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Background. Coexistence of sexual and asexual populations remains a key question in evolutionary

ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens

can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats

within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and

where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in

anthropic environments (e.g. grain stores) where host outbreaks offer periods when egg-load is the main

constraint on reproductive output.

Methods. We present a meta-analysis of known adaptations to these habitats. Differences in behavior,

physiology and life-history traits between sexual and asexual wasps were standardized in term of effect

size (Cohen’s d value, Cohen, 1988).

Results. Seeking consilience from the differences between multiple traits, we found that sexuals invest

more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response

to thermal variability than asexual counterparts.

Discussion. Thus, each form has consistent multiple adaptations to the ecological circumstances in the

contrasting environments.
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22 adapted to different habitats within their area of distribution. Sexuals inhabit natural environments 

23 that are highly unpredictable, and where density of wasps and their hosts is low and patchily 

24 distributed. Asexuals instead are common in anthropic environments (e.g. grain stores) where host 

25 outbreaks offer periods when egg-load is the main constraint on reproductive output. 

26 Methods. We present a meta-analysis of known adaptations to these habitats. Differences in 

27 behavior, physiology and life-history traits between sexual and asexual wasps were standardized 

28 in term of effect size (Cohen’s d value, Cohen, 1988). 

29 Results. Seeking consilience from the differences between multiple traits, we found that sexuals 

30 invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity 

31 in response to thermal variability than asexual counterparts. 

32 Discussion. Thus, each form has consistent multiple adaptations to the ecological circumstances 

33 in the contrasting environments.
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39 Introduction

40 Populations of a species from different localities often are locally adapted in life history traits, 

41 behavior and physiology (Kraaijeveld & van Alphen, 1995a; 1995b; Seyahooei et al., 2011a; 

42 2011b), but individuals of a species from the same locality tend to have similar traits, because 

43 sexual reproduction and recombination prevent the divergence of genotypes. However, local 

44 adaptation patterns may differ when an asexual alternative exists. On the one hand, in the same 

45 conditions, individuals that reproduce asexually become genetically isolated from the sexual 

46 members of the population and thus the sexually reproducing individuals and the asexually 

47 reproducing clones could accumulate genetic differences. On the other hand, when sexually 

48 reproducing individuals and asexual clones occupy the same niche, normalizing selection would 

49 prevent divergence by random drift between sexuals and asexuals.

50 A variety of processes, including “loss of sexuality” mutations, hybridization and 

51 endosymbiotic infection, cause the occasional generation of asexual strains from sexually 

52 reproducing individuals in a range of eukaryotic taxa (Butlin, 2002; Neiman et al., 2014; van der 

53 Kooi & Schwander, 2014). This phenomenon leads to competition between the newly created 

54 asexual strain and the ancestral sexual strain (Lively, 2010; Innes & Ginn, 2014). When both 

55 reproductive modes are obligatory and remain thereafter reproductively isolated, competitive 

56 interactions between them could favor individuals of one of the reproductive modes over the other. 

57 Asexual individuals, except for their reproductive mode, may differ little in phenotype from their 

58 sexual ancestors. Hence, which reproductive mode will be favored depends on the balance between 

59 the benefits and costs of sex. These costs result from the inefficiencies of sexual as compared to 

60 asexual reproduction (Maynard Smith, 1978; recently reviewed by Lehtonen et al., 2012, 

61 Meirmans et al., 2012, and Stelzer, 2015). If environmental conditions enable asexuals to fully 
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62 express their reproductive advantages (i.e. the avoidance of mating and of production of male 

63 offspring), this mode of reproduction is superior and will replace the sexual form (Maynard Smith, 

64 1978). 

65 Theoretical studies reveal that coexistence of sexual and asexual competitors is only 

66 possible if the newly arisen asexual forms have a smaller inhibitory effect on the sexual forms than 

67 the sexual strains have on themselves (Case & Taper, 1986; Gaggiotti, 1994; Doncaster et al., 

68 2000). This may arise when the habitat is structured as a mosaic of environments in which either 

69 one or the other form performs better, leading to a potential coexistence at the geographical level 

70 (Tilquin & Kokko, 2016). Asexually reproducing forms are expected to thrive in environments 

71 where conditions provide opportunities for reproduction at the maximum possible rate and 

72 conditions affecting survival are benign and stable. Sexual forms may resist asexual invasion in 

73 environments that are more temporally or spatially heterogeneous, thanks to their higher genetic 

74 diversity (Park et al., 2014). 

75 Empirical tests of the hypothesis of coexistence of sexual and asexual forms being mediated 

76 by ecological differentiation are lacking (see Letho & Haag, 2010). Such a test would require (1) 

77 a demonstration that the sexually reproducing form differs in habitat use from the asexual form, 

78 (2) evidence that the habitat used by the asexually reproducing clones is more benign and/or stable 

79 in space and time than that of the sexually reproducing form, regarding factors affecting survival, 

80 and (3) that individuals of both reproductive modes are adapted in behavior, physiology and life 

81 history traits to their respective habitats.

82 We test the hypothesis of ecological differentiation by bringing together different strands 

83 of research in a hymenopteran parasitoid that fits the scenario introduced above. Transitions from 

84 sexual reproduction to asexuality have occurred repeatedly and independently in hymenopteran 
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85 parasitoids (Godfray, 1994; van Wilgenburg et al., 2006; Heimpel & de Boer, 2008). In parasitoids, 

86 adaptation to different environments is tightly constrained by three main trade-offs (Jervis et al., 

87 2007; 2008; Segoli & Rosenheim, 2013): 1- allocation to soma (mainly exoskeleton and 

88 musculature) versus non-soma (reproductive tissues and gametes, together with initial nutrient 

89 reserves); 2- allocation to teneral egg complement versus initial reserves, which is an expression 

90 of the classical trade-off between immediate reproduction and survival (for future reproduction); 

91 and 3- allocation of resources not assigned to reproduction to either survival or locomotion. The 

92 resolution of these trade-offs in different environments should lead to different patterns of 

93 adaptation in life-history, as observed, for instance, among populations of Asobara tabida 

94 (Kraaijeveld & van Alphen, 1995a; 1995b) and Leptopilina boulardi (Moiroux et al., 2010; 

95 Seyahooei et al., 2011a; 2011b) or in hyperparasitoids Gelis spp. (Visser et al., 2016), but also in 

96 behaviors and morphology. 

