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ABSTRACT
An overdominant mutation in an intron of the elongation factor 1-α (EF1A) gene
in the sea star Pisaster ochraceus has shown itself to mediate tolerance to ‘‘sea star
wasting disease’’, a pandemic that has significantly reduced sea star populations on the
Pacific coast of North America. Here we use RNA sequencing of healthy individuals to
identify differences in constitutive expression of gene regions that may help explain
this tolerance phenotype. Our results show that individuals carrying this mutation
have lower expression at a large contingent of gene regions. Individuals without this
mutation also appear to have a greater cellular response to temperature stress, which
has been implicated in the outbreak of sea star wasting disease. Given the ecological
significance of P. ochraceus, these results may be useful in predicting the evolutionary
and demographic future for Pacific intertidal communities.

Subjects Biodiversity, Evolutionary Studies, Genetics, Zoology
Keywords Disease, Overdominance, Tolerance, Sea star wasting disease, RNA expression, Pisaster
ochraceus, Elongation factor 1-alpha, EF1A

INTRODUCTION
The dynamics of an ecological community are often studied in terms of abundance and
interactions of the component ‘‘macro’’ diversity - predation, competition, parasitism, even
positive interactions among community members (Duffy & Hay, 2001; Bruno, Stachowicz
& Bertness, 2003; Vellend, 2016). Yet it is also clear that pathogens play immense roles
in the elimination of weaker or maladapted individuals, affecting density and behavior
of infected organisms, and even reshaping a community (Harvell et al., 2002; LoGiudice
et al., 2003; Mitchell & Power, 2006; Stephens et al., 2016). Despite many early advances
in community ecology being derived from marine communities (Connell, 1961; Paine,
1969), our understanding of disease in marine organisms remains quite limited, with a few
notable studies that have guided contemporary work (Jolles et al., 2002; Lafferty, Porter &
Ford, 2004;Mydlarz, Jones & Harvell, 2006; Sweet, Bulling & Cerrano, 2015).

A recent and dramatic pandemic known as ‘‘sea star wasting disease’’ (SSWD) has
led to very high mortality in a large number of sea star species on the Pacific coast of
North America (Hewson et al., 2014; Eisenlord et al., 2016; Menge et al., 2016; Montecino-
Latorre et al., 2016). By eliminating many predators from these coastal ecosystems, SSWD
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provides novel opportunities to evaluate hypotheses of how species can drive community
composition (Menge et al., 2016; Gravem &Morgan, 2017) as well as further exploration
of the pathogen or pathogens that may be driving these changes (Hewson et al., 2014). A
component of understanding how marine communities will respond to disease in general
involves exploration of host diversity for traits that influence susceptibility or mortality
(Vollmer & Kline, 2008; Wright et al., 2017). Often there are evolutionary trade-offs that
influence host diversity that are dependent on the prevalence of particular pathogens
(Aidoo et al., 2002; Gemmell & Slate, 2006).

The sea star Pisaster ochraceus—best known as a ‘‘keystone predator’’ that modifies
the diversity of its intertidal community (Paine, 1969)—harbors a mutation in the
elongation factor 1-α (EF1A, hereafter) gene that is characterized as ‘overdominant’
(Pankey & Wares, 2009); that is, where heterozygous individuals (carrying one copy of this
mutation) have dramatically higher fitness than either homozygote. At the time, with no
apparent mechanism for this heterozygote advantage, Pankey & Wares (2009) noted that
overdominance has often been associated with disease tolerance (Gemmell & Slate, 2006).
Recent field surveys of apparently healthy and diseased individuals of P. ochraceus suggested
that individuals carrying the insertion mutation (ins) described by Pankey & Wares (2009)
have lower prevalence of (or mortality from) SSWD than individuals homozygous for the
wild-type (wild) sequence (Wares & Schiebelhut, 2016).

