
Association between In-scanner Head Motion with Cerebral 
White Matter Microstructure: A Multiband Diffusion-weighted 
MRI study

Diffusion-weighted MRI (DW-MRI) has emerged as a promising neuroimaging technique 

used to depict the biological microstructural properties of the human brain white matter. 

However, like any other MRI technique, DW-MRI remains subject to head motion during 

scanning. The association between motion and diffusion metrics is rarely understood. 

Previous studies have indicated that there are some regions showing significant relationship 

with diffusion metrics from traditional DW-MRI data with relative few gradient directions (e.g., 

30 directions). As imaging techniques improves, additional gradient directions can be 

acquired in the same scan duration without a significant loss in spatial resolution. The current 

study examined the association between motion and diffusion metrics with the standard 

pipeline, tract-based spatial statistics (TBSS), with a multiband diffusion data (i.e., 137 

directions). The diffusion metrics used in this study not only the included the commonly used 

metrics (i.e., FA and MD) in DW-MRI studies, but also a newly proposed inter-voxel metric, 

local diffusion homogeneity (LDH). The positive association was observed with MD, while the 

negative association with LDH. No significant association between motion and FA was 

observed. These results indicate that there is a similar link between motion and diffusion 

metrics in the multiband diffusion data. Finally, the motion-diffusion association is discussed.
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Abstract

Diffusion-weighted MRI (DW-MRI) has emerged as a promising neuroimaging technique used to depict the  

biological microstructural properties of the human brain white matter. However, like any other MRI technique, 

DW-MRI remains subject  to  head motion  during scanning.  The  association between motion  and diffusion 

metrics is rarely understood. Previous studies have indicated that there are some regions showing significant  

relationship with diffusion metrics from traditional DW-MRI data with relative few gradient directions (e.g., 30 

directions). As imaging techniques improves, additional gradient directions can be acquired in the same scan 

duration without a significant loss in spatial resolution. The current study examined the association between 

motion and diffusion metrics with the standard pipeline, tract-based spatial statistics (TBSS), with a multiband 

diffusion  data  (i.e.,  137  directions).  The  diffusion  metrics  used  in  this  study  not  only  the  included  the  

commonly used metrics (i.e., FA and MD) in DW-MRI studies, but also a newly proposed inter-voxel metric, 

local  diffusion  homogeneity  (LDH).  The  positive  association  was  observed  with  MD,  while  the  negative 

association with LDH. No significant association between motion and FA was observed. These results indicate  

that there is a similar link between motion and diffusion metrics in the multiband diffusion data. Finally, the  

motion-diffusion association is discussed. 
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Introduction

Diffusion-weighted MRI (DW-MRI) has become one of the most popular MRI techniques in brain research, as  

well as in clinical practice. One key application of DW-MRI is diffusion tractography which can be used for the  

visualization  of  white  matter  (WM) tracts  (Golby et  al.  2011)  and  construction  of  brain  neuroanatomical 

connectome (Gong et  al.  2009).  Also,  it  has become a convenient  tool  for  deriving  regional  measures  of  

diffusivity and anisotropy. These metrics are believed to reflect biological microstructural properties of the 

white matter, and have been extensively applied as biological markers for studying WM under normal and 

clinical conditions (Johansen-Berg 2010; Le Bihan 2003; Le Bihan et al. 2001; Travers et al. 2012). 

However, like any other MRI technique, DW-MRI remains subject to specific biological factors (e.g., 

temperature),  scanner  noises  (e.g.,  machine  SNR,  field  shim)  and,  in  particular,  motion  artifacts.  Thus, 

movement of the head during scanning is undesirable, which not only displaces the brain matter in space but  

also interferes with the readout of MR signals. Indeed, recent studies have discovered that head motion may 

introduce unwanted biases.  Ling and his  colleagues have shown that  head motion is  associated with both  

fractional anisotropy (FA) and mean diffusivity (MD), while the effect is greater for MD (Ling et al. 2012). A  

recent study have also found group differences in head motion can induce group differences in white matter  

tract-specific diffusion metrics, and such effects can be more prominent in some specific tracts than others 

