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trimming of adapter sequences and low-quality bases. Read trimming has been shown to

increase the quality and reliability while decreasing the computational requirements of

downstream analyses. Many read trimming software tools are available; however, no tool

simultaneously provides the accuracy, computational efficiency, and feature set required

to handle the types and volumes of data generated in modern sequencing-based

experiments. Here we introduce Atropos and show that it trims reads with high sensitivity

and specificity while maintaining leading-edge speed. Compared to other state-of-the-art

read trimming tools, Atropos achieves a four-fold increase in trimming accuracy and a

decrease in execution time of up to 40% (using 16 parallel execution threads).

Furthermore, Atropos maintains high accuracy even when trimming data with elevated

rates of sequencing errors. The accuracy, high performance, and broad feature set offered

by Atropos makes it an appropriate choice for the pre-processing of most current-

generation sequencing data sets. Availability. Atropos is open source and free software

written in Python and available at https://github.com/jdidion/atropos.
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ABSTRACT11

Summary. A key step in the transformation of raw sequencing reads into biological insights is the

trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase

the quality and reliability while decreasing the computational requirements of downstream analyses.

Many read trimming software tools are available; however, no tool simultaneously provides the accuracy,

computational efficiency, and feature set required to handle the types and volumes of data generated in

modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high

sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read

trimming tools, Atropos achieves a four-fold increase in trimming accuracy and a decrease in execution

time of up to 40% (using 16 parallel execution threads). Furthermore, Atropos maintains high accuracy

even when trimming data with elevated rates of sequencing errors. The accuracy, high performance,

and broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of most

current-generation sequencing data sets. Availability. Atropos is open source and free software written

in Python and available at https://github.com/jdidion/atropos.
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1 INTRODUCTION25

All current-generation sequencing technologies, including Illumina, SOLiD, PacBio, and Nanopore,26

require a library construction step that involves the introduction of short adapter sequences at the ends of27

the template DNA fragments. Depending on the sequencing platform and the fragment size distribution of28

the sequencing library, an often substantial fraction of reads will consist of both template and adapter29

sequences (Figure 1A). Additionally, the error rates of these sequencing technologies vary from ˜0.1% on30

Illumina to 5% or more on long-read sequencing platforms. Error rates tend to be enriched at the ends31

of reads (where adapters are located), thus exacerbating the effects of adapter contamination. Adapter32

contamination and sequencing errors can lead to increased rates of misaligned and unaligned reads, which33

results in errors in downstream analysis including spurious variant calls (Del Fabbro et al., 2013; Sturm34

et al., 2016). Certain sequencing protocols may introduce other artifacts in sequencing reads. For example,35

some methylation sequencing (Methyl-Seq) protocols result in artificially methylated bases at the 3’ ends36

of reads that can lead to inflated estimates of methylation levels (Bock, 2012).37

Read trimming is an important step in the analysis pipeline to mitigate the effects of adapter contami-38

nation, sequencing errors, and other artifacts. The development of tools for read trimming is an active39

area of bioinformatics research, thus there are currently many options. In terms of adapter trimming,40

these tools fall into two general categories: 1) those that rely solely on matching the adapter sequence41

(adapter-match trimming) using semi-global alignment (which is the only option available for single-end42

reads; Figure 1B); and 2) those that leverage the overlap between paired-end reads to identify adapter43

starting positions (insert-match trimming; Figure 1C) (Sturm et al., 2016). Cutadapt (Martin, 2011)44

is a mature and feature-rich example of a tool that provides adapter-match trimming, while SeqPurge45

(Sturm et al., 2016) is a recent example of a highly accurate insert-match trimmer designed specifically46
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TTGCAGCTAGGACCAGACATTGAGAGGAACTAACTGAGCGGAAAGAGCACA

TTGCAGCTAGGACCAGACATTGAGACGAACTAACT

TTGCAGCTAGGACCTAACATTGAGACGAACTAACT

###############FFFFFFFFFFFFFFFFFFFF

TTGCAGCTAGGACCAGACATTGAGAGGAACTAACTGAGCGGAAAGAGCACA

ACGGTCT#CCGATCTTTGCAGCTAGGACCTAACATTGAGACGAACTAACT

TTGCAGCTAGGACCAGACATTGAGAGGAACTAACTGAGCGGAAAGAGCACA
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D) error correction

ACGGTCT#CCGATCTTTGCAGCTAGGACCTAACATTGAGACGAACTAACT
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AGATCGGAAGAGCGTC#TGTAGGGATAGAGTGTAAAAAAAAAAANNTC...
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AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

Discard read pair

2/5 bp match, adapters don’t match overhangs (poor match)

32/35 bp match, adapters match to overhangs (best match)

7/27 bp match, adapters don’t match overhangs (poor match)

C) insert-match

E) adapter-match after failed insert-match (e.g. adapter dimers)

Read 1 Qualities:

Read 1 Sequence:

Read 2 Sequence:
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Consensus Sequence:

read 1 base quality == read 2 base quality,

mean read 1 quality > mean read 2 quality

 

5',TTGCAGCTAGGACCTGACATTGAGACGAACTAACT,3'

A1:(GATCGGAAGAGCACACGTCTGAACTCCAGTCAC
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+

ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGCAGCTAGGACCTGACATTGAGACGAACTAACTGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

template fragment

adapters

forward primer

reverse primer

fragment size (35 bp) < read length (50 bp)

read 1
read 2 rc

TTGCAGCTAGGACCAGACATTGAGAGGAACTAACTGAGCGGAAAGAGCACA

ACGGTCT#CCGATCTTTGCAGCTAGGACCTAACATTGAGACGAACTAACT
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Phred scale:
F == 37
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GATCGGAA#GAGCACACGTCTGAACTCCAGTCAC
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read 1

read 2 rc

Tests all possible alignments from 1 to 35 bp

Figure 1. Adapter detection and trimming. A) When a fragment (or insert; green) is shorter than the

read length, the read sequence will contain partial to full-length adapter sequences (blue and purple). B,C)

Methods for detecting adapter contamination using semi-global alignment. Adapter-match (B) identifies

the best alignment between each adapter and the end of its corresponding read. Insert-match (C) first

identifies the best alignment between read 1 and the reverse-complement (rc) of read 2; if a valid

alignment is found, then adapters are matched to the remaining overhangs. D) If a match is found, the

overlapping inserts can be used for mutual error correction. The consensus base is the one with the

highest quality, or, if the bases have equal quality, the one from the read with highest mean quality. E) If

insert-match fails (for example, with an adapter dimer) adapter-match is performed. Reads that are too

short after trimming are discarded.

for paired-end data. Additionally, hybrid tools are available that optimize their choice of read trimming47

method based on the type of data. Skewer (Jiang et al., 2014) is a fast and accurate hybrid trimmer48

that works with both single-end and paired-end data. However, choosing a read-trimming tool currently49

requires a trade-off between feature set, efficiency, and accuracy. Furthermore, even state-of-the-art tools50
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still have a relatively high rate of over-trimming (removing usable template bases from reads) and/or51

under-trimming (leaving low-quality and adapter-derived bases in the read sequence) (Sturm et al., 2016).52

We sought to develop a read trimming tool that would combine the best aspects of currently available53

software to provide high speed and accuracy while also offering a rich feature set. To accomplish this aim,54

we used Cutadapt as a starting point, as it provides the broadest feature set of currently available tools and55

is published under the MIT license, which allows modification and improvement of the code. We focused56

on making three specific improvements to Cutadapt: 1) improve the accuracy of paired-end read trimming57

by implementing an insert-match algorithm; 2) improve the performance by adding multiprocessing58

support (as it is currently only able to use a single processor); and 3) add important additional features59

such as automated trimming of Methyl-Seq reads and automated detection of adapter sequences in reads60

where the experimental protocols are not known to the analyst. Because these modifications required61

substantial changes to the Cutadapt code base, and because there are software tools that depend on the62

current implementation of Cutadapt, we chose to ”fork” the Cutadapt code base and develop our software,63

Atropos, as a separate tool. Here, we show that we have accomplished our three aims. In addition to64

extending the already rich set of features provided by the original Cutadapt tool, Atropos demonstrates65

paired-end read trimming accuracy that is superior to other state-of-the-art tools, and it is among the fastest66

read trimming tools when a moderate number of parallel execution threads are used (4). Furthermore,67

Atropos achieves a performance increase that is roughly linear with the number of threads used, making it68

the fastest tool when 8 or more threads are available.69

2 MATERIALS AND METHODS70

2.1 Implementation71

Atropos is developed in Python and is available to install from GitHub or via the pip package manager72

(see Data Availability).73

2.1.1 Semi-global Alignment74

Traditionally, the overlap between two sequences is detected by computing an optimal semi-global75

alignment (Gusfield, 1997, Section 11.6.4), which is the same as global alignment except that neither76

initial nor trailing gaps are penalized. This allows the sequences to shift relative to each other. An optimal77

semi-global alignment maximizes the sum of alignment column scores, thus tending to favor longer over78

short overlaps. Since score-based optimization is often not intuitively understood, the adapter alignment79

algorithm uses edit operations instead, which has the advantage that it gives the user the ability to specify80

a ”maximum error rate” as a intuitive parameter. For a given alignment between read and adapter, the81

error rate is computed as the number of edits (mismatches, insertions, deletions) divided by the length of82

the matching part of the adapter. Minimizing the edit distance while at the same time not penalizing end83

gaps would lead to optimal but meaningless zero-length overlaps; thus, a hybrid approach is chosen. The84

adapter alignment algorithm computes edit distances for all allowed shifts of the adapter relative to the85

read. Among those having an error rate not higher than the specified threshold, the shift (and therefore86

alignment) with the highest number of matches is chosen.87

We summarize the algorithm here; see (Martin, 2013, Section 2.2) for details. Let s be the adapter, t the88

read and m = |s|, n = |t|. Adapter alignment computes edit distances D(i, j) between the i-length prefix of89

s and the j-length prefix of t for all i = 0, . . . ,m and j = 0, . . . ,n with the standard dynamic-programming90

(DP) recurrence91

D(i, j) = min{D(i−1, j−1)+ [si 6= t j],D(i−1, j),D(i, j−1)} (1)