97 This work aims, through a meta-analysis of life history traits involved in the above 

98 mentioned trade-offs, of foraging behavior and morphology to provide an empirical test of the 

99 hypothesis of ecological differentiation outlined above using the parasitoid Venturia canescens G. 

100 (Hymenoptera: Ichneumonidae). 

101 We chose V. canescens for four reasons. First, both reproductive modes are obligatory (i.e. 

102 there is no cyclic asexuality) with no known direct benefit of sex such as the formation of resting 

103 stages able to resist to harsh environmental conditions (Beukeboom et al., 1999). Second, it is one 

104 of the few hymenoptera species where obligate sexual and asexual individuals co-occur and where 

105 asexuality is not caused by bacterial endosymbionts (Beukeboom & Pijnacker 2000; Mateo Leach 

106 et al., 2009; Foray et al., 2013b). This characteristic allows us to focus on the ecological factors 

107 that impinge on the persistence of both forms independently of the coevolution of the system host-
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108 symbionts (Duron et al., 2008; Werren et al., 2008; Ma et al., 2014). Third, no genetic exchanges 

109 through mating occur in natural populations between reproductive modes (Mateo-Leach et al., 

110 2012), preserving different genetic entities and allowing ecological differences. The fourth reason 

111 to focus on V. canescens is the large number of studies published in the last 17 years providing a 

112 wealth of data on the life history and foraging behavior of asexual and sexual forms (Table 1). 

113 These studies allow a rich set of comparisons, which have not as yet been exploited to test the 

114 pattern of adaptation of each form to its preferential environment (see Meirmans et al., 2012 for a 

115 qualitative discussion of some traits). Each of the studies included in our analysis examines a 

116 behavioral response in either strain under specific conditions (e.g. exploitation of hosts under 

117 changing weather conditions, Amat et al., 2006), or a life-history-trait. The combination of data on 

118 a large number of life history and behavioral traits allows us to depict how changes in a whole 

119 suite of traits have resulted in adaptation of wasps of both reproductive modes to their respective 

120 habitats. Also, our meta-analysis allows assessment of the relative contribution of physiological 

121 and behavioral traits and trade-offs to adaption in different environments. 

122 Our predictions can be summarized as follows: 

123 Life history trade-offs: We expect differences in egg load, survival and flight capability between 

124 both forms of V. canescens due to the trade-off between current and future reproduction. In natural 

125 habitats the majority of individuals are sexuals (asexuals are occasionally found (Schneider et al., 

126 2002; Amat, 2004) but their origin is unknown) exploiting sparsely distributed hosts (Driessen & 

127 Bernstein, 1999). This should favor a higher investment in survival and flight capability for future 

128 reproduction at the cost of lower egg production, in comparison to asexuals. The latter live in grain 

129 stores and mills, where host distribution is aggregated (Bowditch & Madden 1996) and the 

130 amplitude of host density variation is very large (Campbell & Arbogast, 2004; Arbogast et al., 
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131 2005a; Arbogast et al., 2005b; Belda & Riudavets, 2013). These environmental conditions should 

132 favor higher investment in the production of eggs available for immediate reproduction rather than 

133 survival and flight capability. This is consistent with theoretical predictions that heterogeneous 

134 distribution of hosts through time and space promotes higher egg production at the expense of 

135 other life history traits (Ellers et al., 2000). When finding patches with high host density, animals 

136 with higher egg loads could disproportionally contribute to future generations. The trade-off 

137 between current and future reproduction could also be influenced by the availability of food 

138 sources, which are easily found in the field (Desouhant et al., 2010). Thus, for sexual females, the 

139 selective pressure exerted by the hosts for an investment in future reproduction could be 

140 counterbalanced by the presence of food, ensuring future reproduction and acting in favor of an 

141 investment in immediate reproduction 

142 Response to weather conditions: From a behavioral point of view, environmental cues for 

143 forthcoming weather changes, such as sudden drops in temperature or atmospheric pressure, can 

144 be exploited to adjust foraging or laying behavior, and sensitivity to such cues should be most 

145 favored when weather conditions are more unstable, as occurs in natural as compared to storage 

146 habitats. For instance, predictable higher mortality during bad weather should promote exploiting 

147 host-patches more thoroughly than otherwise (e.g. staying longer or laying more eggs; Mangel, 

148 1989; Roitberg et al., 1992; Roitberg et al., 1993; Sirot et al., 1997). This behavioural flexibility 

149 in sexuals should maintain the fitness value in a wider range of environmental conditions than for 

150 asexuals. We expect performance curves, special cases of reaction norms for phenotypic traits 

151 related to fitness (fecundity and longevity; Angilletta 2009; Huey and Kingsolver 1989), to be with 

152 an optimal value in asexuals (the optimal environmental value at which individuals performance 

153 is maximized) and decrease less when moving away from the intermediate temperature in sexuals. 
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154 In addition to the behavioral plasticity described above, the reaction norms of physiological or 

155 developmental traits also condition the shape of the performance curve 

156 Behaviour: Response to intraspecific competition: Female parasitoids compete by superparasitism, 

157 i.e. by laying eggs in already parasitized hosts. As this often results in the death of supernumerary 

158 larvae (van Alphen & Visser 1990), fitness returns from oviposition in parasitized hosts are often 

159 lower than from ovipositions in unparasitized hosts. Most parasitoid species (including asexual 

160 Venturia canescens, Rogers, 1972) mark their hosts with chemicals that inform other females that 

161 the host is already parasitized (van Alphen & Visser, 1990; Marris et al., 1996; Nufio & Papaj, 

162 2001). Thus, females have the information to decide whether or not to lay in an already parasitized 

163 host. In natural environments, the encounter rate with hosts is much lower than in grain stores and 

164 mills. Hence, sexual wasps being more time limited (high risk of dying before having laid their 

165 whole egg-load) should accept parasitized hosts more readily than asexuals do.

166 Methods

167 Biological model:

168 Venturia canescens is a solitary (at most a single parasitoid can emerge from a parasitized 

169 host) koinobiont (allow the host to develop after parasitism) endoparasitoid (eggs are laid inside 

170 the hosts). Adults emerge with a stock of mature eggs and continue to produce eggs during their 

171 life (Pelosse et al., 2011). Eggs are small and anhydropic (LeRalec 1995), that is without energy 

172 reserves. Consequently, the trade-off between egg size and number might not be a strong driver of 

173 egg-load evolution.

