1	Changes in zooplankton community, and seston and zooplankton fatty acid profiles at the	Formatted: Font: Bold
2	freshwater/saltwater interface of the Chowan River, NC	Formatted: Line spacing: Double
3		
4	Deborah A. Lichti ^{1*} , Jacques Rinchard ² , and David G. Kimmel ^{1,3}	
5		
6	¹ Department of Biology, East Carolina University, N108 Howell Science Complex, Greenville,	
7	NC, 27858, USA	
8	² Department of Environmental Science and Biology, College of Brockport- SUNY 350 New	
9	Campus Drive, Brockport, NY 14420, USA	
10	³ Present Address: NOAA Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle,	
11	WA 98115, USA	
12		
13 14 15	•	Formatted: Normal, Line spacing: single

16	ABSTRACT
17	The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat
18	quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous
19	fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty
20	acid composition varied in comparison with the zooplankton community composition and fatty
21	acid composition during the period of anadromous larval fish residency. The seston fatty acid
22	profiles showed no distinct pattern in relation to sampling time or location. The
23	mesozooplankton community composition varied spatially and the fatty acid profiles were
24	typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event
25	during May, which resulted in brackish water species dominating the zooplankton community
26	and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular
27	eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event
28	was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton
29	community composition once again became dominated by freshwater species and the fatty acid
30	profiles shifted to reflect this change; however, EPA levels remained high, particularly in the
31	lower river. We found correlations between the seston, microzooplankton and mesozooplankton
32	fatty acid compositions. These correlations show that seston composition was correlated to
33	particular groups of fatty acids found in the zooplankton These data suggest that anadromous fish
34	nursery habitat likely experiences considerable spatial variability in fatty acid profiles of
35	zooplankton prey and that are correlated to seston community composition and hydrodynamic
36	changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid
37	composition is present in the Chowan River to support larval fish production.
38	

Formatted: Heading 1,Heading 1_Dissertation Formatted: Font: Not Bold

39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55	Introduction		Comment [T1]: The introduction requires more recent references, most of the
56	Estuaries are considered important nursery habitat for many ecologically and		references are pre-2010. Look for new references in the Galloway, Kainz, Parrish, Richoux labs among others for more recent
57	commercially important fish and invertebrates (Boesch and Turner 1984). Estuaries function as	_ \	references on the subject at hand.
58	fish nurseries because they are highly productive, support large planktonic populations across		Formatted: Heading 1,Heading 1_Dissertation
			Comment [T2]: More recent references
59	multiple size ranges, and fish within estuaries generally have higher growth rates compared to		
60	other habitats (Beck et al. 2001). Hence, many fish have evolved life-history strategies whereby		Comment [T3]: Combine 2 sentences, they mean the same thing but written in different
61	larvae and juvenile stages have residency periods in estuaries (McHugh 1967; Boehlert and		ways

62	Mundy 1988; Beck et al. 2001; Able 2005; Walsh et al. 2005). Higher growth rates of larval fish
63	are possible because of zooplankton prey that interact with fish during their critical transition
64	from yolk sac larvae to free-living, feeding larvae (Hjort 1914; Mullen et al. 1986; Rulifson et al.
65	1993; Cooper et al. 1998; Martino and Houde 2010; Binon 2011). Many studies have related
66	spatial and temporal overlap in zooplankton and fish populations to successful year class strength
67	for fish (Hjort 1914; Townsend 1983; Newton 1996; Chick and Van Den Avyle 1999; Martino et
68	al. 2010; Binon 2011). However, spatial and temporal overlap between predators and prey does
69	not explain how fish nurseries function mechanistically. The <u>refore, the</u> quality of prey can play a
70	major role in determining the effectiveness of a nursery for early stages of fish.
71	The quality (chemical composition) of zooplankton prey can influence fish growth,
72	development, and survival (Fraser et al. 1989; Webster and Lovell 1990; Copeman et al. 2002;
73	Rossi et al. 2006; Malzahn et al. 2007, Paulsen et al. 2014). Lipids are one class of compounds
74	that are particularly important, having been shown to impact neural and vision development in
75	fish (Gulati et al. 1997; Müller-Navarra et al. 2000; Kainz et al. 2004; Masclaux et al. 2012).
76	Lipids and fatty acids may act as both dietary tracers in the food web and indicators of overall
77	food quality. Fatty acids are chemically diverse, often incorporated into organisms unmodified,
78	and different organisms have distinct profiles (Dalsgaard et al. 2003). The majority of aquatic
79	organisms need specific dietary fatty acids for somatic development and fitness (Masclaux et al.
80	2012). For example, 18:3n-3, α -linolenic acid (ALA), and 18:2n-6, linoleic acid (LA) are labeled
81	essential fatty acids because they cannot be directly synthesized by heterotrophic organisms and
82	must come from the diet (Arts et al. 2009). Polyunsaturated fatty acids (i.e., 20:5n-3,
83	eicosapentaenoic acid (EPA), 22:6n-3, docosahexaenoic acid (DHA), and 20:4n-6, arachidonic
84	acid (ARA)) are required for all organisms and play a role in health and cell function (Dalsaard

2001 411

2005 337 1 1

1 2005

--- -

. .

Formatted: Highlight

et al. 2003). In addition to these essential fatty acids, entire suites of fatty acids can be used to
generate fatty acid profiles for comparison across trophic levels (Iverson et al. 2004). Thus, an
organisms' fatty acid signature may indicate dietary consumption and nutritional quality of its
prey (Goncalves et al. 2012).