The base cases are D(i,0) = 0 or D(i,0) = i and D(0, j) = 0 or D(0, j) = j, depending on the adapter92

type, allowing to skip a prefix of s and/or t at no cost. The algorithm additionally keeps track of M(i, j),93

which is the number of matches between the prefixes of s and t, and of the “origin” O(i, j), which is94

the number of skipped characters in t in the optimal alignment (if negative, characters in s are skipped95

instead). All three DP matrices D, M, O are filled in at the same time, after which the cells of the bottom96

row (i = m) are inspected. They represent possible end positions of the adapter sequence within the97

read. For each position j, the error rate is computed from D(m, j) and O(m, j), and positions with a too98

high error rate are discarded. If positions remain, the one with the highest number of matches M(m, j)99
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is returned as the position J of the adapter sequence. Together with the start of the adapter sequence at100

O(m,J), the adapter sequence can then be removed from the read.101

Observing that no backtrace within the DP matrix is required, the actual implementation keeps only102

a single column of the matrices in memory for better cache locality. Significant runtime improvements103

are achieved by employing the optimization described by Ukkonen (Ukkonen, 1985) of stopping the104

computation of a column as soon as the costs are too high and provably cannot decrease for the remainder105

of the column. When the user supplies an anchored adapter and disables insertions and deletions (indels)106

at the same time, the algorithm also switches to a much simpler variant that computes only the Hamming107

distance between the adapter and a prefix or suffix of the read.108

2.1.2 Insert Match Algorithm109

For each read pair, the insert-match algorithm uses the same semi-global alignment algorithm described110

above (with indels disabled) to find all possible alignments between the first read and the reverse111

complement of the second read that satisfy user-specified specificity thresholds (Figure 1C). Specificity112

is determined by the combination of up to three user-configurable thresholds: 1) minimum number of113

overlapping bases, 2) maximum number of mismatch bases, and 3) random mismatch probability (Sturm114

et al., 2016). The probability of a random match at k bases out of the n bases being compared is computed115

using the binomial distribution:116

P =
n

∑
i=k

n!

i!(n− i)!
pi(1− p)n−i (2)

The candidate alignments are tested in order of decreasing length until one is found in which the117

overhanging sequences on either end match the user-specified adapter sequences. Comparison between118

the adapter and overhang sequences is done using a constrained adapter-match approach. Briefly, starting119

at the end of the insert overlap, a pairwise comparison is made between the adapter and the read at each120

possible offset. The offset that best satisfies the user-configurable specificity thresholds (the same three121

described above) is taken to be the location of the adapter sequence, and all bases from that position to the122

3’ end of the read are removed. If an adapter is only found in one of the two reads, then the same offset is123

used to trim both reads, under the assumption that the location of the adapter sequence must be symmetric124

across the read pair.125

Optionally, the overlapping inserts can be used for mutual error correction (Figure 1D). Where the126

aligned inserts have mismatches, the base with the highest quality score is chosen as the consensus. When127

the bases have equal quality, there is an option to leave the bases unchanged, convert them both to N, or128

to choose the base from the read with the highest mean quality as the consensus. There are additional129

options to 1) completely overwrite one read in the pair if its quality is very poor, and/or 2) merge the130

overlapping read pair into a single read, which avoids double-counting overlapping read pairs in read131

depth-based analyses.132

If no insert match is found, or if an adapter is not found in an overhang, then an unconstrained133

adapter-match approach is attempted separately in each read (Figure 1E).134

2.1.3 Parallel processing135

The performance improvements in Atropos relative to Cutadapt and other read trimming tools are based in136

two observations: 1) each read (or read pair) is trimmed separately, and thus trimming can be parallelized137

across multiple processor cores, and 2) a significant fraction of the execution time is spent decompressing138

input files and re-compressing results. Compression of sequencing data is increasingly becoming necessary139

due to the large volumes of data generated in sequencing experiments.140

To address the first bottleneck, we implemented a parallel processing pipeline based on the Python141

multiprocessing module. Briefly, a single thread is dedicated to a ”reader” process that loads reads (or142

read pairs) from input file(s), with support for a variety of data formats and automatic decompression of143

compressed data. Reads are loaded in batches, and each batch is added to an in-memory queue. A user-144

specified number of ”worker” threads (which is constrained by the number of processing cores available145

on the user’s system) extract batches from the queue and perform trimming and filtering operations146

on the reads in the same manner as Cutadapt. Atropos addresses the second bottleneck by offering a147

choice of three modes for writing the results to disk. The first two modes involve adding the results148

to a second in-memory queue, from which a dedicated ”writer” process extracts batches and performs149
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the serialized write operation. These two modes differ in how the trimmed reads are compressed – in150

”worker compression” mode, each worker is responsible for compressing the results using the Python151

gzip module prior to placing the results on the queue, whereas in ”writer compression” mode, the writer152

process performs compression using the much faster system-level gzip program. The choice between153

these two modes is selected automatically based on the number of worker threads used, with worker154

compression becoming faster than writer compression when at least 8 threads are available. The third155

output mode, called ”parallel writing,” does not use a dedicated writer process (and thus an additional156

worker process can be used in its place). Instead, each worker process writes its results to a separate file.157