The EF1A gene produces a ‘‘housekeeping’’ protein that is involved in translational
elongation (forming peptide bonds between amino acids) of newly-generated proteins.
However, EF1A also appears to be involved in diverse cellular functions (Ejiri, 2002), and
diversity at this gene has been implicated in variation in fitness in other metazoans (Stearns,
1993; Stearns & Kaiser, 1993). Currently, the mechanism by which the ins mutation—
which is within an intron between two coding subunits (Pankey & Wares, 2009)—affects
the function of EF1A or the cellular functions associated with SSWD (Hewson et al.,
2014) remains unknown, and of course the ins marker may simply be linked to another
polymorphism that is actually promoting these effects. However, the ‘‘moonlighting’’
functions of EF1A (Ejiri, 2002) include mediating responses to viral infection (Li et al.,
2013; Wei et al., 2014) and inflammation (Schulz et al., 2014), as well as environmental
stress (Bukovnic et al., 2009). It is not unusual for stress to be cited as a component of disease
susceptibility (Cohen et al., 2012). Current evidence is mixed about what environmental
stressors have promoted SSWD in P. ochraceus, with some studies suggesting that elevated
water temperature (Bates, Hilton & Harley, 2009; Eisenlord et al., 2016) influenced the
outbreak in one region (the Salish Sea) and another study on the Oregon coast indicating
the opposite, that cooler water from upwelling may have been a physiological stressor
(Menge et al., 2016).

We can now query distinct genotypes for variation in RNA transcription to identify
components of cellular and molecular networks that are associated with specific trait
variation (Cohen et al., 2010). Here we test two hypotheses using RNA sequencing of a
set of individuals of each EF1A genotype in P. ochraceus (the mutation is homozygous
lethal, so there are only two genotypes for this marker). First, the mutation (or linked
diversity) could influence the overall regulation of other genes, in which case we may
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detect significantly different expression of a set of loci between ins heterozygotes and wild
homozygotes. Second, we evaluate how individuals of each genotype respond to thermal
stress, as the effects of manymutations will be environment-dependent (Rutter et al., 2017).
Temperature shifts are associated with changes in feeding (Sanford, 1999), metabolism (Fly
et al., 2012), and intertidal distribution (Menge et al., 2016) in P. ochraceus. Thus, we
coupled a temperature challenge trial with behavioral observations and repeated RNA
sequencing to understand how individuals respond to periods of elevated temperature or
stress. In this case, we hypothesized that an interaction between environmental stress and
cellular physiology could be indicated by distinct patterns of activity levels or changes in
expression across the two ins genotypes.

Our goal is to illuminate mechanisms by which EF1A ins heterozygotes in P. ochraceus
may be protected from SSWD, as this information may guide exploration of why some sea
stars in the Pacific intertidal community are more susceptible than others to this disease.
Additionally, this system provides an opportunity to explore how variation in expression
of a gene or gene network that is of fundamental importance to organismal development,
growth, and acclimation can affect the tolerance of an organism to disease.

METHODS
Field and lab
Individual P. ochraceus were collected from ∼0 m tidal depth within the Friday Harbor
Laboratories marine reserve (Friday Harbor, WA, 48.54◦N 123.01◦W) in June 2016.
Collections were made following written permission from the Associate Director of the
FridayHarbor Laboratories. Individuals were placed in sea tableswith ambient temperature,
unfiltered, running sea water within 1 h of collection and fed available bivalves ad libitum.
After the experiment, all surviving individuals were returned to the field.

At the beginning of the experiment two samples (∼25 mg) of tube feet were removed
from each individual; one sample was placed in 95% undenatured ethanol (for genotyping
as inWares & Schiebelhut, 2016), the other sample into RNALater (Thermo Fisher). Tissue
sampling was repeated following the heat trial described below. Distal tube feet were used
in part to minimize damage to individual P. ochraceus, and to standardize contrasts of
regulatory change (Montgomery & Mank, 2016). Individuals were kept in flow-through
sea tables in Vexar enclosures to ensure consistent individual identification. DNA samples
were tested for presence of SSaDV (the putative pathogen causing SSWD) using qPCR as
in Hewson et al. (2014).

