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Background. Coexistence of sexual and asexual populations remains a key question in evolutionary
ecology. We address the question how an asexual and a sexual form of the parasitoidVenturia canescens
can coexist in southern Europe and test the hypothesis that both forms are adapted to different habitats
within their area of distribution.

Methods. We present a meta-analysis of known adaptations to these habitats. Sexuals inhabit natural
environments that are highly unpredictable, and where density of wasps and their hosts is low and
patchily distributed. Asexuals instead are common in anthropic environments (e.g. grain stores) where
host outbreaks offer periods when egg-load is the main constraint on reproductive output.

Results. Seeking consilience from the differences between multiple traits we found that sexuals invest
more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response
to thermal variability than asexual counterparts.

Discussion. Thus, each form has consistent multiple adaptations to the ecological circumstances in the
contrasting environments.
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parasitoid Venturia canescens can coexist in southern Europe and test the hypothesis that both
forms are adapted to different habitats within their area of distribution. @
Methods. We present a meta-analysis of known adaptations to these habitats. (Sexuals inhabit
natural environments that are highly unpredictable, and where density of wasps and their hosts is
low and patchily distributed. Asexuals instead are common in anthropic environments (e.g. grain
stores) where host outbreaks offer periods when egg-load is the main constraint on reproductive
output.

Results. Seeking consilience from the differences between multiple traits'we found that sexuals
invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity
in response to thermal variability than asexual counterparts.

Discussion. Thus, each form has consistent multiple adaptations to the ecological circumstances

in the contrasting environments.
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38 Introduction

39 Populations of a species from different localities often are locally adapted in life history traits,
40 behavior and physiology (Kraaijeveld & van Alphen, 1995a; 1995b; Seyahooei et al., 2011a;
41 2011b)@ individuals of a species from the same locality tend to have similar trai@)ecause
42  sexual reproduction and recombination prevent the divergence of genotypegn the one hand, in
43  the same conditions, individuals that reproduce asexually become genetically isolated from the
44  sexual members of the population’and thus the sexually reproducing individuals and the asexually
45 reproducing clones could accumulate genetic differences. On the other hand, when sexually
46 reproducing individuals and asexual clones occupy the same niche, normalizing selection would
47 prevent divergence by random drift between sexuals and asexuals.

48 A variety of processes, including “loss of sexuality” mutations, hybridization and
49 endosymbiotic infection, cause the occasional generation of asexual strains from sexually
50 reproducing individuals in a range of eukaryotic taxa (Butlin, 2002; Neiman et al., 2014; van der
51 Kooi & Schwander, 2014). This phenomenon leads to competition between the newly created
52 asexual strain and the ancestral sexual strain (Lively, 2010; Innes & Ginn, 2014). When both
53 reproductive modes are obligatory and remain thereafter reproductively isolated, competitive
54 interactions between them could favor individuals of one of the reproductive modes over the other.
55 Asexual individuals, except for their reproductive mode, may differ little in phenotype from their
56 sexual ancestors. Hence, which reproductive mode will be favored depends on the balance between
57  the benefits and costs of sex. These costs result from the inefficiencies of sexual repro@:tion when
58 compared to t@sexual one (Maynard Smith, 1978; recently reviewed by Lehtonen et al., 2012;@
59 Meirmans et al., 2012, and Stelzer, 2015). If environmental conditions enable asexuals to fully

60 express their reproductive advantages (i.e. the avoidance of mating and of production of male
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offspring), this mode of reproduction is superior and will replace the sexual form (Maynard Smith,
1978).

Theoretical studies reveal that coexistence of sexual and asexual competitors is only
possible if the newly arisen asexual forms have a smaller inhibitory effect on the sexual forms than
the sexual strains have on themselves (Case & Taper, 1986; Gaggiotti, 1994; Doncaster et al.,
2000). For instance, coexistence at the geographical level is favored if the habitat is structured as
a mosaic of environments in which either one or the other form performs better (Tilquin & Kokko,
2016). Asexually reproducing forms are expected 0 bloom in environments where conditions
provide opportunities for reproduction at the maximum possible rate; and conditions affecting
survival are benign and stable. Sexual forms may resist asexual invasion in environments that are
more temporally or spatially heterogeneous, thanks to their higher genetic diversity (Park et al.,
2014). Over time@h form could develop further adaptations to match its preferred environment.

Empirical tests of this%ory are lacking (see Letho & Haag, 2010). Such a test would
require (1) a demonstration that the sexually reproduc@ form differs in habitat use from the a-
sexual form, (2) evidence that the habitat used by the a=sexually reproducing clones is more benign
and'/ or stable in space and time than that of the sexually reproducing form, regarding factors
affecting surviva@d (3) that individuals of both reproductive modes are adapted in behavior,
physiology and life history traits to their respective habitats.