This can dramatically reduce the execution time of the program (˜50% reduction in our experiments; see158

Results) and is generally compatible with downstream analysis since many mapping and assembly tools159

accept multiple input files (and for those that don’t, gzipped files can be safely concatenated without160

needing to be decompressed and recompressed). An additional speed-up is gained by recognizing that the161

reader process often finishes loading data well before the worker processes finish processing it; thus, an162

additional worker thread is started as soon as the reader process completes.163

2.1.4 Adapter detection164

Often, details of sequencing library construction are not fully communicated from the individual or165

facility that generated the library to the individual(s) performing data analysis. Manual determination of166

sequencing adapters and other potential library contaminants can be a tedious and error-prone task. Thus,167

we implemented in Atropos a new ’detect’ command that automatically identifies adapters/contaminants168

from a sample of read sequences. First, a profile is built of k-mers (where k is a fixed number of169

consecutive nucleotides, defaulting to k = 12) within N read sequences (where N defaults to 10,000).170

When at least 8 consecutive A bases are detected, those bases along with all subsequent bases (in the171

3’ direction) are first trimmed, as that pattern is a strong indicator that the sequencer scanned past the172

end of the template (i.e. the length of the fragment + adapter is less than the read length; Figure 1E).173

Additionally, low-complexity reads are excluded, where complexity X(S) is defined as follows. Let C(i,S)174

be the number of elements of a nucleotide sequence S = s1, ...,sn, that are nucleotide i ∈ A,C,G,T .175

X(S) =−∑
C(i,S)∗ log(C(i,S))

log(2)
(3)

Sequences with X(S)< 1.0 are defined as low-complexity. All remaining k-mers are counted, and176

each k-mer is linked to all of the sequences from which it originated. This process continues iteratively for177

increasing values of k, with only those read sequences linked to high-abundance k-mers in the previous178

iteration being used to build the k-mer profile in the next iteration. k-mer K is considered high-abundance179

when:180

|K|>
N ∗ (l − k+1)∗O

4k
(4)

where l is the read length and O = 100 by default. Finally, high-abundance k-mers of all lengths181

are merged to eliminate shorter sequences that are fully contained in longer sequences. Optionally, the182

high-abundance k-mers are matched to a list of known adapters/contaminants. Atropos reports to the user183

an ordered list of up to 20 of the most likely contaminants.184

2.1.5 Error Rate Estimation185

Quality and adapter trimming is sensitive to the choice of several parameters. For example, relative to186

data sets with typical rates of sequencing error, data sets with higher error-rates require higher thresholds187

for mismatches and/or random-match probability during insert- and adapter-matching to perform with188

the same level of sensitivity. Thus, we implemented in Atropos a new ’error’ command that provides an189

estimate of the error rate in each input file. The error command gives the choice between two algorithms:190

1) averaging all base qualities across a sample of reads, which is fast but likely overestimates the true191

rate of sequencing error (Dohm et al., 2008; DePristo et al., 2011); and 2) the shadow regression method192

proposed by Wang et al. (Victoria Wang et al., 2012), which more accurately estimates error rates at the193

cost of reduced speed and greater memory usage.194
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2.1.6 Shared Cutadapt and Atropos Improvements195

In addition to improvements in the semi-global alignment algorithm above, Atropos also benefits from the196

following improvements that were made to Cutadapt subsequent to the publication of Martin et al. (2011),197

but prior to the Atropos fork, and are therefore features in both programs.198

• Adapters can now be anchored, which removes their ability to occur anywhere within a read. An199

anchored 5’ adapter thus matches only if it is a prefix of the read, and a 3’ adapter only if it is a200

suffix of the read. This is useful, for example, when one or both sequencing adapters are known to201

be ligated directly to a PCR primer.202

• Linked adapters combine a 5’ with a 3’ adapter. Trimming multiple adapters from each read was203

also supported previously, but linked adapters make it possible to require that one of them is a 5’204

adapter and one a 3’ one.205

• IUPAC ambiguity codes are fully supported. Thus, adapter sequences containing characters such206

as N (matching any nucleotide), H (A, C, or T), Y (C or T) work as expected. They are useful207

when adapters contain barcodes or random nucleotides. The nucleotides and ambiguity codes are208

internally represented as patterns of four bits, in which each set bit corresponds to an allowed209

nucleotide. Comparisons are thus simple “binary and” operations, resulting in no runtime overhead.210

• Paired-end data can be trimmed with sequences specified for the forward and reverse reads211

independently. Read pairs are guaranteed to remain in sync. Even interleaved data (paired-end212

reads in a single file) is accepted.213

• Quality trimming can now work in a NextSeq-specific mode in which spurious runs of high-quality214

G nucleotides at the 3’ end of a read are correctly trimmed. NextSeq instruments use “dark” or215

“black” cycles for G nucleotides, making them unable to distinguish between regular G and reaching216

the end of the fragment.217

• Other additions include support for trimming a fixed number of bases from a read, support for files218

compressed using the bzip2 and lzma algorithms, and improved filtering options.219

2.2 Benchmarks220

Data Set Error Rate* Read Length Total Read Pairs Reads w/ Adapters** Adapter Bases**

Simulated 1 0.20% 125 781,923 325,982 12,447,262

Simulated 2 0.60% 125 780,899 325,105 12,416,861

Simulated 3 1.20% 125 782,237 325,860 12,464,235

GM12878 WGBS 2.79% 125 1,000,000 57,130 3,082,003

K562 mRNA-seq 4.31% 75 6,100,265 14,384 749,451

Table 1. Description of data sets. For the real data sets, * actual error rates are unknown – we estimate

error rates from base qualities over a sample of 10,000 read pairs; and ** total adapter content is

unknown – we provide the number of reads containing exact matches for the first 35 adapter bases, and

the number of adapter bases present.