174 Sexual reproduction in V. canescens follows the classical haplo-diploid mechanism of 

175 hymenopterans (arrhenotoky): males arise from unfertilized eggs and are haploid, while females 
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176 originate from fertilized eggs and are diploid. Sex ratio manipulation has never been observed in 

177 this species (Metzger et al., 2008; ED unpublished data) Individuals born through this form of 

178 reproduction can be found in natural and semi-natural habitats (e.g. orchards) in the Mediterranean 

179 basin, where they parasitize pyralid moth larvae found in dried fruits, following a sparse and 

180 uniform distribution (Driessen & Bernstein, 1999). In field conditions, food sources (sugar-rich 

181 substances such as nectar or exudates from fruits) are sufficiently available to allow free foraging 

182 V. canescens females to maintain a nearly constant level of energetic reserves, at least up to two 

183 days(Casas et al., 2003; Desouhant et al., 2010). 

184 In contrast, asexual V. canescens individuals are produced by automictic thelythoky, a 

185 genetically based thelytoky in which meiosis and crossing over occur prior to the restoration of 

186 diploidy through the fusion of two pronuclei or of two cleavage nuclei (Beukeboom & Pijnacker 

187 2000). Asexually reproducing V. canescens are found throughout Europe and North America 

188 (Johnson et al., 2000; Schneider et al., 2002), mainly inside buildings and in association with stored 

189 products infested mainly with E. kuehniella, E. cautella (Bowditch & Madden 1996) or Plodia 

190 interpunctella (Roesli et al., 2003, Campbell & Arbogast, 2004). Food for adults is rarely found in 

191 these environments (C. Bernstein, pers. obs.).

192 Overview and selection of the literature

193 The database for the meta-analysis was constituted by using ISI Web of Science (Web of 

194 Science Core Collection). We first selected all the papers with the topics “Venturia canescens”. 

195 Among these papers we selected those with [(thelytok* AND arrhenotok*) OR (sex* AND asex*)] 

196 between 1999 (date of the first report of the occurrence of the sexual form in Venturia canescens; 

197 Beukeboom et al., 1999) and 2017 (February 10th). Thus, 22 studies, in which different 

198 characteristics of asexual and sexual individuals were compared in the laboratory or in the field, 
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199 were retained (Figure 1). Then we set apart genetic studies (n= 6) from life-history and behavioral 

200 studies (n= 16 encompassing 46 traits compared) and focused our analysis on these 16 studies 

201 (Tables 1 and 2). Most of the results from the genetic papers (Beukeboom & Pijnacker, 2000; 

202 Schneider et al., 2002; Mateo-Leach et al., 2009; 2012) are treated in our introduction or 

203 discussion. We also included unpublished results of one doctoral dissertation (Amat, 2004) (see 

204 Figure1). While addressed in the discussion, some results were not included in our meta–analysis; 

205 the reasons for each exclusion (in general, for statistical arguments) are given in Supplementary 

206 Materials (Appendix A Table 1). Venturia canescens strains involved in our meta-analysis came 

207 from 7 localities (Appendix A Table 1) namely Antibes (A and S), Valence (A and S), Mont Boron 

208 (A and S), Valbonne (S), Golfe Juan (A), Tuscany (S) and Algarve (S). The most studied strains 

209 (Antibes 43°42'12.26" N - 7°16'50.33" E and Valence 44°58´34˝N - 4°55´6˝E, where both sexual 

210 and asexual forms are found) were refreshed annually through extensive sampling in the field. 

211 Research groups from four European countries were concerned, Czech republic (1 group), 

212 Netherlands (2 groups), Deutschland (1 group) and France (2 groups).

213 To assist in interpreting the data, we regrouped the different measures into 8 categories: 

214 size, 2 life history traits (fecundity, longevity), 1 physiological character (energy level), 3 

215 behavioral characters (flight, competition with conspecifics (superparasitism) and feeding), and 

216 capacity to respond to changes in temperature. In each category, several traits are considered and 

217 for each of these traits, we obtained 1 to 6 data points from independent studies.  

218 Overview of statistical analyses

219 To compare the differences between the two forms for different traits, which by necessity 

220 are expressed in different units and have different ranges of variation, we transformed the results 

221 to dimensionless (standardized) d effect size measurements (Cohen 1988; Nakagawa & Cuthill 
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222 2007). Cohen (1988) suggested that d values of 0.2, 0.5 and 0.8 could be considered as 

223 corresponding to “small”, “medium” and “large” biological effects, respectively. Effect sizes are 

224 given together with their 95% confidence intervals. Details of d calculations are presented in the 

225 Appendix B. Positive d values correspond to cases where sexuals invest more than asexuals in a 

226 category. For superparasitism, positive values imply that hosts already parasitized by sexual 

227 females would be more frequently avoided by females irrespective of their reproductive mode, and 

228 reduced patch residence time in response to these encounters by sexuals. About response to 

229 temperature, positive d values imply a relationship trait / temperature steeper concave in asexuals 

230 rather than in sexuals.

231

232 Results

233 We present the available comparisons in terms of d in Figure 2, and discuss the traits of each 

234 category individually below, identifying trait measurement either by the point number of the entry 

235 in Figure 2 or by the author’s name(s) when the trait cannot been included in Figure 2 (due to 

236 statistical or design reasons, see  Appendix A Table 1). 

237 Fecundity, longevity and size:

238  Figure 2 shows medium to very large effects sizes (meaning large biological differences 

239 between forms) for traits likely to affect fecundity. Egg load (points 1-4), number of ovarioles 

240 (point 5) and ability to find hosts (at a short distance by walking in an olfactometer, points 6 and 

241 8) are all greater in the asexual form. Asexual females are larger than sexual ones even when both 

242 are reared in the same host species (points 10-15). 
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243 The large effect size for point 50 shows that longevity is higher in sexual than asexual V. 

244 canescens. The same tendency in found in point 48, but the confidence intervals for d included the 

245 possibility of lack of effect. Barke et al., (2005) considered the difference in longevity between 

246 sexual and asexual forms under different temperatures and different levels of food availability. 

247 They did not find differences between unfed animals of both forms, but when wasps were fed, 

248 sexuals had higher longevity. Their results for 15°C are significant, but the data provided do not 

249 allow calculating a d value. Points 49 and 47 show the d values for 25°C and 29 °C. The confidence 

250 intervals for the latter show a lack of effect. On the whole, these data show higher longevity of 

251 sexual than asexual forms. 