89 Fatty acids are present in estuaries as a result of *de novo* synthesis by phytoplankton and 90 the delivery of detrital material of plant origin (Dalsgaard et al. 2003). The free-floating portion 91 of organic participles is termed seston and the seston fatty acid composition is important because 92 it forms the origin point for the propagation of fatty acids through the pelagic food web (ref). 93 Zooplankton assimilate fatty acids from the seston through direction consumption of 94 phytoplankton cells, detritus and/or consumption of microzooplankton that graze phytoplankton 95 or detritus (Wacker and von Elert 2001; Kainz, Arts, and Mazumder 2004; Vargas et al. 2006). 96 To date, studies of the relationship between seston and zooplankton fatty acid composition have 97 shown variable patterns. Persson and Verde (2006) demonstrated in laboratory studies that 98 broad, zooplankton taxonomic groups (cladoceran vs- copepods) have different fatty acid profiles independent of the food source. The seston has been correlated to the fatty acid profile of 99 100 zooplankton in situ as well (Goulden and Place 1990; Brett et al 2006; Taipale et al. 2009; 101 Gladyshev et al. 2010; Ravet, Brett, and Arhoditsis 2010). The mismatch of fatty acids in seston 102 to zooplankton has also been shown in many studies (Desvilettes et al. 1997; Persson and Vrede 103 2006; Rossi et al. 2006; Smyntek et al. 2008). There appears to be a difference in fatty acid 104 transfer from seston to zooplankton when freshwater and marine ecosystems are compared. Most 105 marine zooplankton species cannot convert precursor fatty acids and only obtain longer-chained 106 fatty acids from their diet (Rossi et al. 2006; Persson and Verde 2006). However, it is clear that 107 fatty acid composition of the seston changes as a result of local conditions, e.g., the salinity and

Comment [T4]: See Bergamino et al. 2015. Evidence of spatial and temporal changes in sources of organic matter in estuarine sediments: stable isotope and fatty acid analyses. Hydrobiologia Dalu et al. 2016. Effects of substrate on essential fatty acids produced by phytobenthos in an austral temperate river system. Freshwater Science

Comment [T5]: update references

Formatted: Font: Italic

108	temperature, nutrient concentration, and the degree of autotrophy or heterotrophy in the system	
109	(Farkas and Herodek 1964; Desvilettes et al. 1997; Wacker and von Elert 2001; Goncalves et al.	
110	2012). Therefore, combined knowledge of the changing nature of seston fatty acid composition,	
111	zooplankton community composition changes, and fatty acid profiles forms a useful base for	
112	assessing the quality of fish nursery habitat.	
113	Zooplankton community composition in estuaries has been intensely studied and abiotic	
114	factors are thought to structure zooplankton communities (Ambler et al. 1985; Orsi 1986;	
115	Cervetto et al. 1999; Mouny and Dauvin 2002; Kimmel and Roman 2004; Lawrence et al. 2004;	
116	Islam et al. 2005). Zooplankton community composition in temperate estuaries is dominated by	
117	crustaceans in general and copepods and cladocerans in particular (Tackx et al. 2004, Marques et	
118	al. 2006; Winder and Jassby 2011; Chambord et al. 2016). The fatty acid (FA) profiles of	
119	crustacean zooplankton vary among species and are influenced by diet (Persson and Vrede 2006;	Field Code Changed
120	Arts et al. 2009). Cladocerans are characterized by high levels of EPA and ARA and this is	
121	thought to be related to a life history strategy focused on high rates of somatic growth (Persson	Field Code Changed
122	& Vrede 2006). In contrast, copepods have higher relative DHA levels because this fatty acid is	
123	critical for nervous system development (Arts et al. 2009). Copepods feature more developed	Field Code Changed
124	nervous systems compared to cladocerans and this is a function of the active hunting of prey,	
125	mate location, and predator avoidance (Dalsgaard et al. 2003). Carnivorous crustacean	Field Code Changed
126	zooplankton have shown to be richer in PUFAs and this is thought to be related to their food	
127	source (rotifers and smaller bodied cladocerans/copepods compared to phytoplankton) (Arts et	Field Code Changed
128	al. 2009).	
129	Here we assess the variability in fatty acid composition of seston and zooplankton at the	
130	freshwater/saltwater interface of an estuarine fish nursery, the Chowan River, North Carolina,	

131	USA. The Chowan River is considered a critical habitat for larval and juvenile blueback herring		
132	(Alosa aestivalis),) and alewife (A. losa pseudoharengus), collectively known as river herring		Comment [T6]: first mention in full
133	(NCDMF 2007). The river herring are of interest because they have been severely overfished and		
134	a moratorium on harvest is in place at various locations along the eastern United States,		
135	including North Carolina (ASMFC 2012). The Chowan also serves as a nursery habitat for		
136	American shad (Alosa_sapidissima) and striped bass (Morone saxatilis); however, the status of		
137	the habitat for the latter species is unknown (Greene et al. 2009). The overall goal of our study	_	Formatted: Font: Not Italic
138	was to determine if fatty acid profiles of the lower food web could be used to indicate habitat		
139	quality for an estuarine fish nursery. In order to achieve this goal, we determined the fatty acid		
140	composition of the seston, microzooplankton, and mesozooplankton during the period of larval		
141	fish residency in the Chowan River. We then compared the fatty acid profiles of these groups to		
142	determine the pathway of fatty acid transfer that was present in the Chowan River. We		
143	hypothesized that fatty acid profiles of micro- and mesozooplankton would relate to species		
144	composition and would reflect that of the seston. If supported, this would suggest that the		Comment [T7]: which species, fish
145	"quality" of the larval fish forage, based on fatty acids, could be used to assess fish nursery		
146	quality.		
147			
148	Materials and Methods		Formatted: Heading 1,Heading 1_Dissertation
149	Study Site		
150	The Chowan River is one of the largest tributaries that empty-drain into the Albemarle		
151	Sound (Fig. 1a and 1b).) and is T the Chowan River is the 12 th largest river basin in North		
152	Carolina (NCDENR 2006). and It'sis mainly a freshwater estuary that experiences intermittent		
153	salinity intrusion, mainly in the winter months (Leech et al. 2009). The Chowan River was		