We evaluated both the speed and the accuracy of Atropos relative to other state-of-the-art read221

trimming tools using both simulated and real-world data (Table 1). As trimming of single-end reads222

is unchanged from the original Cutadapt method and is also decreasing in relevance as most current223

experiments use paired-end data, we focused our benchmarking on trimming of paired-end reads. Sturm224

et al. demonstrate that Skewer (Jiang et al., 2014) and SeqPurge (Sturm et al., 2016) stand out as having225

superior performance in paired-end read trimming; thus, we chose to benchmark Atropos against these226

tools. We also compared the new insert-match algorithm against the adapter-match algorithm that is used227

by Cutadapt, and which can be enabled in Atropos using a command line option.228

To simulate paired-end read data, we use the ART simulator (Huang et al., 2012) that was modified229

by Jiang et al. to add adapter sequences to the ends of simulated fragments. ART simulates reads based230

on empirically derived quality profiles specific to each sequencing platform. A quality profile consists231
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of distributions of quality scores for each nucleotide at each read position, expressed as read counts232

aggregated from multiple sequencing experiments, where quality scores are in Phred scale (−10log10(e),233

where e is the probability that the base call is erroneous). We developed an R script to artificially inflate234

the error rates in an ART profile to a user-defined level. For each row in the profile with quality score bins235

e1..en and corresponding read counts r1..rn, the overall error rate can be computed as:236

E =
∑

n
i=1 eiri

∑
n
i=1 ri

(5)

We use the R function optim with the variable metric (”BFGS”) algorithm to optimize a function237

that adds an equal number of counts C to each Phred-score bin in the distribution and then compares the238

overall error rate to the user-desired error rate E ′:239

f (C,E ′) =
∑

n
i=1 ei(ri +C)

∑
n
i=1(ri +C)

−E ′ (6)

We simulated ˜800k 125 bp paired-end reads using the Illumina 2500 profile at error rates that were240

low/typical (˜0.2%, the unmodified profile), intermediate (˜0.6%), and high (˜1.2%). We evaluated the241

accuracy of the tools on the simulated data by comparing each trimmed read pair to the known template242

sequence. We counted the frequency of following outcomes: the fragment does not contain adapters but is243

trimmed anyway (”wrongly trimmed”), the fragment is under-trimmed, or the fragment is over-trimmed.244

We also counted the total number of under- and over-trimmed bases.245

We also benchmarked the tools on two real-world data sets. First, we sampled ˜1M read pairs from a246

whole-genome bisulfite sequencing (WGBS) library generated from the GM12878 cell line. Second, we247

used 6.1M paired-end mRNA-seq reads generated from the K562 cell line. Both of these data sets were248

generated by the ENCODE project (ENCODE Project Consortium, 2012). Since the genomic origins of249

the templates are not known a priori, we instead compared the read trimming tools based on improvement250

in the results of mapping the trimmed versus untrimmed reads. We used STAR (Dobin et al., 2013) to251

map the mRNA-seq reads to GRCh37, and we used bwa-meth (Pedersen et al., 2014) to map the WGBS252

reads to the bisulfite-converted GRCh37. We also compared the results of only adapter trimming to the253

results of adapter trimming plus additional quality trimming using a minimum quality threshold of 20254

(Phred-scale).255

Although sequence analysis is sometimes performed using a desktop computer, analysis of the256

volumes of data currently being generated increasingly requires the use of high-throughput computing257

facilities (”clusters”). The hardware architecture of a cluster is often different from that of a desktop258

computer. Most importantly, storage in a cluster is typically centralized and accessed by the compute259

nodes via high-speed networking. Such an architecture inevitably adds latency to file reading and writing260

operations (”I/O”). Cluster nodes also typically have more processing cores and memory available than261

desktop computers. This means that the performance of software with intensive I/O usage (such as read262

trimming) is likely to be quite different on a desktop versus a cluster. To examine the impact of these263

architectural differences, we ran all benchmarks on both a desktop computer (a Mac Pro) having a 3.7264

GHz quad-core Intel Xeon E5 processor and 32 GB RAM, and on a cluster node having 4 quad-core 2.2265

GHz AMD Opteron processors and 128 GB memory, and with all data being read from and written to266

network-accessible storage over a 1 Gbit ethernet connection.267

Finally, we provide scripts in our GitHub repository that can be used to re-run our analysis, and that268

also enable other tool developers to benchmark their software against Atropos.269

3 RESULTS270

3.1 Simulated Data271

3.1.1 Performance272

On a desktop computer with 4 processing cores, we found that SeqPurge had the fastest overall execution273

time, followed closely by Skewer and Atropos in parallel write mode (Table 2).274

As expected, execution times on a cluster node using 4 threads were approximately 70% greater than275

those observed on a desktop computer (Table 3). We expect that much of this disparity is due to the276
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Execution Time (sec.)