252

253 How differences in fecundity and longevity translate into lifetime reproductive success 

254 depends on the environment. In the experimental conditions used by Barke et al., (2005) akin to 

255 indoor situations, sexual forms produced a greater lifetime number of offspring (point 44). This 

256 result seems unexpected, but under their experimental conditions honey-fed wasps do not need 

257 much energy for flying and they can reallocate this energy to fecundity as they are partly 

258 synovigenic (i.e. able to mature eggs during their whole lifetime). Moreover, the advantage of 

259 asexuals in terms of fecundity remains because daughter production by sexual females is lower 

260 than by asexual females. Indeed, even though the offspring sex ratio was not recorded by Barke et 

261 al. (2005), Metzger et al., (2008) and Beukeboom (2001) showed that sex ratio was balanced or 

262 slightly biased toward females in V. canescens. The resolution of the resulting trade-off differs 

263 between forms: asexuals invest preferentially in fecundity at the cost of life expectancy, and the 

264 opposite occurs in sexual wasps (Pelosse et al., 2007).

265 Flight:
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266 A higher investment has been observed under experimental conditions (in the field and in 

267 lab), as evidenced by the small to large effect sizes of the traits belonging to flight category (except 

268 for the null d values obtained for total distance flown and total time in flight during the experiment, 

269 points 19 and 20). Flight measurements deserve some additional explanations. As recorded, flight 

270 bouts were composed of alternate periods of flying and resting. What was observed was that sexual 

271 wasps covered similar distances in fewer flights (lower number of rest stops, point 34). Sexual 

272 wasps also fly faster (points 35, 38 and 39). 

273 Energy level: 

274 Consistent with their greater dependence on flight, sexual females have higher total 

275 metabolic reserves at emergence than asexual ones (point 41). Interestingly, the amount of 

276 nutrients not involved in flight show small d values (non-significantly different from 0; proteins: 

277 point 25; lipids: points 29 and 28; glucose: points 23 and 24, and free carbohydrates: point 26), but 

278 effect size for glycogen reserves are medium to large, with greater glycogen content (at emergence 

279 and after flight) in sexual than asexual females (points 51-53). The consumption rates of glycogen 

280 (consumption per unit time) do not differ between modes of reproduction (point 27). The results 

281 of field experiments are consistent with differences in behavioral and physiological traits found in 

282 the laboratory: sexual V. canescens initiate dispersal faster after release (point 37) and are less 

283 often recaptured in the vicinity of the release point (point 33). Although this could be attributed to 

284 the traps being less attractive to sexuals at distance, the result is also consistent with sexuals being 

285 more mobile and leaving earlier the release site.

286 Feeding: 

287 Differences in initial energy reserves between adults of the two forms can potentially be 

288 compensated by feeding on carbohydrates. When experimentally offered food, asexuals have the 
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289 same feeding behavior as sexual forms (feeding time and number of feeding bouts per unit of 

290 observation time) (points 46 and 9). 

291 Response to weather conditions: 

292 Sexual, but not asexual, individuals respond to a sudden drop in temperature by exploiting 

293 each host-patch more thoroughly (e.g. laying more eggs, point 42, and staying longer). This is 

294 consistent with the predicted difference in sensitivity to weather cues. The faster recovering of 

295 sexuals from chill coma (point 40) is also indicative of sexuals’ higher capability to deal with 

296 temperature changes. The lower sensitivity of sexual individuals to temperature changes is also 

297 reflected by the large positive d value in point 55. This point illustrates the higher breadth of 

298 performance curve of sexual females (quantified by maximal egg load) when exposed to different 

299 temperature during development. 

300 Small to medium positive d values for other performance curves or reaction norms, 

301 quantifying nutrient contents (protein, lipid, sugar and glycogen: points 30, 31, 32 and 45), 

302 longevity (point 22), a measure of total fecundity in another study (point 54), fecundity at 

303 emergence (point 43) and developmental rate (point 36) according to temperature, indicate a higher 

304 tolerance in sexual forms. A measure for longevity yielded a negative value (point 21), but in this 

305 case, d did not differ significantly from 0. In contrast with these results, reaction norms for hind 

306 tibia length differed between two studies. Either the two forms express similar curves (point 18) 

307 or asexuals show a larger breadth of the curve (point 17). This difference in reaction norms for size 

308 was mainly due to differential response at low temperature: lower decrease in size for asexuals 

309 when temperature decreases (a similar trend was observed for developmental rate by Foray et al., 

310 2014  Appendix A Table 1). Because the relationship between size and fitness varies among insect 

311 species (Kazmer & Luck 1995; West et al., 1996; Ellers et al., 1998) and is unknown in V. 
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312 canescens, interpreting the adaptive significance of the higher plasticity in size of asexuals remains 

313 difficult 

314

315 Response to intraspecific competition: 

316 The tendency to superparasitize was measured by observing the behavior of females 

317 released in host patches previously exploited by sexual or asexual females. Point 7 shows that hosts 

318 parasitized by asexual females were more often rejected by other females (independently of their 

319 forms) than hosts previously parasitized by sexual females. There was no effect of the reproductive 

320 mode of second females on the incidence of superparasitism. Barke et al. (2005), in contrast, found 

321 that asexual females had a higher incidence of self-superparasitism. This could be adaptive under 

322 circumstances where the probability of conspecific superparasitism is high (Visser et al., 1990). 

323 However, their statistical analysis does not seem appropriate to handle random effects (effect of 

324 individual females) adequately.

325 Recognizing parasitized hosts allows females to assess the level of exploitation of a patch. 

326 When exploiting partly depleted host patches (i.e. patches in which some hosts are already 

327 parasitized), only asexual females decrease patch time (point 16). 

328

329 Discussion

330 The overarching hypothesis under test is that because sexual and asexual forms of Venturia 

331 canescens predominate in different ecological scenarios, life-history, anatomical and physiological 

332 traits will reflect adaptations to the circumstances of each form. Asexuals proliferate in stores, 

333 where hosts are clumped and there is no food for adults, while the hosts of sexual forms tend to be 
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334 solitary (one per patch), spatially separated, and occur where food for adult wasps is available. 

335 These distinct habitats led us to predict that sexuals should show higher investment in flight 

336 capacity, longevity, and ability to tolerate thermal changes, while asexuals will aim at the potential 

337 maximum reproductive output conferred by a larger egg-load which they, but not the sexuals, have 

338 opportunities to deploy.