Righting responses (Fig. 1) were used to explore the physiological status of individuals
of each genotype subjected to periods of elevated temperature. Increasing the temperature
by ∼3◦ is known to influence the physiology of P. ochraceus (Sanford, 1999; Fly et al.,
2012). Flow-through temperature treatments were performed as in Eisenlord et al. (2016);
individuals were maintained at +3 ◦C for 8 days. Sea table temperature was monitored
4× daily with digital thermometers and with Hobo Tidbit data loggers. Righting response
trials were performed as in Held & Harley (2009). We recorded the time each individual
required to flip from the aboral side to the point that the majority of arms contacted the
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Figure 1 Image of Pisaster ochraceus. Aboral view of Pisaster in righting response trial. Photo by JPW.

surface on their oral side. Trials were performed three times in each condition: in ambient
seawater, at the end of the temperature trial, and again when individuals returned to
ambient temperature. Individuals that did not right themselves within 1 h were considered
unresponsive and were excluded from subsequent analyses. Minimum and mean righting
response times were recorded; these values are examined across EF1A genotypes using a
t -test as well as a linearmixed-effectsmodel evaluating response to temperature by genotype
using the lmerTest package (Kuznetsova,Bruun Brockhoff & Haubo Bojesen Christensen,
2016) in R version 3.3.2 (R Core Team, 2016).

RNA sequencing and comparison
Samples of tube feet stored in RNALater were thawed on ice and 25 mg were removed
for RNA isolation using a Qiagen RNEasy Mini-prep kit. A Qiagen TissueRuptor with
sterile disposable pestles was used for homogenization of each sample. RNA samples were
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submitted to the Georgia Genomics Facility (GGF; dna.uga.edu) for stranded RNA library
preparation (Illumina TruSeq LT) and subsequent quality checks using an Agilent 2100
BioAnalyzer. Libraries were sequenced in parallel (high output PE75) on an Illumina
NextSeq 500 at GGF and then informatically demultiplexed.

Our pipeline followed Kelly et al. (2017), both with and without the utilization of cd-hit
(Li & Godzik, 2006) to reduce the sequence complexity in the data, using a sequence
similarity threshold of 98%. Illumina adapter sequences were removed during the
demultiplex step. FASTQ data were cleaned using Trimmomatic (Bolger, Lohse & Usadel,
2014) (default settings), and two transcriptome assemblies were generated using in silico
read normalization in Trinity (Grabherr et al., 2011). The first assembly utilized data from
all 20 RNA libraries; the second utilized only the data from four individuals, two of each
genotype, chosen for high RIN values and read numbers. Trinity de novo assembly was
performed on a Georgia Advanced Computing Resource Center 512 GB node with eight
processors. Individual RNA libraries were then aligned to the assemblies using Bowtie2
(Langmead & Salzberg, 2012) and the RSEM method (Li & Dewey, 2011) as in Haas et al.
(2013).

All assembled Trinity clusters were used as blastx queries against the nr database,
restricted to GI numbers for Echinodermata, with the best hit for each (e-value < 10−6)
retained. A custom R script was used to collapse the expression count files by inferred
gene and by BLAST homologies except where otherwise noted. Differential expression
was quantified using edgeR (McCarthy, Chen & Smyth, 2012), filtering reads for a counts-
per-million (CPM) > 1 in at least two of the libraries. Other filtering combinations were
attempted with similar results (VK Chandler, results not shown). Both negative binomial
and empirical Bayes dispersion measures were estimated before testing for differences.
The libraries representing ambient and elevated temperature exposure were evaluated
individually by genotype for differential expression between treatments, as well as a paired
sample analysis using edgeR.

Additionally, a sorted and unsorted permutation test of genotype contrasts was
performed to ensure that the EF1A genotype explained the greatest pattern of differentiation
among these samples. The sorted permutation test evaluated the number of differentially
expressed genes between the two genotype classes against a distribution generated from
(a) moving one library at a time into the other classification, (b) all permutations in
which one from each classification is moved to the other, and (c) where two libraries
from each classification are moved to the other. These were repeated for all such possible
permutations. The unsorted permutation test randomly drew libraries without replacement
to comprise two classes of equal size and repeated the contrast between actual number of
differentially expressed genes and the permutational distribution of this value.

