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ABSTRACT

This study examined defensive behaviors of Mythimna separata (Lepidoptera: Noctu-
idae) larvae varying in body size in response to two parasitoids varying in oviposition
behavior; Microplitis mediator females sting the host with the ovipositor after climbing
onto it while Meteorus pulchricornis females make the sting by standing at a close
distance from the host. Mythimna separata larvae exhibited evasive (escaping and
dropping) and aggressive (thrashing) behaviors to defend themselves against parasitoids
M. mediator and M. pulchricornis. Escaping and dropping did not change in probability
with host body size or parasitoid species. Thrashing did not vary in frequency with
host body size, yet performed more frequently in response to M. mediator than to
M. pulchricornis. Parasitoid handling time and stinging likelihood varied depending
not only on host body size but also on parasitoid species. Parasitoid handling time
increased with host thrashing frequency, similar in slope for both parasitoids yet on
a higher intercept for M. mediator than for M. pulchricornis. Handling time decreased
with host size for M. pulchricornis but not for M. mediator. The likelihood of realizing an
ovipositor sting decreased with thrashing frequency of both small and large hosts for M.
pulchricornis, while this was true only for large hosts for M. mediator. Our results suggest
that the thrashing behavior of M. separata larvae has a defensive effect on parasitism,
depending on host body size and parasitoid species with different oviposition behaviors.

Subjects Animal Behavior, Ecology, Entomology

Keywords Meteorus pulchricornis, Microplitis mediator, Braconidae, Behavioral defenses, Host
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INTRODUCTION

Since successful parasitism by parasitoids results in the death of the host, natural
selection should favor the evolution of host defenses against parasitoids. Herbivore insects
perform a wide variety of defense mechanisms in response to their parasitoids, including
morphological, chemical, physiological, and behavioral traits (Gross, 1993; Godfray, 1994).
Behavioral defenses are observed in a number of herbivorous insect groups, conferring
protection against attacking parasitoids (Gross, 1993). For example, lepidopteran larvae
perform a wide array of behavioral defenses in response to parasitoids, and these defenses
fall into three broad categories: evasive, aggressive, and associative behaviors (Gentry ¢
Dyer, 2002; Greeney, Dyer ¢ Smilanich, 2012). Yet these categories of defensive behaviors
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include many variations, combinations, and modifications of innumerable potential

life history strategies and behaviors, and their expression or employment may vary
ontogenetically, temporarily, or in response to different enemies (Stamp, 1982; Cornell,
Stamp & Bowers, 1987; Allen, 1990; Greeney, Dyer ¢» Smilanich, 2012). Many studies have
shown that host larval resistance to attacking parasitoids increases with age (and therefore
body size) (Gross, 1993; Firlej et al., 2010; Kageyama ¢ Sugiura, 2016). Such resistance
can be achieved by a combination of morphology (e.g., increasingly tough exoskeleton)
and behaviors associated with host age (or size) (Brodeur, Geervliet ¢ Vet, 1998; Yazdani,
Glatz & Keller, 2015; Ameri, Rasekh ¢ Michaud, 2014; Kageyama ¢ Sugiura, 2016). These
defensive mechanisms often increase host handling time, shape parasitoid host-preference
(Lucas, Coderre & Brodeur, 1997; Potting, Vermeulen ¢ Conlong, 1999) and likely decrease
parasitism success by parasitoids (Gross, 1993).

Individual herbivorous insect species are often attacked by more than one species of
parasitoids (Hawkins, 1984), which is referred to as parasitoid species loads (Godfray,
1994). If a host species is parasitized by different parasitoid species that use different
attacking tactics, selection can favor variation in host defenses that encode this information.
According to this theory, we hypothesize that a larval host should behave differently in
defense against different parasitoid species that have dissimilar oviposition behaviors.
We tested this hypothesis using the oriental armyworm, Mythimna separata (Walker)
as the host attacked by two larval parasitoid species, Microplitis mediator (Haliday) and
Meteorus pulchricornis (Wesmael). The host larvae exhibit active behaviors in defense
against parasitoids (Lauro et al., 2005; Chu et al., 2014). Its two parasitoid species differ
in approaching the host: M. mediator females climb on the host to sting it with their
ovipositors (Wang et al., 1984; Arthur ¢ Mason, 1986), while M. pulchricornis females
stand at a close distance from the host to make the stinging (Yamamoto, Chau ¢ Maeto,
2009).