Program Min Max

Atropos (adapter + worker compr.) 185.74 195.83

Atropos (adapter + writer compr.) 55.25 57.10

Atropos (adapter + parallel write) 30.67 32.06

Atropos (insert + worker compr.) 187.04 199.11

Atropos (insert + writer compr.) 56.01 57.96

Atropos (insert + parallel write) 35.23 41.17

SeqPurge 26.72 27.14

Skewer 29.49 30.10

Table 2. Execution time on simulated datasets for programs running on desktop with 4 parallel processes

(threads). Each program was executed multiple times, and Atropos was run with combinations of

alignment algorithm (insert-match or adapter-match) and output mode (writer-compression or

parallel-write). The minimum and maximum execution times for each program are shown, with the

lowest overall execution time in bold.

increased latency involved in network-based I/O on the cluster, although some may also be explained by277

CPU differences (3.7 GHz Intel on the desktop versus 2.2 GHz on the cluster node).278

When increasing the number of parallel execution threads from 4 to 8 and 16, Atropos achieves a279

roughly linear decrease in execution time, and the execution time of SeqPurge decreases to a lesser extent.280

Interestingly, the execution time of Skewer actually increases with an increasing number of threads. With281

8 and 16 threads, Atropos in parallel-write mode is the fastest of the tools.282

On the other hand, Atropos uses substantially more memory than SeqPurge or Skewer (Table 3). We283

expect this is partially due to overhead of automatic memory management in Python compared to C++284

(in which SeqPurge and Skewer are implemented), but in larger part results from Atropos’ use of of285

in-memory queues to communicate between parallel processes. For all three programs, memory usage is286

independent of the number of reads processed. We note that Atropos provides parameters to limit memory287

usage (although typically at the expense of reduced speed).288

3.1.2 Accuracy289

We found that the four trimming algorithms had different biases toward under- and over-trimming (Table 4).290

Across the three sequencing error rates, Skewer had the lowest frequency of wrongly trimming reads291

while SeqPurge had the highest. The Atropos adapter-match algorithm and Skewer had similarly low292

frequencies of over-trimming, while the Atropos insert-match algorithm and SeqPurge had similarly low293

frequencies of under-trimming. Overall, the Atropos insert-match algorithm and SeqPurge demonstrated294

the lowest error rates (0.01%).295

In terms of numbers of over- and under-trimmed bases, the Atropos insert-match algorithm and296

SeqPurge clearly had the best performance (Table 4) at all sequencing error rates. The two algorithms297

had similarly low numbers of under-trimmed bases, but the Atropos insert-match algorithm had a lower298

number of over-trimmed bases, giving it the lowest overall error rate (0.001%). On the other hand, Skewer299

and the Atropos adapter-match algorithm left substantial numbers of under-trimmed bases, resulting in300

about 10-fold higher overall error rates.301

Additionally, we found that all tools discarded very similar numbers of reads (˜1.8%) that were below302

the minimum length threshold of 25 bp after trimming. These were reads with short insert sizes, which303

have a high rate of spurious mapping, and thus it is common practice to discard them.304

3.2 Real Data305

We first tested Atropos’ adapter detection module on the real data sets. Using the first 10,000 reads in each306

pair of FASTQ files, Atropos correctly detected the exact sequences of the adapters used in constructing307

each library. For 3 of the 4 adapters, the sequences were found in a list of known contaminants (WGBS308

read 1: ”TruSeq Adapter, Index 7”; WGBS read 2 and RNA-seq read 2: ”TruSeq Universal Adapter”); the309

RNA-seq read 1 adapter appears to have a custom-designed sequence.310
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Execution Time (Min|Max sec.)

Program 4 Threads 8 Threads 16 Threads

Atropos (adapter + worker compr.) 161.33 163.83 97.93 108.04 53.92 65.39

Atropos (adapter + writer compr.) 84.41 88.11 112.77 114.73 112.27 157.59

Atropos (adapter + parallel write) 51.73 63.61 33.71 46.77 32.88 68.63

Atropos (insert + worker compr.) 171.34 186.00 105.32 110.24 57.40 99.96

Atropos (insert + writer compr.) 87.43 88.59 111.01 114.81 110.53 123.94

Atropos (insert + parallel write) 64.12 75.55 41.22 51.80 34.24 37.24

SeqPurge 43.46 51.36 42.01 46.06 35.69 38.65

Skewer 43.10 55.20 59.00 66.34 54.36 67.79

Memory Usage (Min|Max Gb)

Atropos (worker compr.) 1.019 1.5 0.528 0.730 0.760 1.291

Atropos (writer compr.) 1.884 1.992 1.737 1.951 1.336 1.777

Atropos (parallel write) 1.273 1.680 0.448 1.138 0.571 0.705

SeqPurge 0.013 0.013 0.013 0.013 0.013 0.015

Skewer 0.008 0.008 0.009 0.009 0.013 0.014

Table 3. Top: Execution time on simulated datasets for programs running on a cluster with 4, 8, or 16

parallel processes (threads). Each program was executed multiple times, and Atropos was run with all

combinations of alignment algorithm (insert-match or adapter-match) and output mode

(worker-compression, writer-compression or parallel-write). The minimum and maximum execution

times for each program are shown, and notable results are highlighted in bold. Bottom: The minimum

and maximum memory usage for each program across all executions.