339 Trade-off between current and future reproduction 

340 Figure 2 displays the outcome of a large number of comparisons, many of which support 

341 our overarching hypothesis. Together, these results are clearly consistent with asexuals investing 

342 more in fecundity and sexuals more in locomotion and longevity. In environments with a higher 

343 rate of host encounter, a higher investment of asexuals in egg load is advantageous. Likewise, the 

344 asexual mode of reproduction provides an advantage over sexual lineages by the avoidance of the 

345 two-fold cost of sex caused by laying haploid eggs destined to produce males. On the other hand, 

346 the higher investment in locomotion and longevity in sexuals matches the host distribution and 

347 availability in the field. Facing scarce and spatially scattered hosts, the sexuals may be more often 

348 time-limited and die before having laid their whole egg-load. This would select for increased 

349 longevity. The effects of time limitation (dying before laying full egg supply) and egg limitation 

350 (defined as the temporary or permanent exhaustion of the supply of mature eggs), and how they 

351 mediate the trade-off between current and future reproduction, have been explored in various 

352 parasitoid species, and are an important aspect of the ecology and evolution of host-parasitoid 

353 systems (Rosenheim, 1996; Heimpel et al., 1998; Sevenster et al., 2000; Rosenheim et al., 2008). 

354 Contrary to host distribution, the potential high food availability in the field (Casas et al., 

355 2003; Desouhant et al., 2010) could have select for lower initial energy reserves and more nutrients 

356 allocated to egg production in sexual wasps.. However, a greater egg load should not be beneficial 
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357 in natural conditions due to the low host encounter rate. The balance between these different 

358 constraints (hosts and food availability) has favoured a lower investment in egg load and a greater 

359 stock of energy in terms of glycogen, that is, the fuel used in V. canescens to fly and reach host 

360 microhabitats.

361 We cannot rule out that observed differences could result from alternative selective 

362 pressures. For instance, the differences in investment in current versus future reproduction could 

363 be due to the fact that asexuality may select for lower investment in longevity and energy reserves, 

364 as there is no need to spend energy for mate search, courtship and mating. However, V. canescens 

365 females mate only once, search for hosts and lay eggs just after emergence even if unmated 

366 (Metzger et al., 2008; Metzger et al., 2010a). Males search for and encounter females on host 

367 patches where mating occurs (Metzger et al., 2010b). That means that saving time and energy from 

368 mate search and courtship is anecdotal in the sexual females.

369 Phenotypic plasticity in response to temperature

370 Wasps living in natural habitats have more general (breadth) performance curves and are 

371 less sensitive to temperature than those living in stores that are specialized to a narrow range of 

372 thermal values. Sexual wasps are less affected by temperature in their energy allocation to different 

373 functions (e.g. for glycogen, the energetic substrate for flight, Amat et al., 2012); this difference 

374 in plasticity may contribute to the difference in the resolution of the trade-off between egg 

375 production and survival/locomotion in the two forms of V. canescens. However, some of the 

376 observed responses may reflect constraints rather than adaptive responses (e.g. for size or 

377 developmental rate). In addition to being more plastic, sexual individuals are better able to tolerate 

378 extreme temperatures. Only sexual females, which live in variable weather conditions, adjusted 

379 their oviposition behavior – increasing their oviposition rate- when experiencing a sudden change 
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380 in temperature (Amat et al., 2006). In line with these results, in sexuals, but not in asexuals, there 

381 is an accumulation of metabolites with a suspected cryoprotective functions in response to lower 

382 temperatures (Foray et al., 2013a; Appendix A Table 1). 

383 Superparasitism

384 Sexual females are as efficient as asexual females to discriminate marked from unmarked 

385 hosts, and avoid marked ones. However, hosts parasitized by sexual females are less likely to be 

386 rejected by later arrivals of either kind than those parasitized by asexuals. Why this is so needs 

387 further research, notably since the chemical basis of the recognition has not been studied in sexuals. 

388 A possible causal explanation is that there are differences between the marking substances of the 

389 two forms, in either composition or quantity, which elicit different responses of later arriving 

390 females. Due to the lower probability a host was superparasitized in a short period (beyond 2 days 

391 between two successive ovipositions, the first laid larva wins the competition against the second 

392 larva, Sirot 1996), sexuals should mark less efficiently the hosts. Another possible functional 

393 explanation would be that oviposition into a host already parasitized by a sexual wasps has a higher 

394 probability of resulting in an offspring than oviposition into a host previously parasitized by an 

395 asexual female (van Alphen & Visser, 1990; Visser et al., 1992; Sirot 1996). This could be so if 

396 asexual larvae show greater aggressiveness than sexual ones when fighting inside the 

397 superparasitzed host. While deserving further attention, results of Amat (2004) suggested such an 

398 asymmetry in competitive abilities of sexuals and asexuals in superparasitized larvae (for short 

399 time intervals between successive ovipositions). 

400 Differences in superparasitism rate between sexuals and asexuals may also be increased by kin 

401 selection. Under the hypothesis that asexuals are genetically close, avoidance of superparasitism 

402 in anthropogenic conditions would be expected. This hypothesis needs extra works to be tested.
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403

404 Cognitive abilities

405 Additionally, some studies considered the differences in cognitive abilities between sexuals 

406 and asexuals  (learning color or odor cues related to resource availability, and time to take a 

407 decision in choice experiments) (Thiel et al., 2006; Lucchetta et al., 2007; 2008; Liu et al., 2009a 

408 and Thiel et al., 2013 in Appendix A Table 1). Thriving in a more complex environment, sexuals 

409 are expected to benefit more than asexuals from being efficient at locating hosts and at learning 

410 local conditions (Stephens, 1993). In most cases, the results were presented in terms of statistics 

411 not suitable to be expressed into d values or reproductive mode is involved in higher-level 

412 interactions that impede to interpret its additive effect. These results cannot be incorporated to 

413 Figure 2 and compared to other results. 

414 Origin of differences between forms

415 The consilience between observations on different biological dimensions do confirm the 

416 hypothesis that the two reproductive forms (sexual and asexual) of Venturia canescens are adapted 

417 to the different ecological niches in which these forms are typically found. However, the origin of 

418 the differences between the 2 forms and notably, whether the loss of sex is secondary or pre-

419 existing to the invasion of storage sites remains unknown. Nevertheless, the probably rare 

420 occurrence of asexuality, the absence of genetic exchange between forms (that can be inferred 

421 from the complete separation of the two forms according to the nuclear marker composition) and 

422 the low genetic variability of asexual females may impede their adaptability (Mateo Leach et al., 

423 2012). For this reason, the scenario under which asexual females would have evolved all the 

424 observed adaptations (following the invasion of storage sites or just as a consequence of their 

425 asexuality) seems unlikely. A more plausible evolutionary trajectory is that loss of sexuality 
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426 occurred after invasion of stores, and that it forms further adaptation to the benign and stable 

427 conditions encountered therein, as well as increased egg load or reduced energy reserves. An 

428 analysis of the evolutionary routes of both reproductive modes would allow distinguishing these 

429 scenarios.