The host M. separata is a polyphagous pest of grain crops, causing major losses in crop
production annually in China and other Asian countries (Sharma, Sullivan ¢ Bhatnagar,
2002; Jiang et al., 2014). Each year it migrates by a seasonal, multi-generation, long-distance
roundtrip between southern and northern China (Jiang et al., 2011). Microplitis mediator is
known to attack the host species in the family Noctuidae and Geometridae (Lepidoptera). It
was one of the dominant parasitoids of M. separatalavae in China (Wang et al., 1984; Arthur
& Mason, 1986; He, 20045 Li et al., 2006). Meterous pulchricornis is a generalist parasitoid
that is known to attack hosts in at least 12 families of the Lepidoptera (Maeto, 1990; Harvey,
Sano & Tanaka, 2010; Malcicka ¢ Harvey, 2014; Xu et al., 2016). Both parasitoid species
have a similar preference for host stages (Foerster & Doetzer, 2003; Lauro et al., 2005; Li et
al., 20065 Liu ¢ Li, 2006). M. pulchricornis is approximately twice the size of M. mediator
(Malcicka ¢ Harvey, 2014). Both parasitoids are important biological control agents of
various noctuid pests and have been introduced widely to control both natural and novel
hosts (e.g., Arthur ¢ Mason, 1986; Fuester et al., 1993; Berry, 1997; Berry & Walker, 2004;
Li et al., 2006b; Liu & Li, 2006; Chhagan, Stephens & Charles, 2008; Li et al., 2010).

To test our hypothesis, we first determined how defensive behaviors of M. separata
larvae varied with their own body size or two parasitoid species, and then examined how
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host defensive behavior and body size influenced the likelihood of stinging and handling

time of the two parasitoids. The understanding of the effectiveness of behavioral defenses
sheds light on the evolution of host-parasitoid behavioral interactions, and helps to explain
why this host species is more often parasitized by one parasitoid than by the other.

MATERIALS AND METHODS

Insects preparations

Oriental armyworms, M. separata, were provided by the Research Institute of Agriculture
and Forestry of Hebei province, China, in 2013 and since then has been maintained in
the insectary. Larvae were reared on semi-artificial diets (Bi, 1989). They were reared in
groups of 40-60 from neonates in glass jars (9 cm height and 20 cm diameter). Pupae were
collected in a plastic box (5 cm height and 8 cm diameter) for adult emergence. Adults
in a group of 40-50 were placed in a rectangular cage, where a 10% honey solution was
provided as food via a large cotton ball and pieces of nylon rope were suspended from the
cage roof as substrates for egg deposition. Eggs were collected in a petri-dish with a soft
brush and maintained for larval hatching. The 2nd or 3rd instar larvae, weighted from 1.5
to 50 mg, were used as hosts in the experiment.

The parasitoid M. mediator was provided by the Research Institute of Agriculture and
Forestry of Hebei province, China, in 2013 and since then has been maintained with
M. separata 2nd or 3rd instar larvae as hosts in the insectary. Host larvae in groups were
placed in a plastic box and then two female wasps were released. After 24 h the wasps were
removed and the larvae were reared on the semi-artificial diets until offspring parasitoid
larvae egressed from host larvae and pupated. Parasitoid pupae were collected in groups
in a glass tube (8 cm height x2 cm diameter) to allow adults to emerge. Emerged wasps
were maintained in groups in a vial to allow mating for two days, during which time a 10%
honey solution was provided as supplementary food via a piece of cotton thread. Four days
old, naive female wasps were used in the experiment.

The parasitoid M. pulchricornis is thelytokous and its laboratory stock was established
from rearing the tobacco cutworm Spodoptera litura larvae collected from soybean fields in
the northern suburb of Nanjing in 2013. Thereafter it has been maintained using M. separata
larvae as hosts. The 2nd or 3rd instar larvae were exposed in groups to parasitism in vials.
The parasitoid pupae were collected in vials to allow adults to emerge. The emerged wasps
were kept in glass tubes and provided with a 10% honey solution via a piece of cotton
thread. Four to six days old, naive adults were used in the experiment.

Experimental protocol

Host and parasitoid behaviors were observed on potted wheat seedlings in a transparent
cage (12 cm height and 4.5 cm diameter, the top being covered by nylon gauze). Triticum
aestivum L wheat seeds were planted in pots (9 cm height and 6 cm in diameter) with peat
moss-sand and soil. Wheat seedlings grown to a height of 10 cm with seven leaves were
used as food plants for host larvae. A larva was placed on potted wheat seedlings after being
weighed (Mettler Toledo AL204-IC Electronic Microbalance, accurate to 0.0001 g; Mettler
Toledo, Columbus, OH, USA), and an hour later a female wasp was released into the cage.
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Table 1 Description of parasitoid and host behaviors recorded.
Behavior Description Measurement
Host Thrashing Raising and quickly shaking the head. Count
Escaping Moving by quickly crawling away from the approaching Binary
wasp by more than three times its own body length on the
plant
Dropping Falling off the plant either to the ground or by hanging on a Binary
silken thread.
Wasp Stinging Inserting the ovipositor inside the host body. Binary
Host-handling time The interval between first contact with the host and Continuous
completion of ovipositor stinging.
Notes.