Reads Bases

Program
Wrongly

Trimmed

Over-

trimmed
Under-trimmed

Total

Error

Over-

trimmed

Under-

trimmed

Total

Error

Error rate 0.2%

Atropos

adapter-match 51 (0.01%) 1 (0.00%) 28,991 (9.72%) 3.71% 490 102,133 0.054%

insert-match 134 (0.03%) 26 (0.01%) 27 (0.01%) 0.01% 1,036 66 0.001%

SeqPurge 2,639 (0.55%) 37 (0.01%) 29 (0.01%) 0.01% 7,708 29 0.004%

Skewer 10 (0.00%) 7 (0.00%) 283 (0.09%) 0.04% 21 22,029 0.012%

Error rate 0.6%

Atropos

adapter-match 72 (0.01%) 6 (0.00%) 28,843 (9.68%) 3.69% 733 101,839 0.054%

insert-match 168 (0.03%) 14 (0.00%) 31 (0.01%) 0.01% 1,434 62 0.001%

SeqPurge 2,595 (0.54%) 26 (0.01%) 38 (0.01%) 0.01% 6,701 41 0.004%

Skewer 6 (0.00%) 3 (0.00%) 413 (0.14%) 0.05% 9 36,685 0.019%

Error rate 1.2%

Atropos

adapter-match 76 (0.02%) 5 (0.00%) 30,152 (10.12%) 3.86% 721 117,027 0.062%

insert-match 175 (0.04%) 12 (0.00%) 46 (0.02%) 0.01% 1,440 110 0.001%

SeqPurge 2,652 (0.55%) 24 (0.01%) 34 (0.01%) 0.01% 7,628 36 0.004%

Skewer 7 (0.00%) 5 (0.00%) 644 (0.22%) 0.08% 12 67,066 0.035%

Table 4. Trimming accuracy on simulated data with three different base-call error rates.

3.2.1 Performance311

We performed adapter trimming on the real datasets in a cluster environments using 16 parallel cores.312

Again, we found that Atropos in parallel-write mode performed the best (Table 5). For the WGBS313

dataset, SeqPurge, Skewer, and Atropos in worker-compression mode were ˜50% slower than Atropos in314

parallel-write mode. For the mRNA-seq data set, Atropos in writer-compression mode was nearly as fast315
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Trimming

Time (sec.)

Trimming

Mem. (Gb)

Mapping

Time (min.)

Program Q0 Q20 Q0 Q20 Q0 Q20

WGBS Data

Untrimmed reads 37:59

Atropos (worker compr.) 60.71 61.84 1.665 0.839 32:10 28:46

Atropos (writer compr.) 85.38 91.06 1.026 0.842

Atropos (parallel write) 38.28 39.64 0.664 1.440

SeqPurge 56.20 60.54 0.011 0.012 33:00 25:22

Skewer 69.34 69.83 0.014 0.014 31:11 26:20

mRNA-seq Data

Untrimmed reads 03:34

Atropos (worker compr.) 294.24 0.800 03:23

Atropos (writer compr.) 257.17 0.586

Atropos (parallel write) 254.01 0.466

SeqPurge 351.46 0.011 02:14

Skewer 279.08 0.014 02:20

Table 5. Execution and read mapping times for programs trimming real data on a cluster with 16 threads.

Each program was executed with no additional quality trimming (Q0); for WGBS data, we also

performed quality trimming at a minimum base quality of 20 (Q20). Atropos was run with the

insert-match algorithm. SeqPurge and Atropos were run with error correction enabled (Skewer performs

error correction by default).

as parallel-write mode, while skewer was ˜10% slower. We also performed read mapping on the cluster316

with 16 cores (Table 5). In all cases, we observed that the dataset with the least effective improvement317

over untrimmed reads (Figures 2 and 3) had the fastest mapping time, indicating that mapping time is not318

a valid proxy for overall trimming tool performance.319

3.2.2 Effectiveness320

We assessed read trimming effectiveness in practical terms. For the WGBS data, we computed the number321

of trimmed reads mapped at at given quality (MAPQ) cutoff, relative to the number of untrimmed reads322

mapped at that cutoff. We found that trimming by Atropos resulted in the greatest increase in number323

of mapped reads at all quality cutoffs (Figure 2). We found that trimming with SeqPurge resulted in324

similar, but smaller, gains in mapping quality, while trimming with Skewer resulted in the smallest gains325

in quality.326

We also found that additional quality trimming in addition to adapter trimming has a substantial327

negative effect on read mapping, at least for bisulfite reads mapped using bwa-meth. Quality trimming by328

Skewer had the least negative effect on mapping quality of the three programs, and quality trimming by329