430 Coexistence of sexuals and asexuals through ecological differentiation

431 Understanding the paradoxical coexistence of sexuals and asexuals requires quantifying the 

432 balance between costs and benefits of sex via a species-specific approach (Stelzer 2015, Meirmans 

433 et al., 2012). Three main factors influence this equilibrium: constraints on evolution of asexuality, 

434 ecological differentiation and life-history traits (Meirmans et al., 2012). Our results strongly 

435 suggest that ecological differentiation may be a corner-stone to coexistence of the sexuals and 

436 asexuals forms in Venturia canescens. Our conclusion is congruent with previous studies reporting, 

437 in several taxa, differences in habitat preferences and in responses to environmental conditions 

438 between closely related sexual and asexual strains: in plants (dandelions, Meirmans et al., 2012), 

439 insects (aphids, Simon et al., 2002, Gilabert et al., 2014), crustacean (Rossi et al., 2016) and fish 

440 (Schenck & Vrijenhoek 1986). Nevertheless, to firmly conclude about the involvement of 

441 ecological differentiation on coexistence of both reproductive modes in V. canescens, further 

442 investigations are needed to experimentally test, as done by Letho and Haag (2010) in Daphnia 

443 pulex, whether the relative fitness of the sexual and asexual wasps depends on ecological 

444 conditions, that is, whether sexuals outperform asexuals in the field and asexuals outperform 

445 sexuals in building conditions.

446 Conclusions
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447 Our comparison of life history traits between the two modes of reproduction in V. canescens shows 

448 that sexual and asexual individuals are each better adapted to the ecological niches which they 

449 occupy in a whole suit of characters. This conclusion is strengthened by the consistency between 

450 multiple observed differences, which are in accordance with the inferred selective pressures in 

451 both habitats. The life history traits that show the strongest relative divergences (high absolute 

452 values of d in Figure 2) are those involved in the trade-off between egg load and adult survival or 

453 locomotion, and in the phenotypic plasticity in response to temperature. The consistency of the 

454 effect sizes obtained with individuals of both reproductive forms originating from different 

455 localities is a sound indication of their generality.

456
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679 Legend

680 Figure 1. PRISMA flow Diagram describing the process of literature selection (from Moher et al., 

681 2009)

682

683 Figure 2.

684 Standardized coefficients (Cohen's d) ±95% confidence intervals for the difference between 

685 asexual and sexual V. canescens. The traits under study were pooled into eight categories (size, 

686 fecundity, longevity, energy reserve, flight ability, feeding behavior, superparasitism, and  

687 response to temperature changes). Positive d values indicate higher investment by sexual animals. 

688 When dealing with reaction norms (RN) or performance curves (points 17-18, 21-22, 30-32, 36, 

689 43, 45 and 54-55), positive d values stand for less concave curve shape in sexuals). Blue shades 

690 stand for categories where sexuals are expected to invest more than asexuals: longevity, energy, 

691 flight and response to temperature changes. Red shades stand for categories where asexuals are 

692 expected to invest more than sexuals: fecundity and use of conspecific information in the context 

693 of superparasitism. Purple shades are used for size and feeding behavior for which no clear 

694 predictions could be made. A black vertical line at d=0 indicates lack of statistical significance, 

695 and grey vertical lines at d=0.2 (-0.2), 0.5 (-0.5) and 0.8 (-0.8) indicate values over (below) which 

696 the difference is deemed “small” (S), "medium" (M) and “large” (L) (Nakagawa & Cuthill, 2007). 

697 Measures whose confidence intervals overlap 0 were figured in grey. See Table 1 for each point 

698 description and authority. Points are figured by ascending order of mean of the traits. When 

699 multiple studies recorded data on the same trait, the trait is labeled only once.

700
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706 Table 1

707 Authors and trait under comparison between sexual and asexual strains included in Figure 2 and 

708 figures in the original article showing specific results. Category represents the 8 categories of 

709 measures we defined: size, 2 life history traits (Fecundity, Longevity), 1 physiological character 

710 (Energy level), 3 behaviors (Flight, Superparasitism and Feeding) and 1 response to temperature 

711 change (Temperature); these categories referred also to those used in Figure 2. Data from this table 

712 were obtained using strains collected at two different locations in France: in the vicinity of Antibes 

713 (Ant), and Valence (Val) and yearly renewed with freshly caught individuals. 

Authors Trait under comparison between 

sexual and asexual V. canescens 

origin of the 

strains

Figures in 

original paper

Point 

number in 

Fig. 2

Category

Amat et al., 

(2012)

Egg-load at emergence; Val 1c 1 Fecundity

Barke et al., 

(2005)

Egg-load at emergence Ant 7.4 2 Fecundity

Pelosse et al., 

(2007)

Egg-load at emergence Val 3 Fecundity

Pelosse et al.,  

(2010)

Egg-load at emergence Val 1 4 Fecundity

Barke et al., 

(2005)

Number of ovarioles Ant 7.5 5 Fecundity

Liu et al., 

(2009b)

Time to respond host odor Val, Ant 1, 2 6 Fecundity

PeerJ reviewing PDF | (2017:04:17587:1:1:NEW 22 Jul 2017)

Manuscript to be reviewed



Amat et al., 

(2009)

Host propensity to be avoided for 

superparasitism

Ant 1 7 Superpara

sitism

Liu et al., 

(2009b)

Time to choose host patches differing 

in their quality

Val, Ant 1, 2 8 Fecundity

Pelosse et al.,  

(2010)

Number feeding bouts Val 9 Feeding

Pelosse et al.,  

(2010)

Hind tibia length Val 10 Size

Amat 

(2004)

Hind-tibia length Ant 11 Size

Lukas et al., 

(2010)

Hind tibia length Val 12 Size

Amat et al., 

(2012)

Hind-tibia length Val 1a,b 13 Size

Pelosse et al., 

(2007)

Hind tibia length Val 14 Size

Foray et al., 

(2011)

Hind tibia length Val 1a 15 Size

Amat et al., 

(2009)

Patch residence time in response to 

ovipositions in parasitized hosts

Ant 16 Superpara

sitism

Foray et al., 

(2014)

