
Association between in-scanner head motion with cerebral 
white matter microstructure: A multiband diffusion-weighted 
MRI study

Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) has emerged as the most 

popular neuroimaging technique used to depict the biological microstructural properties of 

human brain white matter. However, like other MRI technique, traditional DW-MRI data 

remains subject to head motion artifacts during scanning. For example, previous studies 

have indicated that, with traditional DW-MRI data, head motion artifacts significantly affect 

the evaluation of diffusion metrics. Actually, DW-MRI data scanned with higher sampling rate 

are important for accurately evaluating diffusion metrics because it allows for full-brain 

coverage through the acquisition of multiple slices simultaneously and more gradient 

directions. Here, we employed a publicly available multiband DW-MRI dataset to investigate 

the association between motion and diffusion metrics with the standard pipeline, tract-based 

spatial statistics (TBSS). The diffusion metrics used in this study included not only the 

commonly used metrics (i.e., FA and MD) in DW-MRI studies, but also newly proposed inter-

voxel metric, local diffusion homogeneity (LDH). We found that the motion effects in FA and 

MD seems to be mitigated to some extent, but the effect on MD still exists. Furthermore, the 

effect in LDH is much more pronounced. These results indicate that researchers shall be 

cautious when conducting data analysis and interpretation. Finally, the motion-diffusion 

association is discussed.
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Introduction

Diffusion-weighted MRI (DW-MRI) has become one of the most popular MRI techniques in brain research, as  

well as in clinical practice. One key application of DW-MRI is diffusion tractography which can be used for the  

visualization of white matter (WM) tracts (Golby et al. 2011) and construction of the brain neuroanatomical 

connectome (Gong et  al.  2009).  Also,  it  has become a convenient  tool  for  deriving  regional  measures  of  

diffusivity and anisotropy. These metrics are believed to reflect biological microstructural properties of the 

white matter, and have been extensively applied as biological markers for studying WM under normal and 

clinical conditions (Johansen-Berg 2010; Le Bihan 2003; Le Bihan et al. 2001; Travers et al. 2012). 

However,  like  other  MRI  technique,  DW-MRI  remains  subject  to  specific  biological  factors  (e.g.,  

temperature), uncertainty from the scanner (e.g., machine SNR, field shim) and, in particular, motion artifacts. 

Thus, movement of the head during scanning is undesirable, since it not only displaces the brain matter in space 

but also interferes with the readout of MR signals. Indeed, recent studies have discovered that head motion may 

introduce unwanted biases.  Ling and his  colleagues have shown that  head motion is  associated with both  

fractional anisotropy (FA) and mean diffusivity (MD) (the effect is greater for MD) (Ling et al. 2012). A recent  

study have also found group differences in head motion can induce group differences in white matter tract-

specific diffusion metrics, and such effects can be more prominent in some specific tracts than others (Yendiki 

et al. 2013). However, these studies on head-motion artifacts have employed traditional DW-MRI data with 

relatively low sampling rate (e.g., 9 s) and hence few gradient directions (e.g., n = 30). In fact, previous works  

have indicated that more unique sampling directions may decrease bias of diffusion metrics (e.g., FA and MD) 

(Landman  et  al.  2007;  Tijssen  et  al.  2009).  Recently,  several  promising  imaging  techniques  have  been 

proposed, including MR-encephalography (Zahneisen et al. 2011) and multiband echo planar imaging (Moeller 

et al. 2010). Using the multiband scanning protocol, sampling across the whole brain at any given time is 

allowed through the acquisition of multiple slices simultaneously. Hence, additional gradient directions can be 

acquired in the same scan duration without loss in spatial resolution. Both of the advantages appear to result in  

evaluating diffusion metrics more accurately, but little is known about the head motion effects on diffusion 

metrics from the multiband dataset. 

Here, the primary aim was therefore to investigate the relationship between head motion and diffusion 

metrics estimated from the multiband dataset. In this study, we examined the two tensor-based metrics most  

typically reported (i.e., FA and MD). Given the fact that they only reflect diffusion properties solely within the 

voxel,  we  also  examined  a  newly  proposed  model-free  inter-voxel  metric,  referred  to  as  local  diffusion 

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

PeerJ reviewing PDF | (v2014:01:1393:2:0:NEW 2 Apr 2014) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



homogeneity (LDH) (Gong 2013). We hypothesized that motion effects would be mitigated in the multiband  

DW-MRI data. It has been suggested that head motion alters the measure of diffusion metrics even after motion 

and eddy current correction (Ling et al. 2012; Tijssen et al. 2009; Yendiki et al. 2013), and that it may also  

provide information regarding neuronal processing (Yan et al. 2013a; Yan et al. 2013b). Moreover, LDH is a 

recently proposed metrics and has not been fully validated yet (Gong 2013). In addition, unlike FA and MD, 

LDH directly depends on the raw diffusivity series without assuming a prior diffusion model (Gong 2013).  