*The ovipositor stinging by M. pulchricornis was defined as being successful when the insertion lasted more than one second and a characteristic wing-flapping occurred when
withdrawing the ovipositor from the host (Zhang, Li & Meng, 2014). For M mediator, a bout of stinging always results in an egg deposition (Wang et al., 1984).

The host and wasp were observed continuously for a maximum of 30 min, during which
time the frequency of behaviors exhibited by the host and wasp (Table 1) were noted. The
observation was terminated before 30 min if either the wasp made a successful sting of the
host with its ovipositor, or the host fell off the plant or escaped before a ovipositor sting
was made. Each parasitoid female was tested once. A total of 86 females (replicates) for
each parasitoid species were observed.

Statistical analysis

We first analyzed host defensive behaviors as a function of host body weight and parasitoid
species, by applying a logistic model (link = logit) to estimate the probability of host
dropping and escaping, and by a simple linear model to estimate frequency of host
thrashing (weighted by observation time). We then used a logistic model to estimate the
probability of ovipositor stinging, and a generalized linear model with gamma distribution
to evaluate host handling time, which is conveniently described by gamma distribution
(Kohlmann, Matis & Risenhoover, 1999), Host thrashing, host body size, and parasitoid
species were tested as predictor variables. Overdispersion was taken into account where
appropriate via empirical estimation of scaling parameters (Faraway, 2016). We did not
consider host dropping and escaping behaviors in estimating parasitoid handling time and
stinging because the behavioral observation was designed to be terminated when the host
dropped from the plant or escaped. Robust standard errors were used to control for the
violation of the distribution assumption for the parameter estimation (Croux, Dhaene &
Hoorelbeke, 2004). Analyses were carried out with R ver. 3.3.1 (R Core Team, 2016).

RESULTS

The probability of host escaping was not significantly influenced by host body weight
(x*=3.37,P =0.06), wasp species (x*=1.59, P =0.21), or their interaction (x? =1.33,
P =0.25). The proportion of hosts escapeding was 31.4% (standard deviation, SD =
46.7%, n = 86) in response to M. mediator (Fig. 1A) and 40.7% (SD = 49.2%, n = 86) to
M. pulchricornis (Fig. 1B).
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Figure 1 Distribution of body weight for Mythimna separata larvae with or without escaping in re-
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Figure 2 Distribution of body weight for Mythimna separata larvae with or without dropping in re-

sponse to Microplitis mediator (A) and Meteorus pulchricornis (B).

The probability of host dropping was not significantly influenced by host weight
(x*=2.80, P =0.09), wasp species (x*=0.36, P =0.55), or their interaction (x> =0.38,
P =0.54). The proportion of hosts droppeding was 18.6% (SD = 39.1%, n = 86) in
response to M. mediator (Fig. 2A) and 22.1% (SD = 41.7%, n = 86) to M. pulchricornis

(Fig. 2B).

Host thrashing frequency was not significantly affected by the interaction between host

body weight and wasp species (F} 166 = 1.74, P = 0.19), or host weight (F} 166 = 1.95,
P =0.16), but it was influenced by wasp species (F 166 = 5.59, P < 0.05). Thrashing
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Figure 3 Intensity of thrashing of Mythimna separata larvae in response to Microplitis mediator and

Meteorus pulchricornis.

frequency was nearly 10 times higher in response to M. mediator (on average 21.11

times/10 min) than in response to M. pulchricornis (on average 2.23 times/10 min) (Fig. 3).

The probability of the stinging by parasitoids was affected by a 3-way interaction among

host body weight, thrashing frequency and parasitoid species (x% =4.11, P < 0.05). For

M. mediator, it decreased with thrashing frequency when the host was larger but increased

with it when the host was smaller (Fig. 4A). For M. pulchricornis, however, it decreased

with thrashing frequency regardless of host body weight (Fig. 4B).

Host-handling time was influenced by a 2-way interaction between host body weight
and parasitoid species (x2=7.17, P < 0.01). It decreased with host body weight for M.
pulchricornis, but not for M. mediator (Fig. 5A). It increased with host thrashing frequency
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Figure 4 Probability of stinging as a function of both Mythimna separata larval body weight and
thrashing frequency for Microplitis mediator (A) and Meteorus pulchricornis (B). The grid surface is
predicted probabilities from logistic regression models.
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Figure 5 Host-handling time as a function of Mythimna separata larval body weight (A) and thrashing
frequency (B) for Microplitis mediator and Meteorus pulchricornis.

in both parasitoid species (x? =13.81, P < 0.001), yet was overall shorter by 36% for M.
mediator than for M. pulchricornis (Fig. 5B).