We test the thnging together different strands of research in a hymenopteran
parasitoid that fits the scenario introduced above. Transitions from sexual reproduction to
asexuality have occurred repeatedly and independently in hymenopteran parasitoids (Godfray,
1994; van Wilgenburg et al., 2006; Heimpel & de Boer, 2008). In these insects, adaptation to

different environments is tightly constrained by three main trade-offs (Jervis et al., 2007; 2008;
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Segoli & Rosenheim, 2013): 1- allocation to soma (mainly exoskeleton and musculature) versus
non-soma (reproductive tissues and gametes, together with initial nutrient reserves); 2- allocation
to teneral egg complement versus initial reserves, which is an expression of the classical trade-off
between immediate reproduction and survival (for future reproduction); and 3- allocation of
resources not assigned to reproduction to either survival or locomotion. The resolution of these
trade-offs in different environments should lead to different patterns of adaptation in life-history,
as observed, for instance, among populations of Asobara tabida (Kraaijeveld & van Alphen,
1995a; 1995b) and Leptopilina boulardi (Moiroux et al., 2010; Seyahooei et al., 2011a; 2011b) or
in hyperparasitoids Gelis spp. (Visser et al., 2016), but also in behaviors and morphology.

This work aims, through a meta-analysis of life history traits involved in the above
mentioned trade-offs, of foraging behavior and morphology to provide an empirical test of the
theory outlined above using the parasitoid Venturia canescens G. (Hymenoptera: %eumonidae).

We chose V. canescens for four reasons. First, both reproductive modes are obligatory (i.e.
there is no cyclic asexuality) with no known direct benefit of sex such as the formation of resting
stages (Beukeboom et al., 1999). Second, it is one of the few hymenoptera species where (0bligated
sexual and asexual individuals co-occur and where asexuality is not caused by bacterial
endosymbionts (Beukeboom & Pijnacker 2000; Mateo Leach et al., 2009; Foray et al., 2013b).
This characteristic allows us to focus on the ecological factors that impinge on the persistence of
both forms independently of the coevolution of the system host-symbionts (Duron et al., 2008;
Werren et al., 2008; Ma et al., 2014). Third, no genetic exchanges through matings occur in natural
populations between reproductive modes (Mateo-Leach et al., 2012), preserving different genetic
entities and allowing ecological differences. The fourth reason to focus on V. canescens is the large

number of studies published in the last 17 years providing a wealth of data on the life history and
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foraging behavior of asexual and sexual forms (Table 1). These studies allow a rich set of
comparisons, which have not as yet been exploited to test the pattern of adaptation of each form to
its preferential environment (see Meirmans et al., 2012 for a qualitative discussion of some traits).
Each of the studies included in our analysis examines a behavioral response in either strain under
specific conditions (e.g. exploitation of hosts under changing weather conditions, Amat et al.,
2006), or a life-history-trait. The combination of data on rge number of life history and
behavioral traits allows us to depict how changes in a wholestit of traits have resulted in adaptation
of V@s @h reproductive modes to their respective habitats. Also, our meta-analysis allows
assessing the relative contribution of physiological and behavioral traits and trade-offs to adaption

in different environments.
Our predictions can be summarized as follows:

Life history trade-offs: We expect differences in egg load, survival and flight capability between
both forms of V. canescens due to the trade-off between current and future reproduction. In natural
habitats the majority of individuals are sexuals (asexuals are occasionally found (Schneider et al.,
2002; Amat, 2004) but their origin is unknown) exploiting sparsely distributed hosts (Driessen &
Bernstein, 1999). This should favor a higher investment in survival and flight capability for future
reproduction at the cost of lower egg production, because egg availability is not the main constraint
in reproductive output, in comparison to asexuals. The latter live in grain stores and mills, where
host distribution is aggregated (Bowditch & Madden 1996) and the amplitude of host density
Variation@ very large (Campbell & Arbogast, 2004; Arbogast et al., 2005a; Arbogast et al.,
2005b; Belda & Riudavets, 2013). These environmental conditions should favor higher investment
in the production of eggs available for immediate reproduction, With respect to survival and flight

capability. This is consistent with theoretical conm@rations that indicate that heterogeneous
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distribution of hosts through time and space promotes higher egg production at the expense of
other life history traits (Ellers et al., 2000). When finding patches with high host density, animals

with higher egg loads could disproportionally contribute to future generations.

Behavior: Response to weather conditions: Environmental cues for forthcoming weather changes,
such as sudden drops in temperature or atmospheric pressur be exploited to adjust foraging
or laying behavior, and sensitivity to such cues should be most favored when weather conditions
are more unstable, as occurs between natural a@torage habitats. For instance, predictable higher
mortality during bad weather should promote exploiting host-patches more thoroughly than
otherwise (e.g. staying longer or laying more eggs; Mangel, 1989; Roitberg et al., 1992; Roitberg
et al., 1993; Sirot et al., 1997). On this basis, we expect wasps adapted to field conditions to be

more sensitive to weather parameters than those from mills and stores.