To specifically consider differential expression of EF1A, we considered all fragments
that successfully BLAST to NCBI accession AB070232, a ∼5 kb sequence of the EF1A gene
region from the confamilial Asterias amurensis (Wada et al., 2002), and also used sequence
data (NCBI KY489762–KY489768) generated from cloning of P. ochraceus EF1A (Pankey
& Wares, 2009) to identify any expression of the focal intron region that harbors the ins
mutation. These latter assemblies were performed using Geneious R10 (Biomatters).
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RESULTS
A total of 24 individuals were collected from the Friday Harbor Laboratories marine
reserve, 1 was returned due to injury, and 20 survived our lab trials (one individual, an
ins heterozygote, died of apparent SSWD; 2 others from distinct external infections) and
were returned to their original location. As in previous studies (Pankey & Wares, 2009),
the ratio of heterozygotes (+/ins, or ins) to homozygotes (+/+ or wild) at the EF1A locus
was ∼1:1. In order of initial labeling, the first 5 individuals of each genotype that had
complete behavioral data were selected for RNA sequencing (Table S1). Each individual
was genotyped 3 times from 3 separate tissue samples with no errors. These 10 individuals
exhibited no visible signs of SSWD and tested negative for SSaDV.

Behavior
For the 10 individuals analyzed in full, righting response trials (Fig. 1) suggested that ins
heterozygotes righted themselves approximately 1.8 times faster than wild homozygotes
(Table S1; t -test p= 0.01; linearmodel p= 0.022) at both temperatures.However, including
all data on righting response (from all 17 individuals with complete behavior data; n= 6
unresponsive individuals were evenly distributed across genotypes) introduces higher
variation in response by genotype; the effect is in the same direction but not significant
(t -test p= 0.77; linear model p= 0.737). Including wild individual ‘‘Po5’’ in the ins
genotypic class (see below for rationale) strengthens these results but they are still not
statistically significant when all individuals are included.

Sequenced RNA diversity
Table S1 provides information for each library used in transcriptome assemblies; all
sequence data are available from NCBI (BioProject PRJNA357374). Of the two de novo
assemblies, the reduced-input transcriptome had greater length and quality of contigs (N50

of 1,799 bp, median contig length 513, total assembled bases 179,034,265) and is the focus
of subsequent analyses. Fragments that were differentially expressed (False Discovery Rate
(FDR) <0.01) between the two genotypes from the two Trinity assemblies were themselves
de novo aligned in Geneious R10; 80.76% of contigs from one of the two assemblies aligned
with one from the other. Using a 98% threshold with cd-hit reduced the total number
of sequences from 179,563 to 154,150. All results are qualitatively similar across all three
assemblies, but the results reported hereafter are based on the cd-hit reduced assembly.

The total of 154,150 transcripts analyzed represented 62,713 Trinity clusters and 110,525
gene regions after isoforms were summed for each. Additionally, expression counts were
summed for fragments with identical NCBI gi numbers, reducing the total number of
expressed fragments to 107,189. A total of 9,953 distinct gi values were recovered from
blastx (e-value < 10−6; 9,563 of these were hits to Strongylocentrotus purpuratus). Table S1
shows information for all fragments that passed our CPM filters.

Permutational testing
For each iteration of the sorted permutation test, the number of gene fragments that
are significantly different (FDR< 0.01) was identified and contrasted with the true
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Figure 2 Randomized expression differences among libraries. Sorted permutational misassignment of
individuals and comparison with actual EF1A genotype partitions. Misassignments were directed to main-
tain (nearly) equal sample sizes in the two groups. Histogram bars in purple indicate reassignment of a
single library; orange represents reciprocal swap of single libraries across partitions. Grey represents recip-
rocal swap of two libraries across genotype partitions. Partitioning of individuals by EF1A genotype sug-
gests a stronger signal (vertical dotted line) than almost all permutations; ‘misassignments’ with more ex-
treme results always involve reassignment of wild individual Po5. The maximal observation shown (447
differentially expressed fragments) represents Po5 as an ins heterozygote instead.

classification. The results suggest that differentiation of the two genotypes is robust relative
to the most extreme misassignments (Fig. 2), and greater than 0.96 of all permutations.
All permutations with higher counts of differentially expressed transcripts involve re-
assignment of individual Po5 (wild); though EF1A genotype was confirmed for this
individual, it is similar to the ins heterozygotes for many expression traits (Table S1). Full
unsorted permutation testing with 500 permutations also showed that the effect size using
EF1A genotypes as a means of partitioning the data is large relative to random (96.8th
percentile). If library Po5 is excluded, the expression differences between genotype classes
is greater than any permuted re-sampling of the data.