154	classified as "nutrient sensitive waters" in 1979 (NCDENR 2006) and has routinely experienced	
155	algal blooms and low dissolved oxygen levels (<3.0 mg L^{-1}). The entire river is classified as a	
156	Strategic Habitat Area for larval and juvenile river herring (NCDMF 2007). Sampling took place	
157	south of Holiday Island on a 34 km transect of Chowan River (Fig. 1c). Seven locations (4 km	
158	apart) were sampled between Holiday Island and the river mouth (Fig 1c). Sampling occurred on	
159	10-11 April, 31 May, and 25 June 2013, dates that span the residency for larvae of alewife,	
160	blueback herring, and striped bass. For our study, we divided the river into three sections: upper,	
161	middle, and lower. The main differences among these sections were (1) the distance from the	
162	Albemarle Sound and (2) the potential influence of salinity.	
163	۸	F
164	Sample collection	
165	Water column properties and seston	F
166	Vertical profiles of temperature (°C) and salinity were measured with a conductivity,	r F
167	temperature, and depth sensor (CTD, Yellow Springs Instruments, Castaway). Seston was	
168	collected a depth of 3 meters with a Niskin water sampler. The water samples were placed in	F t
169	brown bottles and brought back to the laboratory for processing.	
170		
171	Zooplankton	(
172	Zooplankton sampling occurred on 10 and 11 April, 31 May, and 25 June 2013 at seven	a
173	sites on the Chowan River. Water depths ranged from 5.27 to 7.56 m- for zooplankton sampling.	F
174	Two net tows were made with 0.5 m diameter nets of two different mesh sizes (60 and 200 μ m).	v
175	Two mesh sizes were used in order to generate an adequate representation of the zooplankton for	r
176	the size range > 60 μ m. The zooplankton samples between 60 and 200 μ m are designated	

Formatted: Font: (Default) Times New Roman

Comment [T8]: this entire section needs to be improved

Formatted: Heading 2,Heading 2_Dissertation, None, Don't keep with next, Don't keep lines together

Formatted: Font: 12 pt

Comment [T9]: is it seston or water samples for seston analysis. Seston sample processing was not properly mentioned in the manuscript

Comment [T10]: how many litres

Comment [T11]: this section should be separated into 2 sections for identification and FA samples. There is too much confusion here

Formatted: Font: 12 pt

Formatted: Heading 3, None, Don't keep with next, Don't keep lines together

Comment [T12]: delete repetition, already mentioned above, study area

Comment [T13]: vertical or horizontal

throughout the remainder of the paper. The zooplankton net was towed obliquely through the whereas the 60 um mesh collects whereas the 60 um mesh collects	>200 um
179 water for 1 minute (species composition) and 2 minutes (fatty acid composition) at an average	
boat speed of 0.75 m s ⁻¹ . The volume filtered was calculated using the volume of a cylinder	
181 $(V = \pi r^2 L)$, where r was the radius of the plankton net (0.25 m) and L was determined using the	
boat speed (m s ⁻¹) and the tow time (s). Each identification and count sample, depending on mesh	
size, was filtered through a 200 or 60 µm filter, and zooplankton for composition were preserved	
184 in 120 ml-mL glass jar with 10 ml-mL of 10_% buffered formaldehyde, sucrose, and filtered	
185 water. The addition of sucrose to the formalin helps to reduce ballooning of cladoceran bodies	
and inflation of their carapace (Haney and Hall 1973). The 60 µm sample had a half a tablet of	
187 Alka Seltzer added to keep rotifers from pulling in critical body parts (legs and arms) to ease	
188 identification (Chick et al. 2010). The zooplankton samples for fatty acid analysis were collected	
189 at seven sites on the Chowan River for April and June, and three sites in May. Due to limitations Comment [T15]: Repetition	
related to sampling preparation, a subset of all the field site samples were analyzed for fatty acid	
191 analyses in May. The zooplankton samples for fatty acids were filtered to remove excess water Comment [T16]: am lost here, d analyse all subsamples for april a	
192 and placed in a 1000 mLl plastic container on ice, and processed in the laboratory.	
193	
194 Laboratory Processing 2 Dissertation, None, Don't kee	
195 Zooplankton Identification	
Formatted: Font: 12 pt 196 Samples were filtered through a sieve (60 or 200 μm) to remove the sugar formalin)
197 solution. A total of three subsamples (2 ml-mL per subsample for microzooplankton and 5 ml	
198 <u>mL</u> per subsample for mesozooplankton) were analyzed for the community composition using a	
199 Hensen-Stempel pipette. Organisms were identified using a dissecting microscope and Comment [T17]: explain, is it the	e method

200	enumerated using Ward counting wheel. The zooplankton were identified to genus except for the	
201	freshwater copepods that were identified to order. Copepod nauplii were grouped together	
202	because identification can be difficult at this stage (Johnson and Allen 2012). If a species in a	
203	subsample comprised greater than 500 individuals, then that species was not counted for the	
204	other two subsamples. Species abundances (A) were determined using the equation: $A = A_s(V_t/V_s)$	
205	where A_s is the number of individuals in the subsample, V_t is the total volume filtered by the	
206	plankton net, and V_s is the volume of the subsample.	
207	Lipid and fatty acid samples	Formatted
208	The seston samples (300 mlmL) were concentrated on a 47 mm GF/F filter (Whatman TM)	Formatted
209	and stored at -80°C until ready to process. The zooplankton samples were filtered through 200	
210	and 60 μ m sieves. Each sample was visually analyzed to determine the dominant species with	
211	dissecting microscope, and detritus and phytoplankton were removed. The samples were	
212	concentrated on a GF/F filter (47 mm diameter) by mesh size (60, 200 μ m), placed on paper	
213	towel to remove excess water, and stored at -80°C until ready to process.	Comment samples, the
214	Total lipids were extracted with chloroform-methanol (2:1, v/v) containing 0.01%	mean here
215	butylated hydroxytoluene as an antioxidant (Folch et al. 1957). The organic solvent was	
216	evaporated under a stream of nitrogen and lipid concentration determined gravimetrically.	
217	Transmethylation of fatty acids was done according to the method described by Metcalfe and	
218	Schmitz (1969). A known amount of nonadecanoate acid (19:0) dissolved in hexane at a	
219	concentration of 8 mg mlmL ⁻¹ (Nu Check Prep Inc.) was added as internal standard. The fatty	
220	acid methyl esters (FAME) were separated by gas chromatography (Agilent 7890A Gas	
221	Chromatograph, Agilent Technologies, Inc.) using a 7693 mass spectrometer detector (Agilent	
222	Technologies, Inc.), a capillary column (Omegawax TM 250 fused silica capillary column, 30 mm	