Therefore, we also hypothesized that the association between head motion and LDH would be quite different to  

the tensor-based metrics, and may be more sensitive to motion artifacts. We tested these hypotheses by (1)  

confirming the test-retest reliability of both diffusion metrics and head motion across scan sessions, and (2) by 

examining the relationship between the averaged diffusion metrics and head motion. We also examined the 

relationship in each scan session. 

Materials and Methods

Dataset

The dataset used in this study was from the NKI-RS Multiband Imaging Test-Retest Pilot Dataset (Mennes et  

al.  2012).  There  were  20 participants  (34.3 ± 14.0 years).  For  each  participant,  the DW-MRI scans  were  

performed twice (session 1 and session 2), around one week apart. Diffusion weighted images were collected a  

standard pulse sequence with 2-mm-thick axial slices and 137 directions: TE 85 ms; TR 2400 ms; b value, 1500 

s/mm2; flip angle, 90°. 

Image Processing

DW-MRI images were processed with FMRIB’s Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl). Non-

brain tissue was removed using the Brain Extraction Tool (BET) with a fractional intensity threshold of 0.2, and 

then raw DW images were affinely registered to the nonDW image, to partially correct for the effects of motion 

and eddy currents. Then, by fitting a tensor model at each voxel using DTIFit from the FSL (Smith et al. 2004),  

we obtained the fractional  anisotropy (FA) and mean (MD) diffusivity,  used in  subsequent TBSS analysis 

(Smith et al. 2006; Smith et al. 2007). 
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To compare between subjects, the TBSS framework was used. In detail, first, we non-linearly aligned the  

individual  FA maps to FSL’s standard 1 mm isotropic  FA template (FMRIB58_FA) and averaged them to 

generate a study specific mean FA map. Next, voxels with an FA > 0.2 in the mean FA map were masked out, 

and the reminder was thinned to create a white matter “skeleton”. The resulting skeleton contained WM tracts  

common to all subjects. Individual FA maps were then projected onto the mean FA skeleton by filling the  

skeleton with FA values from the nearest tract center. The same non-linear transformations derived for the FA 

maps were applied to the MD maps. 

In terms of the LDH metric, it is a novel model-free metric that defines the regional inter-voxel coherence 

of diffusion series (Gong 2013). Technologically,  LDH is quantified within the neighbors (n = 27) via the 

Kendell’s coefficient concordance (KCC), after the estimation of the diffusivity strengths along each gradient 

direction. To compare between subjects, the LDH maps were also projected onto the WM skeleton mask using 

the TBSS framework described above. In addition, we used the same approach with different neighbor size  

(i.e., n = 7 and n = 19) for quantifying the LDH, and also used another approach for quantifying the regional 

coherence with information theory (Kong et al., 2014). The results in these cases were all similar to those of the 

original LDH (data not shown). 

The  DW-MRI data  preprocessing and  TBSS analysis  pipelines were  both implemented  using Nipype 

(Gorgolewski et al. 2011), a flexible, lightweight and extensible neuroimaging data processing framework in 

python. The pipeline for calculating both original and improved LDH was implemented in python. 

Assessment of in-scanner head motion

To retrospectively estimate head motion during scanning, DW images were realigned to the non-DW image 

with FMRIB's Linear Image Registration Tool (FLIRT), and at the same time, an affine transformation matrix 

was obtained for each image.  Then, for each image, the root mean squared (RMS) deviation (Jenkinson et al.  

2002), a summary statistic of in-scanner head motion, was calculated from its transformation using the tool 

rmsdiff from FSL.  Since it summarizes six translational and rotational parameters, the RMS has been widely  

used in the neuroimaging community.  For instance, it has been used in fMRI and DTI data processing to check  

the extent of head motion and make decisions about cohort formation or matching (e.g., Ikuta et al., 2014;  

Kochunov et al., 2013; Kong, 2014).  Technically, the RMS can be calculated directly from the affine matrices 

with the formula (1). 
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RMS=√ 1
5

R2Trace ( AT A )+t T t                         (1)

In formula (1), R is  a radius specifying the volume of interest (R = 80mm, approximately the mean  

distance from the cerebral cortex to the center of the head), A is a 3x3 ‘rotation’ matrix and t is a 3x1 column 

vector of translation. One thing to note is that since the RMS uses all the information from the affine matrices 

(including the shear and scaling, if present), it could include the electrical properties of each participant’s head. 