Reaction norm for hind tibia length at 

different temperatures

Val 2a 17 Temperat

ure

Foray et al.,

 (2011)

Reaction norm for hind tibia length as a 

function of temperature

Val 1a 18 Temperat

ure
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Lukas et al., 

(2010)

Total distance flown and total time in 

flight

Val 19, 20 Flight

Foray et al., 

(2011)

Performance curve for longevity as a 

function of temperature

Val 2 21 Temperat

ure

Foray et al., 

(2014)

Performance curve for longevity at 

different temperatures

Val 3c 22 Temperat

ure

Pelosse et al.,  

(2010)

Glucose content Val 2a, b 23 Energy 

level

Pelosse et al., 

(2007)

Glucose content Val 1b, c 24 Energy 

level

Amat et al., 

(2012)

Protein content and free carbohydrates 

content

Val 25, 26 Energy 

level

Amat et al., 

(2012)

Glycogen consumption rates during 

flight

Val 2 27 Energy 

level

Pelosse et al., 

(2007)

Lipid content Val 1b, c 28 Energy 

level

Amat et al., 

(2012)

Lipid content Val 29 Energy 

level

Foray et al., 

(2014)

Reaction norm for protein, lipid and 

sugar content at different temperatures

Val 5 30, 31, 32 Temperat

ure

Amat (2004) Proportion of females not recaptured 

after release in field conditions

Ant 28 33 Flight

Lukas et al., 

(2010)

Number of rest stops per flight of 

similar distance

Val 1 34 Flight
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Lukas et al., 

(2010)

Speed of the longest flight Val 35 Flight

Foray et al., 

(2011)

Reaction norm for development rate as 

a function of temperature

Val 1b 36 Temperat

ure

Amat (2004) Time to leave after experimental 

release

Ant 27 37 Flight

Amat et al., 

(2012)

Speed of flight Val 3 38 Flight

Lukas et al., 

(2010)

Speed of flight; Val 2 39 Flight

Foray et al

(2013b)

Time to recover from chill coma Val 1 40 Temperat

ure

Pelosse et al., 

(2007)

Teneral energy content Val 1a 41 Energy 

level

Amat et al., 

(2006)

Change in the number of ovipositions 

in response to change in temperature

Ant 3 42 Temperat

ure

Foray et al., 

(2011)

Performance curve for egg load at 

emergence as a function of temperature

Val 3a 43 Temperat

ure

Barke et al., 

(2005)

Life-time offspring produced Ant 7.2 44 Fecundity

Foray et al., 

(2014)

Reaction norm for glycogen content at 

different temperatures

Val 5 45 Temperat

ure

Pelosse et al.,  

(2010)

Time feeding Val 46 Feeding
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Barke et al., 

(2005)

Longevity of fed wasps at 29°C Ant 7.6b 47 Longevity

Pelosse et al.,  

(2010)

Longevity Val 48 Longevity

Barke et al., 

(2005)

Longevity of fed wasps at 25°C Ant 7.6b 49 Longevity

Foray et al., 

(2011)

Longevity Val 2 50 Longevity

Pelosse et al., 

(2007)

Teneral glycogen content Val 1d 51 Energy 

level

Pelosse et al., 

(2010)

Teneral glycogen content Val 2c 52 Energy 

level

Amat et al., 

(2012)

Glycogen content Val 2 53 Energy 

level

Foray et al., 

(2014)

Performance curve for maximal 

fecundity at different temperatures

Val 3b 54 Temperat

ure

Foray et al., 

(2011)

Performance curve of maximal egg-

load as a function of temperature

Val 3b 55 Temperat

ure

714
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715 Appendix A: Selected literature for the meta-analysis

716 We calculated the effect size of reproductive mode for the great majority of the 46 

717 traits under study from the 16 papers included in the meta-analysis (see also “overview of 

718 the selected literature” section in the main text). Some results, indicated in Appendix A 

719 Table 1, were not included in Figure 2 because either a) higher-level interactions impede 

720 to interpret the additive effects of reproductive mode and thus to calculate d statistics for 

721 these effects (note that when reproductive mode is involved in higher-level interactions but 

722 without switch of effect in each reproductive mode, additive effects of mode of 

723 reproduction are provided, e.g. point 34 in Figure 2); b) experimental design did not 

724 compare the sexual and asexual trait in a single experiment; c) d inappropriate for the 

725 statistics used (e.g. non-parametric or semiparametric statistics, multivariate analysis) ; d) 

726 the information provided did not allow for statistical comparisons in terms of d values. 

727

728 Appendix ATable 1

729 Authors and main results of the comparison between sexual (S) and asexual (A) strains that are 

730 not included in Figure 2. Figures in the original paper showing specific results. Comment: reasons 

731 that led to their exclusion from Figure 2 (see text for details). PRT: patch residence time. Data 

732 from this table were obtained using strains collected at 7 different locations: Antibes (Ant), 

733 Valence (Val), Mont Boron (MtB), Valbonne (Valb), Golfe Juan (GJ), Tuscany (Tu) and Algarve 

734 (Al). In two cases, some results were considered redundant. In Amat et al. (2006) two similar 

735 experiments gave similar results. In Lukas et al. (2010) in the same experiment similar measures 
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736 of flight performance yielded similar results. In these two cases a single result was included in 

737 Figure 2.

Authors
Results of comparing sexual versus asexual V. canescens ; 

(origin of the strains)

origin of 

the strains

Figures in 

original 

paper

Comment

Amat (2004)

Recapture rate in the field: 11% of all captures in field 

transects are A and 89% S. In 19.5 % of the samplings A and 

S coincided in recapture date and location 

Val 22, 24 d inappropriate

Higher longevity for fed S at 15 °C Ant 7.6 d inappropriate

Barke et al., 

(2005) No significant differences in longevity for unfed A and S at 

15,25 and 29 °C 
Ant 7.6 d inappropriate

Liu et al., 

(2009a)

PRT depends on "travel time" : S use flying time between two 

successive patch encounters while A simply use waiting time 

(either flying or resting) 

Ant, Val 4 Experimental design

Lucchetta et 

al., (2007)

The effect of the number of ovipositions on PRT is differently 

affected by the mode of reproduction (A or S), depending on 

the origin of the animals (Ant or Val). For the wasps from 

Antibes, each oviposition decreases stronger the PRT in A than 

in S. In Valence, the effect of the number of ovipositions is 

independent of the reproductive mode 

Ant, Val 4
Higher level 

interaction

Lucchetta et 

al., (2008)