Formatted: Font: 12 pt Formatted: Heading 3

Comment [T18]: once you filter your amples, the water will gone. What do you nean here

223	$\times \times$ 0.25 mm and 0.25 mm film thickness, Supleco®), and a 7890A autoinjector (Agilent	
224	Technologies, Inc.). Helium was used as the carrier gas at a flow of 1.8 ml-mL min ⁻¹ and the	
225	injection volume was 2 mlmL. Initial temperature of the oven was 175_°C for 26 min, which was	
226	increased to 205_°C by increments of 2_°C min ⁻¹ , then held at 205_°C for 24 min. The source and	
227	analyzer for the mass spectrometer was set at 230 °C. The individual fatty acid methyl esters	
228	were identified by comparing the retention times of authentic standard mixtures (FAME mix 37	
229	components, Supleco) and quantified by comparing their peak areas with that of the internal	
230	standard (Czesny and Dabrowski 1998). The results of individual fatty acid composition are	
231	expressed in percentage of total identified FAME.	
232		
233	Statistical Analysis	
234	Multivariate statistics were conducted in PRIMER 6 (Clarke and Gorley 2006). Separate,	
235	Bray-Curtis similarity matrices were constructed for the following data sets: microzooplankton	
236	species composition (60 µm mesh), mesozooplankton species composition (200 µm mesh),	
237	seston fatty acid composition, microzooplankton fatty acid composition, and mesozooplankton	
238	fatty acid composition. A separate cluster analysis on each data set similarity matrix was	
239	performed. Each individual sample was associated with a location in the river (upper, middle,	
240	lower) and month (April, May, June) and these labels were used for visualization of samples in	
241	the cluster dendrogram. Groups identified from each cluster analysis were then compared using	
242	analysis of similarity (ANOSIM) to determine if difference between groups were significant at	
243	the α -level = 0.05 level (Clarke and Gorley 2006). Finally, a similarity percentage analysis	
244	(SIMPER) test was used to compare similarities within groups (Clarke and Gorley 2006). The	
245	SIMPER test was set at 70% cumulative contribution.	

Formatted: Heading 2,Heading 2_Dissertation

246	All fatty acid percent composition data for seston, microzooplankton, and			
247	mesozooplankton were combined into a single data set using the group designation from			
248	individual cluster analysis to determine correlations using Spearman rank correlation coefficient			
249	using RStudio (RStudio Team 2015). The correlations determine if similar fatty acid profiles are			
250	shown throughout the food web. The results allow us to determine the connections between the			
251	different trophic levels. We used correlations greater than or equal to 0.4, and only positive			
252	correlations.			
253				
254	Results			Formatted: Heading 1,Heading 1 Dissertation
255	Salinity and Temperature	_	1	Comment [T19]: this section needs to
256	The salinity was near zero $(0.02 \text{ to } 0.04)$ throughout the river in April. During May,			rewritten in a logical manner. With statistics to support it
			-{	Comment [T20]: units
257	salinities in the upper river remained low $(0,07)$, but the water column became stratified in the	_	1	Formatted: Highlight
258	middle and lower river, with salinities ranging from 1.05-1.66. The river freshened (0.04 to 0.08)		-(Formatted: Highlight
259	again in June due to a tropical storm that brought heavy rains for a two-week period. North		-(Formatted: Highlight
260	Carolina experienced the second wettest June since 1895 with rainfall that ranged from 15.2 to			
261	19.05 cm in the study area (Hiatt 2013). Water temperatures increased during the study period			
262	April (15.7 \pm 1.1 °C), May (24.0 \pm 1.0 °C) and June (26.2 \pm 0.3 °C) but showed no differences			
263	between river sections.		-	Comment [T21]: statistics to prove this
264				
265	Zooplankton Community Composition	/		Comment [T22]: where are the results for the zooplankton community
266	Microzooplankton could be separated into 2 distinct groups by cluster analysis at 65%			composition for the identified taxa, present as a table. Instead of having 3
267	similarity (Figure 2). The microzooplankton percent composition was statistically significant			cluster figures, we all the results can be summed or summarised with 1 figure i.e. cluster analysis with each month showing the 3 river sections
268	showing the two groups differed not by community composition but difference percent among			Formatted: Heading 2,Heading 2_Dissertation
			VC	

Formatted: Highlight

269	similar group members (ANOSIM, <i>p</i> -value = 0.005, R_=_0.989). Group 1 consisted of the vast
270	majority of the samples collected in 2013 across April, May, and June throughout the river
271	(Figure 2). Group 2 consisted of two samples collected in the middle and lower river in June
272	(Figure 2). Both groups were dominated by rotifers and copepod nauplii, but group two had a
273	more even contribution of rotifers and copepod nauplii (Figure 2).
274	Three groups of mesozooplankton were differentiated at 50% similarity using cluster
275	analysis (Figure 3). The mesozooplankton percent composition was statistically significant
276	showing the three groups differed (ANOSIM, p_{-} value = 0.001, R_=0.798). Group 3 consisted of
277	samples from the May collection only, Group 4 consisted of a mixture of April and June samples
278	in primarily the upper and middle river, and Group 5 consisted of one April upper site, May
279	upper river section and June samples throughout the river (Figure 3). Mesozooplankton percent
280	community composition was significantly different among the three groups (ANOSIM p-value =
281	0.001). Group 3 mesozooplankton percent composition was dominated by Acartia spp. with a
282	minor contribution by Bosminidae, Group 4 consisted primarily of equivalent percentages of
283	Cyclopodia and Bosminidae, and Group 5 mesozooplankton percent community composition
284	was characterized by higher percentages of Leptodora spp. and Calanoida (Figure 3).
285	
286 287	Fatty Acid Composition A total of 24 specific fatty acids were found in all samples (Tables 1A-3A). Fatty acids
288	were first separated into broad categories: saturated fatty acids (SFA), monounsatured fatty acids
289	(MUFA), and polyunsaturated fatty acids (PUFA) (Figure 4a). Seston had a higher percent of
290	SFA, and lower percent of MUFA and PUFA compared to micro- and mesozooplankton (Figure
291	4a). Mesozooplankton and microzooplankton had a similar percent composition of SFA, MUFA,
292	and PUFA (Figure 4a). There were eight dominant fatty acids found in all the samples, but the