Nevertheless, the RMS does provide a sensitive index of in-scanner head motion. 

Here, the RMS was calculated from 2 transformations of consecutive images (Jenkinson et al. 2002). That 

is, in-scanner head motion was measured as the summary measure of head motion relative to the preceding 

volume as the previous studies (Satterthwaite et al. 2012; Van Dijk et al. 2012).  Finally, head motion was  

calculated by averaging the RMS deviations for all volumes.

Test-retest reliability of diffusion metrics and head motion estimate

The voxel-wise test-retest reliability for each diffusion metric was calculated with the intra-class correlation 

coefficient (ICC) (Shrout & Fleiss 1979). 

ICC=
BMS−EMS

BMS +(k−1 ) EMS                               (2)

The formula estimates the correlation of the subject signal intensities between sessions, modeled by a two-

way ANOVA, with random subject effects and fixed session effects. In this model, the total sum of squares is  

split into subject (BMS), session (JMS) and error (EMS) sums of squares; the k is the number of repeated 

sessions. The reliability measure for whole-brain analysis was implemented in python and can be accessed  

from Nipype (Gorgolewski et al. 2011). The test-retest reliability for head motion estimate was also calculated  

with ICC. 

Relationship between In-Scanner Head Motion and Diffusion Metrics

To maximize the signal to noise ratio of head motion estimates, first we calculated the average head motion for  

each participant across two sessions. Analogously, for accurate measures of microstructure estimates, the MD,  

FA and LDH metrics finally used were also taken from the average of the TBSS results across the two sessions.  
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To examine the possible relationship between head motion and diffusion regional metrics, we conducted a  

statistical analysis using general linear models (GLMs), for the three metrics respectively, with head motion as 

the  variable  of  interest.  In  these  models,  gender,  age  and  handedness  were  controlled  as  confounding 

covariates.  Handedness  was  included  here  because  it  is  associated  with  brain  structure  and  the  neural  

processing of attention, while attention deficit may cause more head motion (e.g., Durston et al., 2003; Schmidt  

et al., 2013). Voxel-wise statistical analysis was performed with Threshold-Free Cluster Enhancement (TFCE) 

correction (Smith & Nichols 2009) for multiple comparisons, considering fully corrected p-value < 0.05 as 

significant.  In  addition,  the  same  statistical  procedure  was  conducted  for  both  session  1  and  session  2  

respectively. 

Results

Test-retest reliability of diffusion metrics and head motion estimate

All of the diffusion metrics in this study showed relatively high test-retest reliability: FA: Mean ICC = 0.71;  

MD: Mean ICC = 0.71; LDH: Mean ICC = 0.75. In addition, the magnitude of head motion seemed acceptable 

(Table 1) and showed medium reliability (ICC = 0.54), which is consistent with previous studies (Van Dijk et  

al. 2012). Although all of the diffusion metrics, as well as the head motion estimate, are relatively reliable 

across the two scans, they were not exactly the same due to some random artifacts, including motion artifacts  

and machine noises. Thus, for accurate measures of this microstructure and the head motion estimate, we first 

averaged the head motion and diffusion metrics across the two sessions and mainly examined the results with  

the averaged data. 

---insert Table 1. ---

Relationship between the head motion estimate and diffusion metrics

In Table 1, we also show a basic summary of the main head motion results of diffusion metrics across all three 

analyses. 

Among  the  two  mostly  commonly  used  regional  diffusion  metrics  (i.e.,  FA and  MD),  these  results 

indicated  that  head  motion  was  mainly  associated  with  the  MD values.  The  degree  of  head  motion  was 

positively  associated  with  increased  MD mainly  within  white  matter  tracts  in  left  hemisphere,  including 
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anterior limb of internal capsule, posterior limb of internal capsule, genu of corpus callosum and body of  

corpus callosum (Fig. 1). In the current report, we focus on voxels that survived the TFCE correction (p < 0.05)  

(Smith & Nichols 2009) within the whole white matter skeleton. For the analyses examining FA, no voxel 

survived correction for multiple comparisons. 