DISCUSSION

Our data support the hypothesis that M. separata larvae adjust their defensive behaviors
in response to different species of parasitoids that differ in oviposition behaviors. We
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showed that the larvae, whether small or large in size, thrashed the head more frequently in
response to M. mediator than to M. pulchricornis, though they dropped and escaped in the
same likelihood in response to them. As a result of such thrashing defenses, M. mediator
spent shorter time to handle the host than did M. pulchricornis. Furthermore, M. mediator
females increased the likelihood of stinging when smaller larvae thrashed more frequently,
while M. pulchricornis females decrease it when confronting such larvae.

The different oviposition behaviors between these two parasitoid species can explain
the variable behavioral responses of M. separata larvae to them and the consequences of
these defenses on them. Microplitis mediator females have to climb onto the host body to
insert the ovipositor into the host (Wang et al., 1984; Arthur & Mason, 1986), probably
owing to its shorter ovipositor (He, 2004). Meterous pulchricornis females, however, with
a longer ovipositor, furtively approach the host and make an attack while maintaining a
distance from it (Yamamoto, Chau ¢ Maeto, 2009). It is expected that climbing onto the
host body by M. mediator females would incur more frequent thrashing than maintaining
a distance from the host by M. pulchricornis females. However, M. mediator females spent
shorter time to handle the host than did M. pulchricornis females, which suggests that the
host defensive behavior is more effective against M. pulchricornis than against M. mediator.
Smaller or younger hosts are often less defensive than larger or older hosts, owing mainly
to stronger thrashing behaviors or tough exoskeleton in larger or older hosts (Brodeur,
Geervliet & Vet, 1998; Firlej et al., 2010; Ameri, Rasekh & Michaud, 2014; Yazdani, Glatz &
Keller, 2015; Kageyama & Sugiura, 2016). Thrashing can be a powerful counterattack to
avoid contact with ovipositors, and may even result in dislodging or injuring parasitoids
in some larvae (Myers & Smith, 1978; Stamp, 1982; Heinz ¢ Parrella, 1989). On the other
hand, remaining motionless can also be an effective defense against parasitoids (Richerson
¢ Deloach, 19725 Rotheray, 1981), for in some parasitoid species visual cues from moving
larvae are necessary for a successful oviposition (Nakamatsu ¢ Tanaka, 2005; Yamamoto,
Chau & Maeto, 2009). Our observation that M. pulchricornis spent longer host-handling
time and had an overall lower likelihood of stinging than did M. mediator The suggestion
that M. separata is more effective to defense against attacks by M. pulchricornis than by M.
mediator may partly explain why M. separata is less often parasitized by M. pulchricornis
(Jiang et al., 2011) than by M. mediator (Li et al., 2006b; Luo et al., 2013).

Our results suggest that M. separatalarvae do not adjust dropping and escaping behaviors
in response to different parasitoid species, though escaping is more often exhibited than
dropping. Dropping off the plant can be an effective defense against parasitoids for
lepidopteran larvae (Greeney, Dyer ¢ Smilanich, 2012) and occurs in many other insect
taxa as well (Gross, 1993), probably because it removes the host and its associated chemical
and sensory cues from the immediate vicinity of the parasitoid, making it difficult to
relocate. However, dropping to the ground can be costly for phytophagous insects, as it
reduces feeding time and increases mortality risk (Greeney, Dyer ¢ Smilanich, 2012; Gish
& Inbar, 2006). Larvae that have dropped to the ground often face predation from ground
predators, such as ants, spiders and carabids (Winder, 1990; Lovei ¢ Sunderl, 1996; Lopez
¢ Potter, 2000). As an alternative to dropping, another evasive behavior, escaping, was
observed in M. separata larvae, whereby the caterpillar swiftly moved away on the leaf
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once touched by an approaching parasitoid. By escaping, host larvae can avert the first
attack by parasitoids, which often give up further attack (Gross, 1993). Many studies have
shown that the propensity to escape or drop shifts during larval development, being higher
in earlier (therefore, smaller in body size) than later (larger) instar hosts (Stamp, 1982;
Cornell, Stamp ¢ Bowers, 1987; Allen, 1990; Lucas, Coderre & Brodeur, 1997). We assume
that the host stages (2nd and 3rd instar) we tested were not wide enough to show the effect.

In total, our findings have several broad implications. First, M. separata larvae can adjust
their thrashing behaviors in response to different parasitoid species that have dissimilar
oviposition behaviors. Second, the defensive behaviors of the host are more effective against
M. pulchricornis than against M. mediator, which may help to explain the difference between
the two parasitoid species in importance as biological control agents of M. separata.
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