Formatted: Font: Italic, Highlight Formatted: Highlight Comment [T23]: all sampled were collected in 2013, do you mean upper or all river sections excluding june mid and low

Formatted: Highlight

Formatted: Highlight

Formatted: Font: Italic, Highlight

Formatted: Highlight

Comment [T24]: this section should have subheadings for seston, zooplankton and larval fish. These results could be better presented using combined data for sites in an NMDS plot and a simple cluster plot. Why were similarities carried out at different levels i.e. one level will have sufficed. THIS SECTION ALSO NEEDS MAJOR IMPROVEENTS. QUANTITATIVE RATHER THAN QUALITATIVE DATA WILL HAVE TOLD A BETTER STORY HERE

Formatted: Heading 2,Heading 2_Dissertation, Line spacing: single

Formatted: Highlight

Comment [T25]: INTERESTING WHY WERE SFA SO HIGH, NORMALLY PUFAS ARE HIGH FOR SESTON, SINCE THEY CAN EASILY SYSNTHESIS THE PUFA

Formatted: Highlight

293	percent composition varied (Fig 4b). The most common SFA was palmitic acid (16:0) (data not
294	shown), the most common MUFAs were palmitoleic acid (16:1n-7) and oleic acid (18:1n-9), and
295	the most common PUFAs were ALA (18:3n-3), 18:4n-3, EPA (20:5n-3), and DHA (22:6n-3)
296	(Figure 4b; Tables A1-A3). A comparison of MUFAs and PUFAs among the seston and
297	zooplankton showed that seston had the lowest overall percentages of MUFAs and PUFAs
298	(Figure 4b). The microzooplankton fatty acid profile was characterized by a higher percentage of
299	18:1n-9 compared to the other MUFAs and PUFAs. In contrast, the mesozooplankton had the
300	highest percent composition attributed to two PUFAs, EPA and DHA (Figure 4b).
301	Three groups were designated at 60% similarity using cluster analysis for the seston fatty
302	acid composition (Figure 5a). There was a significance difference among these three groups for
303	seston fatty acid composition using ANOSIM (Global R= 0.611, p-value= 0.001). The groups
304	showed no distinct pattern in term of sampling time or location (Figure 5a). Seston fatty acid
305	composition of Group A was characterized by 18:1n-9, 16:1n-7, ALA, EPA, Group B by 16:1n-
306	7, 18:1n-9, 18:2n-6 and EPA, and Group C had similar percentage composition of MUFAs and
307	PUFAs, except 18:2n-6 (Figure 5b and Table A4).
308	Three groups were designated at 70% similarity using cluster analysis for the
309	microzooplankton fatty acid composition (Figure 6a). There was a significant difference among
310	groups for microzooplankton fatty acid composition (ANOSIM, Global R= 0.997, p-value=
311	0.001). The groups segregated temporally, with Group D consisting of April samples only as did
312	Group E, and Group F consisted of May and June samples only (Figure 6a). The Group D fatty
313	acids were dominated by 18:1n-9 and to a lesser extent, 18:2n-6, Group E showed similar
314	percent composition among the fatty acids, with higher percentages of 18:1n-9 and 20:5n-3
	•

315	(EPA), and Group F also had similar percent composition of fatty acids; however, the PUFAs
316	20:5n-3 (EPA) and 22:6n-3 (DHA) had significant contribution (Figure 6b and Table A5).
317	Four groups were designated by cluster analysis at 77% similarity for the
318	mesozooplankton fatty acid composition (Figure 7a). There was a significance difference
319	between the four groups for mesozooplankton fatty acid composition using ANOSIM (Global
320	R= 0.765, p-value= 0.001). Groups G and I consisted of April samples only whereas Group J
321	consisted of May and June samples only (Figure 7a). Group H showed spatial separation,
322	consisting on primarily upper river locations across all of the months (Figure 7a).
323	Mesozooplankton fatty acid composition for Group G was not significantly different compared
324	to Group H (p-value= 0.167, and 0.143) and all other groups were significantly different from
325	one another (p-value <0.005). The Group G and H fatty acids were dominated by 18:1n-9, Group
326	8 by 16:1n-7, 18:1n-9, and 20:5n-3 (EPA), Group I had similar percentages of fatty acids with
327	18:3n-3 (ALA), 20:5n-3 (DHA) and 22:6n-3 (EPA) having higher percentages, and Group J had
328	20:5n-3 (DHA) and 22:6n-3 (EPA) as dominant components of the fatty acids (Figure 7b and
329	Table A6).
330	The seston fatty acid composition (group A) in April from lower, middle, and upper
331	sections and June was correlated to microzooplankton fatty acid composition (Group D) in April
332	from lower, middle, and upper sections (Figure 8 and Table 1). The seston fatty acid
333	composition (Group B) in May from the lower and middle section and June from lower and
334	upper sections correlated to the microzooplankton fatty acid composition (Group F) in May from
335	middle and lower sections, and June from upper, middle and lower sections, and the
336	mesozooplankton fatty acid composition (Groups H, G, J) in April from lower section, May and
337	June from the middle and lower sections (Figure 8 and Table 1). The microzooplankton fatty