(Yendiki et al. 2013). However, these studies on head-motion artifacts have employed traditional DW-MRI data 

with relatively small  number of  gradient  directions (e.g.,  n = 30 directions).  In fact,  previous works have 

indicated the influence of the number of gradient directions on data acquisitions (Landman et al. 2007; Tijssen  

et  al.  2009).  Recently,  several  promising  imaging  techniques  have  been  proposed,  including  MR-

encephalography (Zahneisen et al. 2011) and multiband echo planar imaging (Moeller et al. 2010). Using the 

multiband scanning protocol, additional gradient directions can be acquired in the same scan duration without a  

significant loss in spatial resolution. It remains largely unknown whether the association would still exist in  

DW-MRI data with large number of gradient directions. 

Here, the primary aim was therefore to investigate the relationship between head motion and diffusion 

metrics  estimated  from multiband data  with  137 directions.  In  this  study,  we examined  two tensor-based 

metrics most typically reported (i.e., FA and MD). Given the fact that they only reflect diffusion properties  

solely within the voxel, we also examined a newly proposed model-free inter-voxel metric, referred to as local  

diffusion homogeneity (LDH) (Gong 2013). We hypothesized that movement would be more or less related to  

diffusion metrics, even in the multiband DW-MRI data used here. It has been suggested that head motion alters  
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the measure of diffusion metrics even after motion correction (Ling et al. 2012; Tijssen et al. 2009; Yendiki et 

al. 2013), and that it may also provide information regarding neuronal processing (Yan et al. 2013a; Yan et al.  

2013b). Moreover, LDH is a recently proposed metrics and has not been fully validated yet (Gong 2013). In 

addition, unlike FA and MD, LDH directly depends on the raw diffusivity series without assuming a prior  

diffusion model (Gong 2013). Therefore, we also hypothesized that the association between head motion and 

LDH would be quite different to the tenser-based metrics, and may be more sensitive to motion artifacts. We 

tested these hypotheses by (1) confirming the test-retest reliability of both diffusion metrics and head motion 

across scan sessions, and (2) by examining the relationship between the averaged diffusion metrics and head 

motion. We also examined the relationship in each scan session. 

Materials and Methods

Dataset

The dataset used in this study was from the NKI-RS Multiband Imaging Test-Retest Pilot Dataset (Mennes et  

al. 2012). There were 20 participants (34.3 ± 14.0 years). And for each participant, the DW-MRI scans were 

performed twice (session 1 and session 2), around one week apart. Diffusion weighted images were collected a  

standard pulse sequence with 2-mm-thick axial slices and 137 directions: TE 85 ms; TR 2400 ms; b value, 1500 

s/mm2; flip angle, 90°. 

Image Processing

DW-MRI images were processed with FMRIB’s Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl). Non-

brain tissue was removed using the Brain Extraction Tool (BET) with a factional intensity threshold of 0.2, and 

then raw DW images were corrected for motion and eddy currents effects using affine registration to the non-

DW image. Then, by fitting a tensor model at each voxel using DTIFit from the FSL (Smith et al. 2004), we  

obtained the fractional anisotropy (FA) and mean (MD) diffusivity, used in subsequent TBSS analysis (Smith et 

al. 2006; Smith et al. 2007). 

To  compare  between  subjects,  TBSS  framework  was  used.  In  detail,  first,  we  non-linearly  aligned 

individual  FA map to  FSL’s  standard  1 mm isotropic  FA template  (FMRIB58_FA) and  averaged  them to  

generate a study specific mean FA map. Next, thinning was applied to the mean image and thresholded it at an  
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FA value of 0.2 to create a white matter “skeleton”. The resulting skeleton contained WM tracts common to all 

subjects. Individual FA maps were then projected onto the mean FA skeleton by filling the skeleton with FA  

values from the nearest tract center. The same non-linear transformations derived for the FA maps were applied 

to the MD maps. 