Behavior: Response to intraspecific competition: Female parasitoids compete by superparasitism,
i.e. by laying eggs in already parasitized hosts. As this often results in the death of supernumerary
larvae (van Alphen and Visser 1990), fitness returns (lgl/iposition in parasitized hosts are often
lower than ©f ovipositions in unparasitized hosts. Most parasitoid species mark their hosts with
chemicals that inform other females that the host is already parasitized (van Lenteren, 1981; Marris
et al., 1996; Nufio & Papaj, 2001). Thus, females have the information to decide whether or not to
lay in an already parasitized host. In natural environments@ encounter rate with hosts is much
lower than in grain stores and mills. Hence, sexual wasps should accept parasitized hosts more

easily than asexual@
Methods

Biological model:
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Sexual reproduction in V. canescens follows the classical haplo-diploid mechanism of
hymenopterans (arrhenotoky): males arise from unfertilized eggs and are haploid, while females
originate from fertilized eggs and are diploid. Individuals born through this form of reproduction
can be found in natural and semi-natural habitats (e.g. orchards), 1 the Mediterranean basin, where
they can easily be attracted to baits containing the larvae of Ephestia kuehniella (Lepidoptera:
pyralidae). The list of host species of V. canescens (Salt, 1976) includes Ectomyelois ceratoniae
found in the wild in carob pods, Japanese medlars, and almonds, a common host in field studies
(Driessen & Bernstein, 1999). In field conditions, food sources (sugar-rich substances such as
nectar or exudates from fruits) are sufficiently available to allow V. canescens females to maintain
a nearly (Constant energetic level (Casas et al., 2003; Desouhant et al., 2010).

In contrast, asexual V. canescens individuals are produced by automictic thelythoky, a
genetically based thelytoky in which meiosis and crossing over occur prior to the restoration of
diploidy through the fusion of two pronuclei or of two cleavage nuclei (Beukeboom and Pijnacker
2000). Asexually reproducing V. canescens are found throughout Europe and North America
(Johnson et al., 2000; Schneider et al., 2002)@nly inside buildings and in association with stored
products infested with E. kuehniella, E. cautella (Bowditch & Madden 1996) or Plodia
interpunctella (Roesli et al., 2003, Campbell & Arbogast, 2004). Food for adults is rarely found in

these environments (C. Bernstein, pers. obs.).

Overview and selection of the literature

The database for the meta-analysis was constituted by using ISI Web of Science (Web of
Science Core Collection). We first selected all the papers with the topics “Venturia canescens”.
Among these papers we selected those with [(thelytok®* AND arrhenotok*) OR (sex* AND asex*)]

between 1999 (date of the first publication @he sexual Venturia canescens, Beukeboom et al.,
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1999) and 2017 (February 10th). Thus, 22 studies, in which different characteristics of asexual and
sexual individuals were compared in the laboratory or in the field, were retained (Fig. 1). Then we
set apart genetic studies (n= 6) from life-history and behavioral studies (n= 16 encompassing 46
traits compared), and focused our analysis on these 16 studies (Tables 1 and 2). Most of the results
from the genetic papers are treated in our introduction. We also included unpublished results of
one doctoral dissertation (Amat, 2004) (see Fig.1). While addressed in the discussion, some results
were not included in our meta—analysis; the reasons for each exclusion (in general@ statistical

arguments) are given in Supplementary Materials (Table 2).

To assist infeéading and interpretation of the data, we Ségmented the different measures in
8 categories: size, 3 life history tra@fecundity, longevity, and energy level), 3 behavioral traits
(flight, competition with conspecifics (superparasitism) and feeding), and onelgliy of the capacity
to respond to changes in temperature. In each ory, several traits are considered and for each

of these traits, from one to six measures from independent studies (henceforth referred as (point)

are provided.

Overview of statistical analyses

To compare the differences between the two forms for different traits, which by necessity
are expressed in different units and have different ranges of variation, we transformed the results
to dimensionless (standardized) d effect size measurements (Cohen 1988; Nakagawa and Cuthill
2007). d is devoid of units and thus comparable in a meta-analysis approach. Cohen (1988)
suggested that d values of 0.2, 0.5 and 0.8 could be considered as corresponding to “small”,
“medium” and “large” biological effects, respectively. Effect sizes are given together with their
95% confidence intervals. Details of d calculations are presented in the Appendix A. Positive d

values correspond to cases where sexuals invest more than asexuals in a category. For
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198 superparasitisrrlgsitive values WO@ imply higher avoidance of h(@ already par%ze

199 ses and modification of patch residence time in response to these encounters by the same.

200

201 Results

=

202  We present the available comparisons in terms of d in Figure (I, and discuss the traits of each

203 category individually below, identifying trait measurement by the number of the entry infigure 1.

204 Figure 1 shows medium to very large effects sizes (meaning large biological differences
205 between forms) for traits likely to affect fecundity. Egg load (points 1-4), number of ovarioles
206 (point 5) and ability to find hosts (at a short distance by walking in an olfactometer, points 6 and
207 8) are all greater in the asexual form. Asexual females are larger than sexual ones even when both
208 are reared in the same host species (points 10-15).

209 The large effect size for point 50 shows that longevity is higher in sexual than asexual V.
210 canescens. Pelosse et al., (2010) also reported higher longevity in sexual individuals (point 48)@
211 their confidence intervals included the possibility of lack of effect. Barke et al., (2005) considered
212 the difference in longevity between sexual and asexual forms under different temperatures and
213 different levels of food availability. They did not find differences between unfed animals of both
214  forms, but when wasps were fed, sexuals had higher longevity. The results for 15°C are signiﬁcan@
215 but the data provided do not allow calculating a d value. Points 49 and 47 show the d values for
216 25°C and 29 °C. The confidence intervals for the latter show a lack of effect. On the whole, these
217  data show higher longevity of sexual than asexual forms.

