the omitted sequences would no longer result in false positive contaminants.
Methods for excluding sequence data from a reference database are dependent on the
classification algorithm used. For example, user-specified sequence data could be removed
from the reference database by PathoScope using the PathoDB function. Similarly, the
developers of the taxonomic classification algorithmCentrifuge providemultiple databases:
Prokaryotic genomes only; Prokaryotes and Viruses; Prokaryotes, Viruses, and human; as
well as NCBI nucleotide non-redundant sequences. Caution should be used when removing
sequences from a reference database. For example, vector sequences from contaminants
in sequencing reagents, if excluded from the database, may be incorrectly classified as
an organismal contaminant. Similarly, using a curated database free of misclassified
and unclassified sequence data would further reduce the proportion of false positive
contaminants (Tennessen et al., 2015). For example, the Bacillus subtilis-Synechocystis
chimeric genome appeared to have a high false positive contaminant rate in the baseline
assessment part of this study due to the genome being incorrectly classified as Bacillus
subtilis and not a chimeric genome.

CONCLUSIONS
Identification and characterization of low abundance contaminants in a non-targeted
manner is critical for a microbial material used in high sensitivity assays such as PCR.
Whole genome sequencing combined with taxonomic assignment algorithms provides
a viable alternative to commonly used organismal contaminant detection methods such
as culturing, microscopy, and PCR. WGS requires no a priori information about the
contaminant and can identify common as well as unexpected contaminants.

The approach presented here is suitable for characterizing an algorithm’s ability to
detect organismal contaminants and could be used to compare algorithms and identify
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sources of false positives for organisms of interest. Further, the algorithm could then be
used to detect contaminants in actual DNA sequences from both genomic DNA and whole
cell microbial materials, with the only a priori assumption that the contaminant is in the
reference database. False positive contaminants were a primary limitation of the example
system andmethod used herein. As false positive contaminants are database and taxonomic
assignment algorithm dependent, additional work is needed to improve database curation
and data authentication efforts as well as characterize taxonomic assignment algorithm
performance. In summary, we have provided a straight-forward in-silico approach using
existing datasets to challenge and evaluate the use ofWGS for contaminant detection. Once
a given WGS-based method and its sources of false positives are well-characterized, the
method could then be applied with confidence to examine microbial reference materials
and real-world samples. With the continued improvement of taxonomic classification
algorithms, the expansion of reference databases, and the decline in the cost of sequencing,
shotgun metagenomic sequencing provides an alternative to current methods for detecting
contaminants.
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