338	acid composition (Group F) correlated to the mesozooplankton fatty acid profiles (Groups H, I,
339	J) in April, May and June for the upper, middle and lower sections (Figure 8 and Table 1). The
340	seston fatty acid composition (Group C) in April from upper, middle and lower, and May from
341	upper sections correlates to microzooplankton fatty acid composition (Group F) in May from
342	middle and lower sections, and June from upper, middle and lower sections, and
343	mesozooplankton fatty acid composition (Groups H, I, J) in April, May and June from all
344	sections (Figure 8 and Table 1). The microzooplankton fatty acid composition (Group E) in April
345	from lower and upper sections correlated to mesozooplankton fatty acid composition (Group J)
346	in May and June from all sections (Figure 8 and Table 1). The microzooplankton fatty acid
347	composition (Group F) in May from middle and lower sections, and June from upper, middle and
348	lower sections correlated to mesozooplankton fatty acid composition (Group H, I, J) in April,
349	May and June from all sections (Figure 8 and Table 1).
350	
351	Discussion
352	The fatty acid (FA) dynamics observed in the Chowan River changed dramatically in
353	association with physical variability in the water column, most notably salinity. Prior to the
354	salinity intrusion, larval fish experienced a food web primarily based on a freshwater plankton
355	assemblage that was proportionally higher in EPA relative to DHA (Figure 6, Group E; Figure 7,
356	Group I). During the salinity intrusion, the proportion of DHA increased and remained elevated
357	into June (Figure 6, Group F; Figure 7, Group J). The intrusion of saline water increased the
358	overall proportion of omega-3 fatty acids in the River, presumably due to the increased fraction
359	of micro- and mesozooplankton feeding on a more marine-like phytoplankton based food-web

360 (Figure 4) and this signal propagated through the food web (Figure 8). Additionally, we observed

Comment [T26]: DISCUSSION IS VERY LONG, IT NEEDS TO BE STREAMLINED AND ONLY FOCUS ON THE MAIN RESULTS

Formatted: Heading 1,Heading 1_Dissertation

Comment [T27]: CORRELATION OR REGRESSION SHOULD HAVE BEEN CARRIED OUT TO PROVE THESE FINDINGS

361	that FA appeared to be incorporated relatively unchanged in micro and mesozooplankton in	
362	terms of relative composition; however, MUFA and PUFA percent compositions increased in	
363	zooplankton relative to seston. This suggested that MUFA and PUFA are bioaccumulated at	 Comment [T28]: WHY, Y MUFA AND PUFA TO BE H
364	higher trophic levels, as seen in other studies (Persson and Vrede 2006; Gladyshev et al. 2010;	THAN IN HIGH TROPHIC I
365	Ravett, Brett, Arhonditsis 2010; Burns, Brett, and Schallenberg 2011). Overall, the FA	
366	composition of the food web indicated that the Chowan River is likely to provide adequate	
367	nutrition in terms of FA composition for larval fish growth and development. This is based on	
368	the presence of significant proportions of PUFA present in the mesozooplankton throughout the	
369	nursery (Figure 6, 7).	
370	The seston fatty acid composition consisted mainly of saturated fatty acids (Figure 4a).	Comment [T29]: WHY
371	Seston from freshwater and estuarine systems typically has a large percentage of SFA and this	
372	fraction has been attributed to detrital input, as opposed to originating from phytoplankton	
373	(Persson and Vrede 2006; Gladyshev et al. 2010; Ravett, Brett, Arhonditsis 2010; Burns, Brett,	
374	and Schallenberg 2011; Gonclaves et al 2012), Müller-Navarra et al. (2004) and Bec et al. (2010)	
375	analyzed seston and found phytoplankton only explained 27% of variance in FA composition	
376	and concluded that detritus and heterotrophic organisms also needed to be considered (Müller-	
377	Navarra et al. 2004; Bec et al. 2010). Bec et al (2010) therefore concluded that the seston can	
378	affect the fatty acid profiles of higher organisms, but may not relate individual groups of	
379	phytoplankton or microzooplankton. This agreed with our findings as seen in the reduced	
380	correlations between seston and the rest of the food web (Figure 8).	
381	We did not examine the seston composition directly by counting phytoplankton cells or	
382	examining pigment concentrations, thus we were unable to attribute the origin of particular fatty	
383	acids to phytoplankton or other sources. However, we were able to use the available literature to	

, YOU EXPECT THE HIGH IN SESTON C LEVELS

384	identify potential indicators of fatty acid origin. The top three fatty acids by percent composition
385	varied by group, but 16:1n-7, 18:1n-9, 18:2n-6, and 18:3n-3 (ALA) were the most prevalent
386	(Figure 5). Potential phytoplankton sources for these fatty acids may be diatoms, which have
387	been shown to have increased 16:1n-7 and EPA in both freshwater and marine systems
388	(Napolitano et al. 1997; Dalsgaard et al. 2003; Boschker et al. 2005; Arts et al. 2009; Bec et al.
389	2010) and we observed this occurred in May and June (Figure 5, Group B, C), coincident with
390	the salinity increase. Green algae have been shown to possess higher proportions of 18:2n-6, and
391	ALA (Ahlgren et al. 1990; Dalsgaard et al. 2003; Boschker et al. 2005; Masclaux et al. 2012;
392	Strandberg et al. 2015) and chlorophytes have fatty acid profiles higher in 18:2n-6, 18:3n-3, and
393	18:4n-3 (Ahlgren et al. 1990; Dalsgaard et al. 2003; Boschker et al. 2005; Arts et al. 2009;
394	Masclaux et al. 2012). Fatty acids corresponding to these phytoplankton groups were observed
395	during April throughout the river and June in the middle and upper river. (Figure 5, Group A and
396	C). One other sources of seston FA may be have been present, pine pollen, which is found in
397	large quantities during spring. Pine pollen is transported to freshwater systems via aeolian
398	deposition and floats at the surface (Masclaux et al. 2013). The fatty acid profile of pine pollen
399	has a high percent composition of 18:1n-9 and 18:2n-6 (Masclaux et al. 2013), which can be
400	observed in Figure 5, Group A. Obviously, seston FA are a mixture of multiple sources, thus the
401	variability seen across the groups identified by the cluster analysis would be expected (Figure 5).
402	The fatty acid profiles were different throughout the sampling period with a change from
403	decreased omega-3s to increased omega-3s in the system (Figure 6). This suggests a switch in
404	microzooplankton diet had occurred over the sampling period and two pathways appear to be
405	present during the study. The April microzooplankton fatty acid profiles for all river sections had
406	a high percentage of 18:1n-9 and 18:2n-6 (Figure 6, Group D suggesting that the