218 The studies of Foray et al., (2011), Pelosse et al., (2010) and Barke et al., (2005) treated

219 egg load and longevity as independent traits, but the two traits cannot be jointly maximized. The
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resolution to the resulting trade-off differs between forms: asexuals invest preferentially in
fecundity at the cost of life expectancy, and the opposite occurs in sexual wasps (Pelosse et al.,
2007). How this translates ir@etime reproductive success depends on the environment. In the
experimental conditions used by Barke et al., (2005) akin to indoor situations, sexual forms
produced a greater lifetime number of offspring (point 44). This result seems unexpected@under
their experimental conditions honey-fed wasps do not need much energy for flying and they can
reallocate this energy to fecundity as they are partly synovigenic (i.e. able to mature eggs during
their whole lifetime). Moreoverantage of asexuals in terms of fecundity remains/Simce daughter
production by sexua]@nales is lower than by asexual ones: Indeed@n i@e offspring sex ratio
was not recorded (in this'study, Metzger et al., (2008) and Beukeboom (2001) showed @ balanced
or a@ghtly biased sextati@wards females in V. canescens.

As the scarcity of hosts in the field requires frequent and long flights, sexual V. canescens
should benefit from a higher investment in flying capacity than their asexual counterparts. This
higher investment has been indeed observed under experimental conditions (in the field and in
lab), as evidenced by the small to large effect sizes of the traits belonging to flight category (except
for the null d values obtained for total distance flown and total time in flight during the experiment,
points 19 and 20). Flight measurements deserve some @nipacking: As recorded, flight bouts were
composed by lternation of periods actually flying and resting: What was observed was that
sexual wasps covered similar distances in fewer flights (lower number of slg trait 34). Sexual
wasps@ faster (points 35, 38 and 39).

Flight is a particularly energy-demanding behavior (Harrison and Roberts 2000) that in V.
canescens and other insects depends mostly on the consumption of glycogen (Amat et al., 2012).

Consistently with their greater dependence on flight, sexual females have higher total metabolic
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reserves at emergence than asexual ones (point 41). Interestingly, the amount of nutrients not
involved in flight show small d values (non-significantly different from 0; proteins: point 25;
lipids: points 29 and 28; glucose: point 23 and 24, and free carbohydrates: point 26), but effect§ize
for glycogen reserves are medium to high, with greater glycogen (€ontents in sexual than asexual
females (points 51-53). The consumption rates of glycogen (consumption per unit time) do not
differ between modes of reproduction (point 27). The results of field experiments are consistent
with differences in behavioral and physiological traits found in the laboratory: sexual V. canescens
initiate dispersal faster after release (point 37) and are less often recaptured in the vicinity of the
release point (point 33). Although this could be attributed to the traps being less attractive to
sexuals at distance, the result is also consistent with sexuals being more mobile and leaving earlier
the release@e.

Difference in initial energy reserves between adults of the two forms can potentially be
compensated by feeding on carbohydrates. When experimentally offered food, asexuals have the
same feeding behavior as sexual forms (feeding time and number of feeding bouts per unit of
observation time) (points 46 and 9) However, there is more food available in the field than in

stores.

Response to weather conditions:

Sexual, but not asexual, individuals respond to a sudden drop in temperature by exploiting
each host-patch more thoroughly (e.g. laying more eggs (point 42), and staying longer). This is
consistent with the predicted difference in sensitivity to weather cues. The faster recovering of
sexuals from chill coma (point 40) is also indicative of sexuals’ higher capability to deal with
temperature changes. The higher responsiveness of sexual individuals to temperature changes is

also reflected by the large positive d value in point 55. This point illustrates the higher/breadth of
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sexual performance (quantified by maximal egg load) curve wheniexposed to different temperature
during development. We c@\he performance curve the functions relating the average phenotypic
expression of a fitness-related trait for sexuals and asexuals to a range of values of an
environmental variable. {

Small to medium positive d values for other performance curves, quantifying nutrient
contents (protein, lipid, sugar and glycogen: points 30, 31, 32 and 45), longevity (point 22), a
measure of total fecundity in another study (point 54), fecundity at emergence (point 43) and
developmental rate (point 36) according to temperature, indicate a higher plasticity in sexual
forms. A measure for longevity yielded a negative value (point 21)@ in this case, d did not differ
significantly from 0. In contrast with these results thos@)r the performance curves for hind
tibia length: For this measure, dint results were obtained in two Studies: €ither the two forms
express similar curves (point 18) or asexuals show a larger breadth of the curve, suggesting higher
plasticity (point 17). This difference in performance curves for size was mainly due to differential
response at low temperature: lower decrease in size for asexuals when temperature decreases (a
similar trend is@sewed for developmental rate by Foray et al., 2014 fable 2). Interpreting the
adaptive significance of the higher plasticity in size of asexuals is difficult because the relationship
between size and fitness varies among insect species (Kazmer & Luck 1995; West et al., 1996;
Ellers et al., 1998) and is unknown in V. canescens.

Overall, the results for performance curves are consistent with the hypothesis that
individuals thriving in natural conditions have higher plasticity in #éSponses to temperature than

asexuals.