SeqPurge had the greatest negative effect on mapping quality.330

For the mRNA-seq data, we additionally compared each alignment to GENCODE (v19) gene annota-331

tions (Harrow et al., 2012) to determine the number of reads mapped to expressed regions of the genome.332

We found that trimming with Atropos resulted an equal or greater number of mapped reads aligned to333

expressed regions compared to the other tools at all MAPQ thresholds (Figure 3).334

4 CONCLUSIONS335

Our results demonstrate that adapter trimming tools are approaching optimal accuracy, at least for the336

(currently) most common type of data – paired-end short reads with 3’ adapters. On synthetic data with337

varying error rates, Atropos (using our new insert-match algorithm) and SeqPurge both demonstrated338

overall error rates of 0.01% at the read level, and Atropos has the lowest base-level error rate of 0.001%.339

On real WGBS and mRNA-seq data, we found that adapter trimming with Atropos resulted in the340

greatest increase in read mapping quality. We also found that stringent quality trimming has a negative341

effect on WGBS read mapping quality, at least when using bwa-meth as the alignment tool. For reads342

trimmed with a quality threshold of 20, all mapping statistics were worse than those for untrimmed reads.343

10/13

PeerJ reviewing PDF | (2017:01:15517:0:0:REVIEW 4 Jan 2017)

Manuscript to be reviewed



�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

−5000

−2500

0

2500

0 20 40 60
Mapping Quality Score (MAPQ) Cutoff

T
ri
m

m
e
d
 R

e
a
d
s
 -

 U
n
tr

im
m

e
d
 R

e
a
d
s

Q (Quality 

Trimming

Threshold)
� 0
20

Program
�

�

�

Atropos

SeqPurge

Skewer

Figure 2. Atropos trimming best improves mapping of real WGBS sequencing reads. Reads were

adapter-trimmed with all three programs, both without additional quality trimming (Q=0) and with

quality trimming at a threshold of Q=20. We mapped both untrimmed and trimmed reads to the genome.

For each MAPQ cutoff on the x-axis (1..60 at intervals of 5), the number of reads with MAPQ greater

than or equal to the cutoff less the number of untrimmed reads with MAPQ greater than or equal to the

cutoff is shown on the y-axis for each program.

In terms of performance, SeqPurge had the best performance of the three tools when only 4 threads344

were available, while Atropos and SeqPurge had superior performance on our cluster environment when345

there were at least 8 threads available. In the later case, Atropos in parallel-write mode had the best overall346

performance on all datasets, with the trade-off that parallel-write mode produces a larger number of data347

files, which may make analyses of large projects more complicated to manage. SeqPurge performed better348

than Skewer and Atropos in worker- and writer-compression mode on the smaller and lower-error WGBS349

dataset, while Skewer performed better than SeqPurge and Atropos in worker-compression mode on the350

larger and higher-error mRNA-seq dataset. Atropos’ memory requirements were the highest among the351

three programs (0.5-2 GB versus 10-20 Mb), but well within the capabilities of most modern computer352

systems.353

In summary, our results show that Atropos offers the best combination of accuracy and performance354

of the tools that we evaluated. Furthermore, Atropos has the richest feature set of the three tools, including355

Methyl-Seq-specific trimming options, automated adapter detection, estimation of sequencing error, and356

support for data generated by many sequencing methods (ABI SOLiD, Illumina NextSeq, mate-pair357

libraries, and single-end sequencing). Finally, Atropos is easily installable on any system with Python358

3.3+.359

5 DATA AVAILABILITY360

• Atropos can be installed from the Python Package Index (pypi) using the pip tool: ’pip install361

atropos’.362
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Figure 3. Atropos trimming results in the greatest increase in mRNA-seq reads mapped to

expressed regions. Reads were adapter-trimmed with all three program without additional quality

trimming. We mapped both untrimmed and trimmed reads to the genome using STAR. When parameter

outSAMmultNmax = 2, STAR produces only four MAPQ values: 255=unique alignment, 3=two

alignments with similar but unequal score; 1=two alignments with equal score; and 0=unmapped. For

each of the four MAPQ cutoffs on the x-axis, the number of reads with MAPQ greater than or equal to

the cutoff less the number of untrimmed reads with MAPQ greater than or equal to the cutoff is shown on

the y-axis for each program.

• The Atropos source code, including all scripts needed to execute the analyses in this paper, are363

available at https://github.com/jdidion/atropos. The portions of Atropos developed364

by JPD are a work of the US government, and thus all copyright is waived under a CC0 1.0 Universal365

Public Domain Dedication (https://creativecommons.org/publicdomain/zero/366

1.0/).367

• The simulated data sets are also available in the Atropos GitHub repository.368

• The real K562 mRNA-seq data (accession SRR521458) is available from the NCBI Sequence Read369

Archive: https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR521458.370

• The real GM12878 WGBS data (accession ENCLB794YYH) is available from the ENCODE project371

website: https://www.encodeproject.org/experiments/ENCSR890UQO/.372

• We used human reference genome GRCh37, downloaded from ftp://ftp.ncbi.nlm.nih.373

gov/genomes/Homo_sapiens/ARCHIVE/BUILD.37.3.374
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• We used GENCODE v19 annotations, downloaded from ftp://ftp.sanger.ac.uk/pub/375

gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz.376
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