In terms of the LDH metric, it is a novel model-free metric that defines the regional inter-voxel coherence 

of diffusion series (Gong 2013). Technologically,  LDH is quantified within the neighbors (n = 27) via the 

Kendell’s coefficient concordance (KCC), after the estimation of the diffusivity strengths along each gradient 

direction. To compare between subjects, the LDH maps were also projected onto the WM skeleton mask using 

the TBSS framework described above. In addition,  we used another approach for  quantifying the regional 

coherence with information theory (Kong et al., 2014), and the results were all similar to those of the original  

LDH (data not shown). 

The  DW-MRI data  preprocessing and  TBSS analysis  pipelines were  both implemented  using Nipype 

(Gorgolewski et al. 2011), a flexible, lightweight and extensible neuroimaging data processing framework in 

python. The pipeline for calculating both original and improved LDH was implemented in python. 

Assessment of in-scanner head motion

To retrospectively estimate head motion during scanning, DW images were realigned to the non-DW image 

with FMRIB's Linear Image Registration Tool (FLIRT), and at the same time, a rigid transformation matrix was 

obtained for each image.  Then for each image, the root-mean-square (RMS) deviation, which summarizes 6 

translations  and  rotations  across  3  axes,  was  calculated  from  2  transformations  of  consecutive  images 

(Jenkinson et al. 2002).  That is, in-scanner head motion was measured as the displacement of each brain  

volume relative to the preceding one (Satterthwaite et al. 2012; Van Dijk et al. 2012).  Finally, head motion was 

calculated by averaging the RMS deviations for all volumes.

Test-retest reliability of diffusion metrics and head motion estimate

The voxel-wise test-retest reliability for each diffusion metrics was calculated with the intra-class correlation 

coefficient (ICC) (Shrout & Fleiss 1979). 
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ICC=
BMS−EMS

BMS + (k−1 ) EMS

The formula estimates the correlation of the subject signal intensities between sessions, modeled by a two-

way ANOVA, with random subject effects and fixed session effects. In this model, the total sum of squares is  

split into subject (BMS), session (JMS) and error (EMS) sums of squares; the k is the number of repeated 

sessions. The reliability measure for whole-brain analysis was implemented in python and can be accessed  

from Nipype (Gorgolewski et al. 2011). The test-retest reliability for head motion estimate was also calculated  

with ICC. 

Relationship between In-Scanner Head Motion and Diffusion Metrics

To maximize signal to noise ratio of head motion estimates, first we calculated the average head motion for 

each participant across two sessions. Analogously, for accurate measures of microstructure estimates, the MD,  

FA and LDH metrics finally used were also taken from the average of the TBSS results across the two sessions.  

To examine the possible relationship between head motion and diffusion regional metrics, we conducted a  

statistical analysis using general linear model (GLM), for the three metrics respectively, with head motion as  

the variable of interest. In these models, gender, age and handiness that were available in the dataset were  

controlled  as  confounding  covariates.  Voxel-wise  statistical  analysis  was  performed  with  Threshold-Free 

Cluster Enhancement (TFCE) correction (Smith & Nichols 2009) for multiple comparisons, considering fully 

corrected p-value < 0.05 as significant.  In addition, the same statistical  procedure was conducted for both  

session 1 and session 2 respectively. 

Results

Test-retest reliability of diffusion metrics and head motion estimate

All of the diffusion metrics in this study showed relative high test-retest reliability: FA: Mean = 0.71; MD:  

Mean = 0.71; LDH: Mean = 0.75. In addition, the magnitude of head motion seemed acceptable (Table 1) and 

showed medium reliability (ICC = 0.54), which is consistent with previous studies (Van Dijk et al.  2012).  

Although all of the diffusion metrics, as well as head motion estimate is relative reliable across the two scans,  

they were not exact the same due to some random artifacts, including motion artifacts and machine noises.  
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Thus, for accurate measures of this microstructure and head motion estimate, we first averaged the head motion  

and diffusion metrics across the two sessions and mainly examined the results with the averaged data. 

---insert Table 1. ---

Relationship between head motion estimate and diffusion metrics

In Table 1, we also show a basic summary of the main head motion results of diffusion metrics across all three 

analyses. 