Response to intraspecific competition:
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The tendency to superparasitize was measured by observing the behavior of females
released in host patches previously exploited by sexual or asexual females. Point 7 shows that hosts
parasitized by asexual females were more often rejected by other females (independently of their
forms) than hosts previously parasitized by sexual females. There was no effect of the reproductive
mode of second females on the incidence of superparasitism. Barke et al§(2005), in contrast, found
that asexual females had a higher incidence of self-superparasitism. This could be adaptive under
circumstance where the probability of conspecific superparasitism is high (Visser et al., 1990).
However, their statistical analysis does not seem appropriate to handle random effects (fémale’in

this'case) adequately.

Recognizing parasitized hosts allows females to assess the level of exploitation of a patch.
When exploiting partly depleted host patches (i.e.@which some hosts are already parasitized),
only asexual females decrease patch time (point 16). Sexual females experience low host
encounters in nature and, hence should use very low marginal values and stay longer in partly

exploited patches.

Discussion

The overarching hypothesis under test is that because sexual and asexual forms predominate in
different ecological scenarios, anatomical and physiological traits will reflect adaptations to the
circumstances of each form. Asexuals proliferate in stores, where hosts are clumped and there is
no food for adults, while Sexual breeders’ hosts tend to be solitary (one per patch), spatially
separated, and live in places where food for adult wasps is available. These distinct habitats m@e

us predict that sexuals should show higher investment in flight capacity, longevity, and ability to
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tolerate thermal changes, while asexuals will aim at the potential maximum reproductive output

conferred by a larger egg-load which they, but not the sexuals, have opportunities to deploy.

Trade-off between current and future reproduction

Figure 1 displays the outcome of a large number of comparisons, many of which €onfirm
our overarching hypothesis. Together, these results are clearly consistent with asexuals investing
more in fecundity and sexuals more in locomotion and longevity. In environments with a higher
rate of host encounter, a higher investment of asexuals in egg load is advantageous. Likewise, the
asexual mode of reproduction provides an advantage over sexual lineages by the avoidance of the
two-fold cost of sex caused by laying haploid eggs destined to produce males. On the other hand,
the higher investment in locomotion and longevity in sexuals matches the host distribution and
availability in the field. Facing scarce and spatially scattered hosts, the sexuals may be more often
time-limited and die before having laid their whole egg-load. This would select for increased
longevity. The effects of time limitation (dying before laying full egg supply) and egg limitation
(defined as the temporary or permanent exhaustion of the supply of mature eggs), and how they
mediate the trade-off between current and future reproduction, have been explored in various
parasitoid species, and are an important aspect of the ecology and evolution of host-parasitoid

systems (Rosenheim, 1996; Heimpel et al., 1998; Sevenster et al., 2000; Rosenheim et al., 2008).

Phenotypic plasticity in response to temperature
Wasps living in natural habitats have more general (breadth) performance curves and are
less sensitive to temperature than those living in stores that are specialized to a narrow range of
thermal values. Sexual wasps are less affected by temperature in their energy allocation to different
Q;s flight function, Amat et al., 2012) ; this difference in plasticity may

functions (e.g. glycogen

contribute to the difference in the resolution of the trade-off between egg production and
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survival/locomotion in the two forms of V. canescens. In addition to being more plastic, sexual
individuals are better able to tolerate extreme temperatures. Only sexual females, which live in
variable weather conditions, adjusted their oviposition behavior when experiencing a sudden
change in temperature (Amat et al., 2006). In line with these results, in sexuals, but not in asexuals,
there is an accumulation of metabolites with a suspected cryoprotective functions in response to

lower temperatures (Foray et al., 2013a; table 2).

Superparasitism

Hosts parasitized by sexual females are less likely to be rejected by later arrivals of either
kind than those parasitized by asexuals. Why this is so needs further research. A possible causal
explanation is that there are differences between the marking substances of the two forms, in either
composition or quantity, which elicit different responses of later arriving females. A possible
functional explanation would be that oviposition into a host already parasitized by a sexual wasps
has a higher probability of resulting in an offspring, than oviposition into a host previously
parasitized by an asexual female (van Alphen & Visser, 1990; Visser et al., 1992; Sirot 1996).
While deserving further attention, results of Amat (2004) suggested such an asymmetry in
competitive abilities of sexuals and asexuals in superparasitized larvae (for short time intervals
between successive ovipositions).

Additionally, some studies considered the differences in cognitive abilities between sexuals
and asexuals (learning color or odor cues related to resource availability, and time to take a
decision in choice experiments) (Thiel et al., 2006; Lucchetta et al., 2007; 2008; Liu et al., 2009a
and Thiel et al., 2013 in Table 2 Appendix A). Thriving in a more complex environment, sexuals
are expected to benefit more than asexuals from being efficient at locating hosts and at learning

local conditions (Stephens, 1993). In most cases@ results were presented in terms of statistics
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not suitable to be expressed into d values or reproductive mode is involved in higher-level

interactions that impede to interpret its additive'€ffect, thus these results cannot be incorporated to
figure I and compared to other results.