407	microzooplankton could be consuming either terrestrial material or chlorophytes during this
408	time. Two sites in April had an increase in omega-3s fatty acids (ALA, 18:4n-3, EPA, DHA)
409	(Figure 6, Group E) and this would suggest a different dietary pathway that was reduced in SFA,
410	perhaps consisting of either smaller microzooplankton such as ciliates or phytoplankton such as
411	diatoms and/or dinoflagellates (Park and Marshall 2000; Gladyshev et al. 2010). The community
412	was dominated by rotifers during this time and communities high in rotifer abundance have been
413	shown to reflect the seston composition closely (Gladyshev et al. 2010). The microzooplankton
414	fatty acid profiles in May and June at all river locations had an increase in 16:1n-7, and omega-
415	3s (ALA, EPA, and DHA) (Figure 6, Group F). These changes can be directly related to the
416	saltwater intrusion event in May and the likely increase in more marine algal sources for FAs.
417	The changes in June could be the increased in copepod nauplii of Calanoid copepods (Figure 2,
418	Group 2), and the presence of dinoflagellates and diatoms even when the system returned to
419	freshwater. Our results are similar to systems where the phytoplankton composition was
420	represented by diatoms and dinoflagellates by having increased 16:1n-7 and PUFAs (Müller-
421	Navara et al. 2000; Dalsgaard et al. 2003; Gladyshev et al. 2010; Ravett, Brett, Arhonditsis
422	2010).

The mesozooplankton fatty acid profiles throughout the river in April and in the upper river in May and June were defined by higher percentages of 16:1n-7, 18:1n-9, ALA, EPA, and DHA (Figure 7). These fatty acids profiles are similar to ones found in freshwater systems that have a mixed zooplankton composition (Persson and Verde 2006; Arts et al. 2009; Kainz et al. 2009; Gladyshev et al 2010; Burns et al. 2011; Masclaux et al. 2012). This mirrored our species composition at these times and locations as the mesozooplankton community consisted of freshwater cladocerans and cyclopedia (Figure 3). Cladocerans have low or no DHA compared

430	to copepods and high EPA levels have been shown to correlate with the high somatic growth
431	rates of cladocerans (Persson and Verde 2006). A saltwater intrusion changed the
432	mesozooplankton species composition in May resulting in numerical dominance by Acartia spp.
433	in the lower and middle sections of the river. Acartia spp. is the dominant copepod species in
434	temperate, estuarine systems (Ambler et al. 1985; Orsi 1986; Cervetto et al. 1999; Mouny and
435	Dauvin 2002; Kimmel and Roman 2004; Lawrence et al. 2004; Islam et al. 2005). The
436	mesozooplankton fatty acid profiles in May were represented by 16:1n-7, EPA, and the highest
437	observed percentages of DHA. This is clearly a reflection of the dominance of Acartia spp. in
438	the system and a diet primarily consisting of marine algae higher in omega-3 FAs (Stottrup et al.
439	1999; Persson and Verde 2006; Arts et al. 2009; Kainz et al. 2009; Gladyshev et al 2010;
440	Masclaux et al. 2012). Mesozooplankton fatty acid percent composition in June at the lower and
441	middle site remained similar to that observed in May, despite the species composition having
442	returned to a mix of cladocerans and copepods (Figure 3). We saw a similar fatty acid profile in
443	June as observed in May. This suggests that physical shifts in the system that result in seston
444	changes may persist in the system despite shifts in zooplankton community composition.
445	The seston fatty acid profile correlated to the fatty acid profiles of the micro and
446	mesozooplankton (Figure 8, Table 1). It was clear that seston Group A was only linked to
447	microzooplankton Group D and this link was only present in April in the middle and upper
448	portion of the river (Figure 8). This linkage was likely detrital in nature, as discussed above. The
449	remaining correlation suggest links that follow two distinct paths that become clear at the
450	mesozooplankton level. Mesozooplankton Group H showed strong correlations to seston groups
451	B and C (Figure 8). Based on fatty acid composition (Figure 7), this group was higher in EPA
452	versus DHA and this also agreed with the species composition data that showed a community

20

453	that consisted of Bosminidae cladocerans and freshwater calanoid copepods (Figure 3). The
454	other pathway was correlated with the saltwater intrusion event and mesozooplankton Group J
455	was correlated to microzooplankton Group F and seston Group B (Figure 8). The
456	mesozooplankton community consisted primarily of the estuarine calanoid Acartia spp. (Figure
457	3) and had a fatty acid signature with increased proportion of DHA relative to EPA (Figure 5).
458	Our findings agree with laboratory and field studies across natural freshwater, brackish, and
459	marine systems (Goulden and Place 1990; Brett et al. 2006; Rossi et al. 2006; Arts et al. 2009;
460	Gladyshev et al 2010; Ravet, Brett, Arhonditis 2010). Gladyshev et al. (2010) found a similar
461	correlation between the seston, especially the producer groups, and the consumers in a Siberian
462	reservoir. Laboratory studies of mesozooplankton feeding on phytoplankton monocultures had
463	similar trends for fatty acid profiles between the phytoplankton and consumers with an increase
464	of PUFAs in the mesozooplankton (Brett et al. 2006; Arts et al. 2009).
465	The relevance of the food web fatty acid composition can be determined by examining
466	the potential feeding behavior of larval fish within the Chowan River nursery. Alewife and
467	blueback herring start feeding on smaller cladocerans and copepods at about 6 mm total length
468	(Mullen et al. 1986). Binon (2011) reported that river herring at 6 mm notochord length had a
469	maximum gape width of 400 μ m, and estimated maximum prey size of 200 μ m.
470	Mesozooplankton were an important food resource for river herring <6 mm, and diets consisted
471	of Bosminidae, rotifers, and copepod nauplii (Binon 2011). Alewife grew larger than blueback
472	herring and over time began to feed selectively, whereas blueback herring continued to filter feed
473	(Mullen et al. 1986). In the Connecticut River, the diet for blueback herring were dominated by
474	rotifers for fish 5-12 mm, Bosminids for fish 12-16+ mm, and cyclopoid copepods for fish
475	16+mm in total length (Crecco and Blake 1983). Based on these dietary studies, the larval and