Comparison of differential expression across genotypes
There are strong differences in the constitutive expression patterns of the 5 wild and 5
ins individuals assayed. There are 178 fragments exhibiting differential expression with
FDR< 0.01, and 18 with FDR< 0.0001 (Fig. 3). As above, if library Po5 is excluded,
a greater number (n= 395) of fragments exhibit differential expression (FDR< 0.01),
suggesting that this individual represents an inconsistent expression phenotype for its
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Figure 3 Differential expression of EF1A genotypes.Volcano plot of transcripts that are differentially
expressed between EF1A genotypes (FDR < 0.01). Contrast indicated with positive logFC values on the
right for fragments that have higher expression in wild homozygotes. (A) includes all individuals in study;
right panel (B) excludes wild individual Po5. Red dotted lines indicate FDR of 0.01.

EF1A genotype (see heatmaps in Table S1). If library Po5 is instead categorized as an ins
heterozygote, there are 447 distinct transcripts between the two genotypes (FDR< 0.01).
The full paired analysis (using all 10 libraries from both temperature treatments) identifies
a similar number of DE loci overall, and a similar differentiation is identified between
genotypes at elevated temperatures.

The effect of the ins genotype appears to be inhibitory; Figure 3A shows only those
fragments that are differentially expressed between the two genotypes, and only 25 of
178 fragments with FDR< 0.01 exhibit higher expression in heterozygotes. Many of the
significantly elevated transcripts in heterozygotes are modestly expressed compared to
the significantly elevated transcripts from wild homozygotes. The average log CPM for
fragments with FDR< 0.01 that are more highly expressed in ins heterozygotes is 0.876
(maximum 6.154), while the same average for fragments that are more highly expressed in
wild homozygotes is 3.639 (maximum 11.217). A similar, but stronger, result is obtained
when Po5 is excluded, with only 45 of 395 differentially expressed (FDR< 0.01) fragments
being more highly expressed in heterozygotes (Fig. 3B); for differential expression at the
level of FDR< 10−4, only 6 of 131 fragments aremore highly expressed in ins heterozygotes.

Response to elevated water temperature
Following exposure to water warmed by +3 ◦C, wild homozygotes exhibited a larger
number of potential loci (n= 46) that changed in expression (FDR< 0.01) than ins
heterozygotes (n= 6; see Table S1). Using a more inclusive cutoff (FDR< 0.1, as in
Wright et al., 2017) amplifies this contrast, with wild homozygotes showing differential
expression at 197 regions and heterozygotes at only 14 gene regions. If individual Po5
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Figure 4 Differential expression after heat exposure. Reaction by genotype to increased water temper-
ature in P. ochraceus. (A) 46 fragments exhibit significant (FDR < 0.01) differential expression between
ambient and elevated temperatures in wild homozygotes. (B) 6 fragments exhibit significant (FDR< 0.01)
differential expression after temperature treatment in ins heterozygotes.

is excluded, the remaining wild homozygotes then exhibit 62 fragments that change
in expression (FDR< 0.01; 190 with FDR< 0.1), suggesting again that the expression
phenotype of this individual adds considerable variance to the expression patterns of
homozygotes. Additionally, the average effect of temperature exposure appears to be
in opposite directions: while ins individuals have a mean log fold change in expression
across loci of 0.278+/−2.132, wild homozygotes have a mean reduced expression across
loci (log fold change = −0.455+/−1.685). Of all fragments identified as responding
to the temperature treatment, 3 of 6 identified in the heterozygotes are also found
among those that are differentially expressed in the homozygotes (whether or not Po5
is included, at FDR< 0.01). These results are suggestive that homozygous individuals
experienced a greater net change in expression phenotype following exposure to heat than
ins heterozygotes (Fig. 4).