Conclusions

Our comparison of life history traits between the two modes of reproduction in V. canescens shows
that sexual and asexual individuals are each better adapted to the ecological niches Which they
occupy in a whole suit of characters. This conclusion is strengthened by the consistency between
multiple observed differences, which are in accordance with the inferred selective pressures in
both habitats. The life history traits that show the strongest relative divergences (high absolute
values of d in Fig. 2) are those involved in the trade-off between egg load and adult survival or
locomotion, and in the phenotypic plasticity in response to temperature. The consistency of the
effect sizes obtained with individuals of both reproductive forms originating from different

localities is a sound indication of their generality.
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Legend

Figure 1. PRISMA flow Diagram describing the process of literature selection (from Moher et al.

2009)

Figure 2.

Standardized coefficients (Cohen's d) #/= 95% conﬁden@ntervals for the difference between
asexual and sexual V. canescens. [Fot €ase of teading, the traits under study were p(@d in 8
categories (size, fecundity, longevity, energy reserve, flight ability, feeding behavior,
superparasitism and €apabilify to deal with temperature changes). Positive d values indicate higher
investment in the category under considera@mn for sexual animals. When dealing with reaction
norms (RN, points 17-18, 21-22, 30-32, 36, 43, 45 and 54-55), positive d values stand for higher
plasticity in sexuals (more breadth performance curve). Blue shades stand for categories where
sexuals are expected to invest more than asexuals: longevity, energy, flight and capabih@lo deal
with temperature changes. Red shades stand for categories where asexuals are expected to inves@
fecundity and use of conspecific information in the context of superparasitism. Purple shades are
used for size and feeding behavior for which no clear €Xpectations €an be forecasted. The black
line at d=0 indicates lack of statistical significance, and threy lines at d=0.2 (-0.2), 0.5 (-0.5)
and 0.8 (-0.8) indicate values over (below) which the difference is deemed “small” (S), "medium"
(M) and “high” (H) (Nakagawa & Cuthill, 2007). Measures whose confidence intervals overlap 0
were figured in grey. Seeftable 1 for eachpoint sig@caﬁon and authority. speedLSF: speed of the

longest single flight. Points are figured by ascending order of mean of the traits.
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Table 1

=

Authority, main results of the comparison between sexual and asexual strains included in Figure'1
and figures in the original article showing specific results. Category represents the 8 categories of
measures we defined: size, 3 life history traits (Fecundity, Longevity, Energy level), 3 behaviors
(Flight, Superparasitism and Feeding) and 1 plastic response to temperature change (Temperature);
these categories referred also to those used in Figure 1. Dare obtained using strains collected
at two different locations in France: in the vicinity of Antibes (Ant, 43°42'12.26" N - 7°16'50.33"

E), and Valence (Val, 44°5834"N - 4°55’6"E) and yearly renewed with freshly caught individuals.

Authors Results @mparing sexual s asexual Figures in original NuJQ} Category
V. canescens ; (origin of the strains) paper in Fig. 2

Amat et al., Egg-load at emergence; (Val) lc 1 Fecundity

(2012)

Barke et al., Egg-load at emergence; (Ant) 7.4 2 Fecundity

(2005)

Pelosse et al., Egg-load at emergence; (Val) 3 Fecundity

(2007)

Pelosse et al., Egg-load at emergence; (Val) 1 4 Fecundity

(2010)

Barke et al., Number of ovarioles; (Ant) 7.5 5 Fecundity

(2005)

Liu et al., Time to respond host odor; (Val, Ant) 1,2 6 Fecundity

(2009b)

Amat et al., Host propensity to be avoided for 1 7 Superparasitism

(2009) superparasitism; (Ant)
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Liu et al., Time to choose host patches differing in their 1,2 8 Fecundity
(2009b) quality; (Val, Ant)

Pelosse et al., Number feeding bouts; (Val) 9 Feeding
(2010)

Pelosse et al., Hind tibia length; (Val) 10 Size
(2010)

Amat Hind-tibia length; (Ant) 11 Size
(2004)

Lukas et al., Hind tibia length; (Val) 12 Size
(2010)

Amat et al., Hind-tibia length; (Val) la,b 13 Size
(2012)

Pelosse et al., Hind tibia length; (Val) 14 Size
(2007)

Foray et al., Hind tibia length; (Val) la 15 Size
(2011)

Amat et al., PRT in response to ovipositions in parasitized 16 Superparasitism
(2009) hosts; (Ant)

Foray et al., Reaction norm for hind tibia length at different 2a 17 Temperature
(2014) temperatures; (Val)

Foray et al., Reaction norm for hind tibia length as a la 18 Temperature
(2011) function of temperature; (Val)

Lukas et al., Total distance flown and total time in flight; 19, 20 Flight
(2010) (Val)
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Foray et al., Reaction norm for longevity as a function of 2 21 Temperature
(2011) temperature; (Val)

Foray et al., Reaction norm for longevity at different 3c 22 Temperature
(2014) temperatures; (Val)

Pelosse et al., Glucose content; (Val) 2a,b 23 Energy level
(2010)

Pelosse et al., Glucose content; (Val) 1b, ¢ 24 Energy level
(2007)

Amat et al., Protein content and free carbohydrates content; 25,26 Energy level
(2012) (Val)

Amat et al., Glycogen consumption rates during flight; 2 27 Energy level
(2012) (Val)