No difference between A and S in their ability to learn a color 

associated with a food reward 
Val 3 d inappropriate

Foray et al., 

(2014)

The shape of the reaction norm for developmental rate differs 

with the reproductive mode: S females reach higher maximal 

growth rate than the A females do. The shape is also affected 

by the thermal regime, with a decrease of the developmental 

growth rate at 25 and 30 °C under the fluctuating regime 

Val 2b
Higher level 

interaction

Foray et al., 

(2013a)

Metabolite profile differences in response to thermal change: 

phenylalanine, threonine and serine were more abundant in the 

S, while maltose, succinate, sucrose and glycerol were more 

abundant in the A  

Val 2 d inappropriate
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Pelosse et al., 

(2007)

The relationship between egg load at death and longevity: 

resource availability during ontogeny and reproductive mode 

affect this relationship. When resource are highly available, S 

live longer than A and have fewer eggs than their A 

counterparts. When the A and S wasps develop in low resource  

available conditions, they decrease both in fecundity and 

longevity 

Val 2
Higher level 

interaction

Pelosse et 

al., (2010)

Fructose amounts during lifetime is affected by size in 

interaction with reproductive mode 
Val 2a, b

Higher level 

interaction

No differences in giving up time between S and A Ant, Val 3

Insufficient 

information and higher 

level interaction

A reduce their PRT with successive visits to patches in a rich 

environment (in terms of host patches); in contrast, S females 

do not modify their behavior with experience 

Ant, Val 4

Insufficient 

information and higher 

level interaction

Thiel et al., 

(2006)

Higher oviposition rate with successive visits to host patches 

in A than in S 

Ant, Val, 

Valb, GJ, 

Tu, Al

8
Insufficient 

information

Thiel et al., 

(2013)

S are not more effective learners than A females in a context 

of associative learning of stimuli related to hosts 

Ant, Val, 

MtB
3

d inappropriate

Low sample size

738

739 Appendix B: Statistical analysis

740 When reared on its host Ephestia kuehniella, asexual V. canescens tend to be larger than their 

741 sexual counterparts (differences in hind tibia length indicated by points 10-15 in Figure 2. See 

742 points 14 and 15, for non-significant differences). In most of the original analysis performed in 

743 papers listed in table 1, trait measurements are corrected for size by taking the size as the first 

744 covariate in statistical models. This allows revealing the differential investment effort in traits for 

745 individuals of the two modes of reproduction.
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746 To integrate and interpret the results of a large set of publications dealing with the 

747 differences between sexual and asexual V. canescens, we standardized the mean differences 

748 between strains in terms of the standard deviations of the difference. This yields effect size 

749 measurements (Cohen’s d value, Cohen, 1988) devoid of units and thus comparable in a meta-

750 analysis approach. d is defined as 

751 𝑑 = 𝑚1 ‒ 𝑚2𝑆𝑝𝑜𝑜𝑙𝑒𝑑
752 with 

753 𝑆𝑝𝑜𝑜𝑙𝑒𝑑 = (𝑛2 ‒ 1)𝑠22+ (𝑛1 ‒ 1)𝑠21𝑛1+ 𝑛2 ‒ 2
754 where m1 and m2 are the mean values for two groups, s1

2 and s2
2 are the variances and n1 and n2 

755 are the sample sizes. 

756 The parameter d might be calculated using different expressions. We used the expression suggested 

757 by Nakagawa and Cuthill (2007)

758 𝑑 = 𝑡(𝑛1+ 𝑛2)𝑛1𝑛2𝑑𝑓
759

760 where t is Student’s statistic obtained from the statistical analysis and df is the number of degrees 

761 of freedom used for a corresponding t value. 

762 The approximated 95% confidence intervals (95% CI) of d are given by
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763 95% CI= d-1.96 × sed to d+1.96 × sed

764 where sed stands for the asymptotic standard error. There are several mathematical expressions 

765 that allow for the calculation of this value. Here we used (Hunter and Schmidt 2004) 

766 𝑠𝑒𝑑 = (
𝑛1+ 𝑛2 ‒ 1𝑛1+ 𝑛2 ‒ 3)[( 4𝑛1+ 𝑛2)(1 + 𝑑2

8 )]

767 This expression is adequate for Cohen’s d, although it might provide biased estimates for small 

768 sample sizes. We calculated both biased and unbiased estimates. The differences between biased 

769 and unbiased estimates proved to be negligible (results not presented). The results of the analysis 

770 of continuous response variables performed by means of generalized linear models express the 

771 significance of a given process in terms of F values. As two groups were compared, the number of 

772 degrees of freedom for the treatments is 1, and t can be calculated as suggested by Nakagawa and 

773 Cuthill (2007):

774 𝑡𝑛 df
= 𝐹1,𝑛 df

775 When statistical models expressed significance in terms of the normal distribution, in the relevant 

776 equations we used the z values to replace the t values, calculating the degrees of freedom as if t-

777 tests were used (Nakagawa & Cuthill 2007). 

778

779 In these calculations, positive d values stand for the case where a trait value is higher in sexuals. 

780 In some cases, the trait measured is negatively correlated with the investment in the category under 

781 study. These cases are: number of stops during a flight covering a given distance (negatively 

782 correlated to flight investment because this implies shorter flight bouts, point 34 in Figure 2); time 
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783 to leave release apparatus in the wild (negatively correlated to flight investment, point 37 in Figure 

784 2) and time to recover from chill coma (negatively correlated to ability to deal with changing 

785 temperature, point 40 in Figure 2). In these cases, we changed the sign of the d value. In this way, 

786 in Figure 2 all positive d values correspond to cases where sexuals invest more than asexuals in a 

787 given category (size, fecundity, longevity, energy level, flight, superparasitism, feeding and 

788 temperature). When dealing with reaction norms or performance curves (points 17-18, 21-22, 30-

789 32, 36, 43, 45 and 54-55 in Figure 2), we approximated the relationship between the measured trait 

790 and temperature for each form by a parabola. The coefficient for the interaction between mode of 

791 reproduction and temperature squared is compared to 0 in order to test the differences in shape 

792 between the two curves. Calculations were performed such that positive d values would correspond 

793 to steeper concave curves for asexuals. This corresponds to situations in which i) sexual parasitoids 

794 present shallower and broader curves, allowing high reproduction rates for a wider range of 

795 temperatures, and ii) asexual wasps, having narrower response curves, maximize reproductive 

796 success under a restricted thermal range. 
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