Elongation factor 1-alpha
Following BLAST analysis, only 1 fragment sufficiently matched NCBI accession AB070232
(Wada et al., 2002), a ∼5 kb sequence of EF1A from Asterias amurensis. This fragment
does not appear to be differentially expressed (FDR< 0.01) between wild and ins EF1A
genotypes. Including other fragments that have sufficient homology to ‘‘elongation
factor 1-α’’ (a partial fragment from Patiria miniata) provides similar results, whether
or not individual Po5 is included. Previous analyses that assessed BLAST homology
using the blastn algorithm against A. amurensis also showed that summing across all
putative EF1A homologs indicated no significant expression differences at this locus
(DOI:10.7287/peerj.preprints.2990v1). Assembly of RNA sequence fragments from libraries
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of the two genotypes to the fullA. amurensis EF1A sequence showed no obvious distinctions
in coverage of coding regions (results not shown).

DISCUSSION
The data and results presented here lead to a remarkable conclusion—that the canonical
intertidal predator, Pisaster ochraceus, after decades of intensive ecological scrutiny,
appears to include two physiologically distinct types. We know that these types are
not reproductively isolated (Pankey & Wares, 2009), so these distinct types are formed
each generation via an overdominant polymorphism that influences regulation of gene
expression. The two forms significantly (FDR< 0.01) differ at 0.404% of all expressed
fragments analyzed here, a small but important proportion (Figs. 2 and 3). These data are
consistent with a mutation in a regulatory region in that ins heterozygotes have a limited
expression of many of the differentially expressed loci relative to wild individuals (Fig. 3).
Perhaps more importantly, the two forms responded very distinctly to temperature stress
(Fig. 4), with a qualitatively distinct expression change profile for wild homozygotes than
ins heterozygotes. The results from one unusual individual (Po5) clearly suggest, however,
that the ins genotype marker used to separate these groups may not be the causal mutation
for these cellular and physiological shifts. Pankey & Wares (2009) had discussed linked
polymorphic diversity using cloned and sequenced fragments of the EF1A intron that
carries the mutation, but expressed concerns about PCR-mediated recombination in those
data. It now seems likely that Po5 harbored a recombination event, appearing to be wild
but with the expression profile of an ins individual. Future work will explore this region in
greater detail.

Intriguingly, there is now a linkage between these physiological changes that seem to
reduce the individual response to temperature stress and the ins marker that is associated
with reduced incidence or mortality to SSWD (Wares & Schiebelhut, 2016). Harvell et al.
(2002) noted that a warming climate could affect the development or survival of pathogens,
but certainly could also interact with host physiological stress as well (Cohen et al., 2012).
Our study is limited in understanding this linkage in several ways—there has been little
or no experimental annotation of differentially expressed genes in P. ochraceus, and our
temperature contrast experiment did not include control replicates to assess the effect
of stress from being held in our mesocosms with or without temperature manipulation.
Nevertheless, the effect of our temperature stress trial suggests heritable variation in how
individuals respond to heat stress. As elevated temperatures may accelerate SSWD (Bates,
Hilton & Harley, 2009; Eisenlord et al., 2016; but seeMenge et al., 2016), the likelihood that
the mutation linked to the insmarker ameliorates multiple forms of stressors on the health
of an individual is worth further investigation.

As P. ochraceus is likely to vary behavior along with physiological stress (Monaco et al.,
2015), we also evaluated whether there was an interaction between the EF1A genotype,
temperature stress, and behavioral activity. Righting responses were used to understand
the response to heat as an influence on activity levels (Held & Harley, 2009). Heterozygous
individuals tend to right themselves more quickly in a limited sample. However, individual-
level variation was high and the biological effect of genotype on this response may be low
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or absent. Individuals appeared to be consistent in their response, i.e., individuals with long
response times tended to do so at all treatments; whether this is associated in any way with
effects of this genotype requires further consideration. Overall, we conclude that righting
response is a noisy response variable and perhaps ineffective for assaying physiological
contrasts. We are not the first to recognize this difficulty:

‘‘It could probably be said, in a word, that the starfish may, and does, in different cases,
right itself in any conceivable way, - and indeed, in many ways that would not readily
be conceived before they were observed.’’

Jennings (1907)

Thus, other approaches such as respirometry (Fly et al., 2012) are needed to more
directly understand the genetic basis of stress response in P. ochraceus.