Pelosse et al., Lipid content; (Val) 1b, ¢ 28 Energy level
(2007)

Amat et al., Lipid content; (Val) 29 Energy level
(2012)

Foray et al., Reaction norm for protein, lipid and sugar 5 30, 31, Temperature
(2014) content at different temperatures; (Val) 32

Amat (2004) Proportion of females not recaptured after 28 33 Flight

release inflied conditions; (Ant)

Lukas et al., Number of stops per flight of similar distance; 1 34 Flight
(2010) (Val)

Lukas et al., Speed of the longest flight; (Val) 35 Flight
(2010)
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Foray et al., Reaction norm for development rate as a 1b 36 Temperature
(2011) function of temperature; (Val)

Amat (2004) Time to leave after experimental release; (Ant) 27 37 Flight
Amat et al., Speed of flight; (Val) 3 38 Flight
(2012)

Lukas et al., Speed of flight; (Val) 2 39 Flight
(2010)

Foray et al Time to recover from chill coma; (Val) 1 40 Temperature
(2013b)

Pelosse et al., Teneral energy content; (Val) la 41 Energy level
(2007)

Amat et al., Change in the number of ovipositions in 3 42 Temperature
(2006) response to change in temperature ; (Ant)

Foray et al., Reaction norm for egg load at emergence as a 3a 43 Temperature
(2011) function of temperature; (Val)

Barke et al., Life-time offspring produced; (Ant) 7.2 44 Fecundity
(2005)

Foray et al., Reaction norm for glycogen content at different 5 45 Temperature
(2014) temperatures; (Val)

Pelosse et al., Time feeding; (Val) 46 Feeding
(2010)

Barke et al., Longevity of fed wasps at 29°C; (Ant) 7.6b 47 Longevity
(2005)

Pelosse et al., Longevity; (Val) 48 Longevity
(2010)
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Barke et al., Longevity of fed wasps at 25°C; (Ant) 7.6b 49 Longevity
(2005)

Foray et al., Longevity; (Val) 2 50 Longevity
(2011)

Pelosse et al., Teneral glycogen content; (Val) 1d 51 Energy level
(2007)

Pelosse et al., Teneral glycogen content; (Val) 2c 52 Energy level
(2010)

Amat et al., Glycogen content; (Val) 2 53 Energy level
(2012)

Foray et al., Reaction norm for maximal fecundity at 3b 54 Temperature
(2014) different temperatures; (Val)

Foray et al., Reaction norm of maximal egg-load as a 3b 55 Temperature
(2011) function of temperature; (Val)
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Appendix A: literature selection and d calculation

Selected literature for the meta-analysis: We calculated the effect size of
reproductive mode for the great majority of the 46 traits under study from the 16 papers
included in the meta-analysis (see also “overview of the selected literature” section in the
main text). Some results, indicated in Table 2, were not included inFigure 1 because either
a) higher-level interactions impede to interpret the additive effects of reproductive mode
and thus to calculate d statistics for these effects (note that when reproductive mode is
involved in higher-level interactions but without switch of effect in each reproductive
mode, additive effects of mode of reproduction are provided, e.g. point 34 in Fig. 2); b)
experimental design did not compare the se)@ and asexual trait in a single experiment; ¢)
d inappropriate for the statistics used (e.g. ion or §émi- parametric statistics, multivariate
analysis) ; d) the information provided did not allow for statistical comparisons in terms of

d values.

Table 2

Authority and main results of the comparison between sexual (S) and asexual (A) strains that are
not included in'Figure 1. Figures in the original paper showing specific results. Comment: reasons
that led to their exclusion from Figure 1 (see text for details). PRT: patch residence time. Origin
of the strains: Ant, Antibes (France), and Val, Valence (France). In two cases@m results were
considered redundant. In Amat et al§(2006) two similar experiments gave similar results. In Lukas

et al5(2010) in the same experiment similar measures of flight performance yielded similar results.

In these two cases a single result was included inFigure 1.
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Figures in
Results of comparing sexual versus asexual V. canescens ;
Authors original Comment
(origin of the strains)

paper
Recapture rate in the field: 11% of all captures in field
Amat (2004) transects are A and 89% S. In 19.5 % of the samplings A and 22,24 d inappropriate
S coincided in recapture date and location (Val)
Higher Longevity for fed S at 15 °C (Ant) 7.6 d inappropriate
Barke et al.,
(2005) No significant differences in longevity for unfed A and S at 76 J inappropriate
15,25 and 29 °C (Ant)
Liu etal. PRT depends on "travel time" : S use flying time between two
(2009) successive patch encounters while A simply use waiting time 4 Experimental design
(either flying or resting) (Ant, Val)
The effect of the number of ovipositions on PRT is differently
affected by the mode of reproduction (A or S), depending on
Lucchettaet  the origin of the animals (Ant or Val). For the wasps from 4 Higher level
al., (2007) Antibes, each oviposition decreases stronger the PRT in A than interaction
in S. In Valence, the effect of the number of ovipositions is
independent of the reproductive mode (Ant, Val)
Lucchettaet  No difference between A and S in their ability to learn a color
3 d inappropriate
al., (2008) associated with a food reward (Val)
The shape of the performance curve for developmental rate
differs with the reproductive mode: S females reach higher
Foray et al., maximal growth rate than the A females do. The shape is also o Higher level
(2014) affected by the thermal regime, with a decrease of the interaction
developmental growth rate at 25 and 30 °C under the
fluctuating regime (Val)
Metabolite profile differences in response to thermal change:
Foray et al., phenylalanine, threonine and serine were more abundant in the
2 d inappropriate
(2013a) S, while maltose, succinate, sucrose and glycerol were more