For the analyses examining the inter-voxel diffusion metric (i.e., LDH), we found that wide-spread white  

matter showed significant negative association with head motion (p < 0.05, TFCE corrected; Fig. 1). This  

association mainly involved the bilateral superior longitudinal fasciculus, body and genu of corpus callosum,  

cingulum,  superior,  anterior  and  posterior  corona  radiate,  retrolenticular  part  of  internal  capsule,  fornix, 

cerebral  peduncle,  middle  cerebellar  peduncle,  right  anterior  and  posterior  limb  of  internal  capsule,  right 

external capsule and sagittal stratum. 

---insert Fig. 1. ---

Overall, with the same criterion of significance (p < 0.05, TFCE corrected), we found the most number of 

motion-related  voxels  with  LDH (34551  voxels,  32.25%)  and  then  MD (2686  voxels,  2.51%).  No voxel 

survived with FA. 

In addition, we also examined the association between head motion and diffusion metrics with data from 

the two sessions respectively. Although no voxel survived statistical correction for multiple comparisons (p < 

0.05) in most of the analyses (except LDH in Session 2), there were some voxels that showed a significant 

trend (p < 0.10, TFCE corrected; Fig. 2). 

---insert Fig. 2. ---

Discussion

Like any other MRI technique, DW-MRI signal is subject to head motion artifacts, however, the relationship  

between diffusion metrics and head motion remains incompletely understood. Previous studies have shown a 

significant  relationship  between  diffusion  metrics  and  head  motion  (Ling  et  al.  2012)  with  conventional 

scanning protocol. The current study expands on previous work by exploring the relationship between motion 

and diffusion metrics (including the recently proposed inter-voxel metric, LDH) with a multiband dataset. We 

found that the motion effects in FA and MD seems to be mitigated to some extent, but the effect on MD still  
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existed. In addition, the effect is much more pronounced in LDH. Since these results are present following 

standard processing procedures, researchers shall be cautious when conducting data analysis and interpretation. 

Previous studies suggested a positive association between motion and MD, with increased magnitude of MD 

as a  result  of  increased total  motion (Ling et  al.  2012).  The results  of  this  study,  with multiband dataset, 

replicate this finding, as a positive relationship between head motion and the magnitude of MD was present in 

the left hemisphere tracts. The significant association was mainly located in the deeper white matter (e.g., 

corpus callosum and the internal capsule). Interestingly, these tracts have often been reported in the literature to  

differ between a variety of clinical populations and healthy subjects (Carrasco et al. 2012; Travers et al. 2012).  

For examining FA, we found no significant relationship between head motion and FA after multiple comparison 

correction. On the one hand, our findings appear consistent with the previous finding (Ling et al., 2012) that the  

head motion’s bias is more pronounced in MD than FA. But on the other hand, given the reduction of the  

number of motion-related voxels (multiband dataset: 0 voxel for FA, 2686 voxels for MD; Ling et al., (2012):  

2422 voxels for FA, 22679 voxels for MD), the motion effect seems to be mitigated in the multiband dataset.  

This may be due to several advantages of the multiband dataset. First, the multiband dataset was acquired with  

much more gradient directions than traditional datasets, which would result in more accuracy when evaluating 

diffusion metrics. Second, the multiband scanning protocol allows full-brain coverage through the acquisition 

of multiple slices simultaneously. This could avoid displacements of brain within a TR and further mitigate the 

motion effects. Finally, given the fact that multiband protocol is designed for a relatively high sampling rate  

(i.e., a shorter TR), motion effects from a shorter duration would be expected to decrease. All these advantages 

could result in higher accuracy and less irrelevant effects (e.g., head motion) when evaluating diffusion metrics. 

In addition, we also explored the relationship between head motion and LDH values and found that there  

were widespread voxels significantly associated to head motion. It's worth noting that with a smaller neighbor 

sizes (n = 19 or n = 7) when calculating the LDH, we observed the similar result (number of voxels that  

survived the TFCE correction: 35570 voxels for n = 19; 40425 voxels for n = 7). This appears to be quite likely  

caused by motion artifacts. Indeed, the significant voxels were rarely located in the occipital white matter  

tracts, where motion artifacts may be much weaker than that in prefrontal lobe when subjects are laying supine.  

These  results  suggest  that  LDH  values  might  be  more  subject  to  head  motion  artifacts.  The  increased  

susceptibility to motion may be due to the fact that it is an inter-voxel metric which would be subject to shear in 

the displacement, and that it is directly calculated with raw diffusivity series. Though previous studies have 

shown LDH values change during aging, the newly proposed metric has not yet well validated (Gong 2013)  

and simulation and experimental work is required to confirm the motion-LDH association.  
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So, why does the association between motion and diffusion metrics exist? The dominant view at present is  

that  head  motion  introduces  artifacts  into  diffusion  signals,  similar  to  what  has  been  noted  in  the  fMRI 

literature (Bullmore et al. 1999; Friston et al. 1996; Hajnal et al. 1994), which influence the calculation of  

diffusion metrics and further results of cross-subject analysis. A common strategy for controlling motion effects 

in neuroimaging cross-subject analysis is to regress or match motion estimates (Zuo et al. 2010a; Zuo et al.  