Among  the  two  mostly  commonly  used  regional  diffusion  metrics  (i.e.,  FA and  MD),  these  results 

indicated  that  head  motion  was  mainly  associated  with  the  MD values.  The  degree  of  head  motion  was 

positively  associated  with  increased  MD mainly  within  white  matter  tracts  in  left  hemisphere,  including 

anterior limb of internal capsule, posterior limb of internal capsule, genu of corpus callosum and body of  

corpus callosum (Fig. 1). In the current report, we focus on voxels survived the TFCE correction (p < 0.05) 

(Smith & Nichols 2009) across the whole white matter skeleton. For the analyses examining FA, no voxel  

survived correction for multiple comparisons. 

For the analyses examining the inter-voxel  diffusion metric  (i.e.,  LDH), we found wide-spread white 

matter showed significant negative association with head motion (p < 0.05, TFCE corrected; Fig. 1). This  

association  mainly  involved  bilateral  superior  longitudinal  fasciculus,  body and  genu of  corpus  callosum, 

cingulum,  superior,  anterior  and  posterior  corona  radiate,  retrolenticular  part  of  internal  capsule,  fornix, 

cerebral  peduncle,  middle  cerebellar  peduncle,  right  anterior  and  posterior  limb  of  internal  capsule,  right 

external capsule and sagittal stratum. 

---insert Fig. 1. ---

Overall, with the same criterion of significance (p < 0.05, TFCE corrected), we found the most number of 

motion-related  voxels  with  MD (2686  voxels,  2.51%)  and  then  LDH (34551  voxels,  32.25%).  No voxel 

survived with FA. 

In addition, we also examined the association between head motion and diffusion metrics with data from 

the two sessions respectively. Although no voxel survived statistical correction for multiple comparisons (p < 

0.05) in most of the analyses (except LDH in Session 2), there were some voxels showed a significant trend (p  

< 0.10, TFCE corrected; Fig. 2). 
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---insert Fig. 2. ---

Discussion

Like  any  other  MRI  technique,  DW-MRI  signal  is  subject  to  motion  artifacts,  however,  the  relationship 

between diffusion metrics and head motion remains incompletely understood. Previous studies have shown 

significant relationship between diffusion metrics and head motion along different axes (Ling et al. 2012). The  

current study expands on previous work (Ling et al. 2012) by exploring the relationship between motion and 

diffusion metrics (including the newly proposed inter-voxel metric, LDH) with a multiband dataset with 137 

directions. Our primary conclusions suggest that there are significant association between head motion and 

diffusion metrics (except FA), but that the effect is much more pronounced in LDH. Importantly, these results  

are present following standard methods for diffusion data correction. 

Previous studies suggested a positive association between motion and MD, with increased magnitude of 

MD as a result of increased motion along one axes (i.e.,  right-left,  anterior-posterior and inferior-superior) 

(Ling et al. 2012). Current results replicate this finding, as a positive relationship between head motion and 

magnitude of MD was present in the left hemisphere tracts. The significant association mainly located in the 

deeper white matter (e.g., corpus callosum and the internal capsule). Interestingly, these tracts have often been 

reported in the literature to differ between a variety of clinical populations and healthy subjects (Carrasco et al.  

2012; Travers et al. 2012). For examining FA, we found no significant relationship between head motion and 

FA after multiple comparison correction. This may be due to the relative high SNR since the diffusion data used 

in this study was acquired with much more gradient directions than the previous study (Ling et al. 2012). But 

this appears consistent with the previous finding that the head motion’s bias is more pronounced in MD. 

More importantly, we also explored the relationship between head motion and LDH values and found that 

there were widespread voxels significantly associated to head motion. This appears to be quite likely caused by  

motion artifacts. Indeed, the significant voxels rarely located in the occipital white matter tracts, where motion 

artifacts may be much weaker than that in prefrontal lobe when subjects laying supine. These results suggest  

that LDH values might be more subject to head motion artifacts. And the increased susceptibility may be due to 

the fact that it is directly calculated with raw diffusivity series. Though previous studies have shown LDH 

values change during aging, the newly proposed metric has not yet well validated (Gong 2013) and simulation  

and experimental work is required to confirm the motion-LDH association.
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So, why does the association between motion and diffusion metrics exist? The dominant view at present is  

that head motion introduces artifacts into diffusion signals, similar to be noted in the fMRI literature (Bullmore  

et al. 1999; Friston et al. 1996; Hajnal et al. 1994), which influence the calculation of diffusion metrics and 

further results of cross-subject analysis. A common strategy for controlling motion effects in neuroimaging 

cross-subject analysis is to regress or match motion estimates (Zuo et al. 2010a; Zuo et al. 2012; Zuo et al.  