abundant in the A (Val)
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The relationship between egg load at death and longevity:
resource availability during ontogeny and reproductive mode

affect this relationship. When resource are highly available, S

Pelosseetal., ) Higher level
live longer than A and have fewer eggs than their A 2 ) )
(2007) ) interaction
counterparts. When the A and S wasps develop in low resource
available conditions, they decrease both in fecundity and
longevity (Val)
Pelosse et Fructose amounts during lifetime is affected by size in b Higher level
a,
al., (2010) interaction with reproductive mode (Val) interaction
Insufficient
No differences in giving up time between S and A (Ant, Val) 3 information and higher
level interaction
Thiel et al A reduce their PRT with successive visits to patches in a rich Insufficient
1el et al.,
(2006) environment (in terms of host patches); in contrast, S females 4 information and higher
do not modify their behavior with experience (Ant, Val) level interaction
Higher oviposition rate with successive visits to host patches
. . . Insufficient
in A than in S (France: Ant, Val, Nice, Valbonne, Golf-Juan; 8 ) )
) information
Italia : Tuscany; Portugal: Algarve)
) S are not more effective learners than A females in a context . .
Thiel et al., o ) o d inappropriate
of associative learning of stimuli related to hosts (Ant, Val , 3
(2013) Low sample size

Mont Boron)

Statistical analysis: When reared on its host Ephestia kuehniella, asexual V. canescens tend to be
larger than their sexual counterparts (differences in hind tibia length indicated by points 10-15 in
Fig. 2. See points 14 and 15, for non-significant differences). In most of the original analysis
performed in papers listed in table 1, trait measurements are corrected for size by taking the size

as the first covariate in statistical models. This allows revealing the differential investment effort

in traits for individuals of the two modes of reproduction.
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To integrate and interpret the results of a large set of publications dealing with the
differences between sexual and asexual V. canescens, we standardized the mean differences
between strains in terms of the standard deviations of the difference. This yields effect size
measurements (Cohen’s d value, Cohen, 1988) devoid of units and thus comparable in a meta-

analysis approach. d is defined as

with

B (nz - 1)5% + (n1 - 1)5%
Spooled - ny+n, - 2

where m; and m; are the mean values for two groups, s;° and s,° are the variances and »n; and n,

are the sample sizes.

The parameter d might be calculated using different expressions. We used the expression suggested

by Nakagawa and Cuthill (2007)

t(ny +ny)

mnydf

d=

where ¢ is Student’s statistic obtained from the statistical analysis and df'is the number of degrees

of freedom used for a corresponding ¢ value.

The approximated 95% confidence intervals (95% CI) of d are given by
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95% CI=d-1.96 % se;to d+1.96 x se,

where se; stands for the asymptotic standard error. There are several mathematical expressions

that allow for the calculation of this value. Here we used (Hunter and Schmidt 2004)

i)

This expression is adequate for Cohen’s d, although it might provide biased estimates for small

ny+n,-1
Sed:

ny+n,-3

sample sizes. We calculated both biased and unbiased estimates. The differences between biased
and unbiased estimates proved to be negligible (results not presented). The results of the analysis
of continuous response variables performed by means of generalized linear models express the
significance of a given process in terms of F values. As two groups were compared, the number of
degrees of freedom for the treatments is 1, and ¢ can be calculated as suggested by Nakagawa and

Cuthill (2007):

tndf = ,/Fl,n df

When statistical models expressed significance in terms of the normal distribution, in the relevant
equations we used the z values to replace the ¢ values, calculating the degrees of freedom as if #-

tests were used (Nakagawa and Cuthill 2007).

In these calculations, positive d values stand for the case where a trait value is higher in sexuals.
In some cases, the trait measured is negatively correlated with the investment in the category under
study. These cases are: number of stops during a flight covering a given distance (negatively

correlated to flight investment because this implies shorter flight bouts, point 34 in Fig.1); time to
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leave release apparatus in the wild (negatively correlated to flight investment, point 37 in'Fig:1)
and time to recover from chill coma (negatively correlated to ability to deal with changing
temperature, point 40 in Fig:l). In these cases, we changed the sign of the d value. In this way, in
Figure 1 all positive d values correspond to cases where sexuals invest more than asexuals in a
given trait (size, fecundity, longevity, energy level, flight, superparasitism, feeding and
temperature). When dealing with reaction norms (points 17-18, 21-22, 30-32, 36, 43, 45 and 54-
55 in Fig. 2), positive d values stand for higher plasticity in sexuals. This corresponds to situations
in which 1) sexual parasitoids present shallower and broader curves, allowing high reproduction
rates for a wider range of temperatures, and ii) asexual wasps, having narrower response curves,

maximize reproductive success under a restricted thermal range.
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