2012; Zuo et al. 2010b). Another strategy for mitigating head-motion artifacts is to remove time series of high 

motion, which is called ‘scrubbing’ (Power et al. 2012). However, these strategies have their limitations. On the 

one hand,  scrubbing  volumes with  high  motion  could  not  fundamentally  change  the  relationship  between 

motion and values of diffusion metrics (Ling et al. 2012). On the other hand, they may also reduce the ability to 

detect a significant effect of interest, and/or introduce sampling bias (Satterthwaite et al. 2012; Wylie et al. 

2014). 

While researchers attempt to propose more sophisticated algorithms, there is growing perception in the 

field  that  head  motion  reflects  individual  differences  in  psychological  traits  and  clinical  conditions.  For 

instance,  previous  studies  showed  that  head  motion  was  correlated  with  some  psychological  and  clinical  

measures, such as the autism symptom severity score (Yendiki et al. 2013). In addition, previous fMRI studies  

suggest that the association may reflect the neural processing related to head motion (Yan et al. 2013a; Yan et  

al. 2013b). However, it is important to note that this problem in dMRI would not be as serious as it is in fMRI,  

since  in  dMRI  the  neural  processing  causing  the  motion  does  not  directly  affect  the  signal  intensity.  

Nevertheless, these findings do suggest that head motion might not simply be an uncorrelated random variable. 

Taken together, as articulated previously (Van Dijk et al. 2012; Wylie et al. 2014; Yendiki et al. 2013),  

these findings demonstrate the significance of developing motion-compensated acquisition methods for DW-

MRI and incorporating them into neuroimaging studies in the future. Nevertheless, with current technologies, it  

appears impossible to perfectly eliminate the motion effects. As a temporary solution, examining both models 

with and without motion being regressed out will be expected. But in this case, researcher should include both  

results in the report, rather than just pick a ‘better’ one. Additionally, researcher shall keep in mind that motion 

does  not  only  influence  MRI  signals,  but  also  correlated  with  some  meaningful  individual  differences. 

Alternatively,  replication in  an independent sample would be helpful,  since the effects  of  head motion on 

diffusion metrics are usually random and not specific to some brain regions. Nevertheless, for now, researchers 

shall be cautious when doing MRI data analysis and interpretation.

In sum, the results of this study indicate that, in the multiband diffusion data, there are also significant  

associations between head motion and diffusion metrics, although the motion effects appear to be mitigated 
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compared to those with traditional dataset. Specifically, head motion was associated with both MD and LDH, 

and no significant effect was found for FA. Future studies should investigate the association between head  

motion and diffusion metrics with larger multiband datasets. 
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Table 1(on next page)

A basic summary of head motion and the motion effects in three diffusion metrics.

The column Motion includes the averaged motion in the sample. The column Motion-Brain 

Association includes the summary of motion effects in different diffusion metrics (i.e., FA, 

MD, and LDH). n.r. indicates null results; Plus sign (+) indicates a positive relationship, while 

minus (–) indicates a negative relationship. *: p < 0.10 TFCE corrected, **: p < 0.05 TFCE 

corrected.
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Sample Motion Motion-Brain Association

FA MD LDH

Session 1 1.1(0.32) n.r. +* -*

Session 2 1.26(0.38) n.r. +* -**

Averaged 1.18(0.29) n.r. +** -**
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Figure 1

Results from the tract-based spatial statistics (TBSS) analyses depicting the voxels that 

showed a significant association between head motion diffusion metrics.

Data are presented for the analyses involving both Mean Diffusivity (MD; A) and local 

diffusion Local Diffusion Homogeneity (LDH; B) as the dependent measure. Participants with 

higher motion exhibited higher apparent values of MD, but lower LDH. Voxels survived the 

TFCE correction (p < 0.05) across the whole white matter skeleton are displayed.
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Figure 2

Results from the tract-based spatial statistics (TBSS) analyses depicting the voxels that 

showed a significant association between head motion diffusion metrics.

Since no voxel that survived statistical correction for multiple comparisons (p < 0.05) in most 

of the analyses (except LDH in Session 2), they are displayed at a more tolerant threshold (p 

< 0.10, TFCE corrected).
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