2010b). Another strategy for mitigating head-motion artifacts is to remove time series of high motion, which is 

called ‘scrubbing’ (Power et  al.  2012).  However,  these strategies have their  limitations.  On the one hand,  

scrubbing volumes with high motion could not fundamentally change the relationship between motion and 

values of diffusion metrics (Ling et al. 2012). On the other hand, they may also reduce the ability to detect a  

significant effect of interest, and/or introduce sampling bias (Satterthwaite et al. 2012; Wylie et al. 2014). 

While researchers attempt to propose more sophisticated algorithms, there is growing perception in the 

field  that  head  motion  reflects  individual  differences  in  psychological  traits  and  clinical  conditions.  For 

instance, previous studies showed that head motion was correlated with impulsivity (Kong et al., under review) 

and  autism symptom severity  scores  (Yendiki  et  al.  2013).  In  addition,  previous  studies  suggest  that  the 

association may reflect the neural processing related to head motion (Yan et al. 2013a; Yan et al. 2013b). Thus,  

they suggest that head motion not be considered as a random variable (Yan et al. 2013a; Yan et al. 2013b; Kong 

et al., under review). 

Taken together, as articulated previously (Van Dijk et al. 2012; Wylie et al. 2014; Yendiki et al. 2013),  

these findings demonstrate the significance of developing motion-compensated acquisition methods for DW-

MRI and incorporating them into neuroimaging studies in the future. Nevertheless, with current technologies, it  

appears  impossible  to  not perfectly eliminate the motion effects.  As a temporary solution, examining both 

models with and without motion being regressed out will be expected. But researcher shall keep in mind that 

motion does not only influence MRI signals, but also correlated with some meaningful individual differences. 

Alternatively,  replication in  an independent sample would be helpful,  since the effects  of  head motion on 

diffusion metrics are usually random and not specific to some brain regions. Nevertheless, for now, researchers 

shall be cautious when doing MRI data analysis and interpretation.

In sum, current results indicate that, in the multiband diffusion data, there are also significant associations  

between head motion and diffusion metrics. Head motion was associated with both MD and LDH, while the 

effect was greater for LDH. However, no significant effect was found for FA. Future studies should be to 

investigate the association between head motion and diffusion metrics with larger multiband datasets. 
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Table 1(on next page)

A basic summary of head motion and the results about relationship between head 

motion and DTI metrics.
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Samp

le

Mean 

MRD

Motion-Brain Association

FA MD LDH

Averaged 1.18(0.29) n.r. +** -**

Session 1 1.1(0.32) n.r. +* -*

Session 2 1.26(0.38) n.r. +* -**

n.r.: null results, +: positive relationship, -: negative relationship; *: p < 0.10 TFCE corrected, **: 

p < 0.05 TFCE corrected; MRD = mean relative displacement. 
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Figure 1

The association between head motion and diffusion metrics with data from the two 

sessions respectively.

Since no voxel survived statistical correction for multiple comparisons (p < 0.05) in most of 

the analyses (except LDH in Session 2), they are displayed at a more tolerant threshold (p < 

0.10, TFCE corrected).
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Figure 2

Results from the tract-based spatial statistics (TBSS) analyses depicting the voxels that 

showed a significant association between head motion diffusion metrics.

Data are presented for the analyses involving both Mean Diffusivity (MD; A) and local 

diffusion Local Diffusion Homogeneity (LDH; B) as the dependent measure. Participants with 

higher motion exhibited higher values of MD, but lower values of LDH. Voxels survived the 

TFCE correction (p < 0.05) across the whole white matter skeleton are displayed.
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