It is also notable that the regulatory effect of the insmutation (or a linked polymorphism)
has a consistent response - there is a clear asymmetry (Fig. 3) in expression of transcripts
suggesting that the ins mutation affects a promoter region. The genomic features that are
differentially expressed in response to the ins mutation are of interest, but accurate
functional annotation of these transcripts are currently limited by the tremendous
evolutionary divergence between Pisaster and other characterized Asteroid genomes
(Patiria miniata (echinobase.org) and Acanthaster planci (Hall et al., 2017)). Generating a
more extensive list of loci that are coregulated by the insmarker is of modest utility without
better experimental data in this non-model organism (Hudson, Dalrymple & Reverter,
2012). We do not know if the differentially expressed loci are relatively rapidly evolving,
or if these transcripts represent noncoding RNA; currently, these hypotheses are difficult
to test with available resources (Dinger et al., 2008). Our ability to explore the effects of
differential genotype in P. ochraceusmay also require an understanding of tissue specificity.
Here, tube feet were used as simple non-invasive tissues for sampling because the health
of the local population is of concern. Future efforts could target tissues more specific to
immune response function. For example, EF1A is already thought to regulate interleukins
(Schulz et al., 2014), which are represented among the identifiable differentially expressed
gene regions in this study (Table S1). These are thought to be produced in the axial organ
and are a basic component of the echinoderm immune response (Mydlarz, Jones & Harvell,
2006; Leclerc & Otten, 2013) that stimulate coelomocytes and are associated with antiviral
activity (Ghiasi et al., 2002).

A polymorphism like this should not be stable unless there is some balance of benefits
to both genotypes (Subramaniam & Rausher, 2000). With typical genotype frequencies
in the wild (Pankey & Wares, 2009; Wares & Schiebelhut, 2016), approximately 1/16th
of all offspring (1/4 of the offspring from 1/4 of the random mating events) are lost
each generation to this polymorphism. Similar levels of reduced fitness are involved in
explorations of Dobzhansky-Muller interactions associated with outbreeding depression
(Sweigart, Fishman &Willis, 2006). This is a considerable mutational load attributed to a
single polymorphism yet the sudden appearance, or incidence in recent decades, of high
mortality events like SSWD is unlikely to be a sufficient mechanism for maintaining this
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polymorphism. The two allelic classes each harbor considerable levels of flanking diversity
and appear to be relatively divergent and ancient (Pankey & Wares, 2009), and the high
frequency of the ins allele throughout the range of P. ochraceus (Pankey & Wares, 2009;
Wares & Schiebelhut, 2016) suggests its origin is not recent (Slatkin & Rannala, 2000).

The question remains, what has maintained this polymorphism, and what can we
learn from this about disease in other echinoderms—or more broadly, other animals—
about interactions of stress and pathogens? In other major epidemics, it has been noted
that mortality has been highest in individuals that are weak or that have the strongest
inflammatory/immune response to a pathogen (Lai, Ng & Cheng, 2015). If this is true,
perhaps wild individuals are more prone to extreme stress responses. The reality is that
stress tolerance is thought to be highly context-dependent (Berry et al., 2011; Bay &
Palumbi, 2015) and may be difficult to assess in a wild population such as the Pisaster
surveyed here. Each individual bears high levels of additional variation that mediates their
responses to environment, pathogens, and so on. The fact that the insmutation is associated
with such strong biological effect amidst the noise of other natural genomic diversity is
extraordinary. Certainly there are other examples of single mutations that confer significant
health and life history consequences on carriers (Aidoo et al., 2002; Drnevich et al., 2004;
Gemmell & Slate, 2006). Distinct phenotype classes within a species often have distinct
expression profiles (McDonald et al., 1977; Garg et al., 2016), including instances of disease
or tolerance phenotypes (Emilsson et al., 2008; O’Connor et al., 2017). Our hopes are that
further exploration of this system, in an ecologically important sea star (Paine, 1969;Menge
et al., 2016), will be of relevance for a more general understanding of health and pathogen
tolerance.

IN MEMORIAM
Virginia Katelyn Chandler unexpectedly passed away in June 2017 after submission of the
first version of this manuscript; her contributions to this project, in just her first two years
at The University of Georgia, were outstanding. Deepest condolences to her family and
friends, from all in the Wares Lab and at the University of Georgia.
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