476	juvenile river herring would be feeding across the size range of zooplankton prey that we
477	sampled; however, fish would be consuming primarily microzooplankton early in the year
478	(April) and mesozooplankton later in the season (May and June). In April, two pathways for FA
479	propagation were present in the microzooplankton (Figure 6; Groups 4 and 5). Thus, fish feeding
480	during this time may experience variability in the quality of the microzooplankton prey in terms
481	of percentage of PUFAs (Figure 6). Larval fish need PUFAs (ALA, EPA and DHA) for growth,
482	visual acuity, survival, and development of normal pigmentation (Bell et al. 1995; Bell and
483	Sargent 1996; Rainuzzo et al. 1997; Sargent et al. 1999; Rossi et al. 2006). The shift to larger
484	prey later in the year (May and June) resulted in a change in prey quality as the relative
485	percentage of EPA and DHA increased. This was the result of a salinity intrusion into the middle
486	and lower reaches of the estuary that was associated with dominance of the cladoceran Acartia
487	spp. (Figure 3) and a significant increase in DHA and EPA (Figure 7; Group 10). This could
488	allow larval and juvenile fish to consume prey with a higher proportion of PUFAs. It is unknown
489	if river herring can elongate precursor FA into PUFAs. Even if fish can convert precursor FA,
490	larval fish could not receive all nutritional need for those fatty acids (Agaba et al. 2005). The
491	larval fish would not have to use energy for the conversion, and continue to put energy to growth
492	(Wacker and von Elert 2001; Rossi et al 2006). This allows the larval fish survive and grow past
493	the critical period.
494	The fish nursery present in the lower Chowan River may undergo significant changes

494 The fish nursery present in the lower Chowan River may undergo significant changes 495 during the critical time of larval fish growth. Our results demonstrate how changes in the seston 496 community may propagate through the food-web. They also highlight that additional information 497 concerning the fatty acid composition of the zooplankton prey base for larval fish can provide 498 insight into habitat quality. Sheaves et al. (2004) pointed out the need to expand the nursery

499	habitat concept to include relevant ecosystem processes, particularly resource dynamics. This	
500	research begins to explore the mechanisms that allow nursery habitat to function. We plan	
501	further research to investigate the linkage between the seston community fatty acid composition,	
502	the zooplankton community fatty acid composition, and larval fish to determine how lower food	
503	web variability relates to larval fish condition and survival.	
504		
505	Acknowledgements:	 Formatted: Heading 1,Heading 1_Dissertation
506	I would like to thank S. Lichti, C. Kransforst, J. Osborne, A. Powell, M. Baker, and E. Diaddorio	
507	for help in the field collection. I would like to thank L. Stratton, C. Kolb, and R. Pattridge from	
508	help in Dr. Jacques Rinchard's lab in processing my fatty acid samples.	
509	•	 Formatted: Font: (Default) Times New Roman
I		Formatted: Line spacing: Double

510 Work Cited

- 511 Able, K.W. (2005) A re-examination of fish estuarine dependence: Evidence for connectivity
- 512 between estuarine and ocean habitats. Estuarine, Coastal, and Shelf Science 64: 5-17.
- 513 Agaba, M.K., D.R. Tocher, X.Z. Zheng, C.A. Dickson, J.R. Dick, and A.J. Teale. (2005) Cloning
- and functional characterization of polyunsaturated fatty acid elongates of marine and
- 515 freshwater teleost fish. Journal of Comparative Physiology B 142: 342-352.
- 516 Ahlgren, G., L. Lundstedt, M. Brett, and C. Forsberg. (1990) Lipid composition and food quality
- 517 of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research
- 518 12: 809-818.
- Ambler, J.W., J.E. Cloern, and A. Hutchinson. (1985) Seasonal cycles of zooplankton from San
 Francisco Bay. Hydrobiologia 129: 177-197.
- Arts, M.T., M.T. Brett, and M.J. Kainz. (2009) Lipids in aquatic ecosystems. Springer. New
 York, New York.
- 523 ASMFC (Altantic States Marine Fisheries Commission). (2012) River herring benchmark stock
- assessment volume 1. Stock Assesment Report No. 12-02, May 2012.
- 525 Beck, M.W., K.L. Heck Jr., K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B.
- 526 Halpern, C.G. Hays, K. Hoshino, T. J. Minello, R.J. Orth, P.F. Sheridan, and M.P. Weinstein.
- 527 (2001) The identification, conservation, and management of estuarine and marine nurseries for
- 528 fish and invertebrates. BioScience 51: 633- 641.
- 529 Bell, M.V., R.S. Batty, J.R. Dick, K. Fretwell, J.C. Navarro and J.R. Sargent. (1995) Dietary
- 530 deficiency of docosahexanenoic acid impairs vision at low light intensities in juvenile herring
- 531 (*Clupea harengus* L.). Lipids 30 (5): 443-449.

Formatted: Heading 1,Heading 1_Dissertation, Left, Line spacing: Double Formatted: Line spacing: Double

532	Bec, A., M.E. Perga, C. Desvilettes,	and G. Bourdier. (2010)) How well can the fatty acid content
-----	--------------------------------------	------------------------	--

- of lake seston be predicted from its taxonomic composition? Freshwater Biology 55: 1985-
- 534 1972.
- Bell, M.V. and J.R. Sargent. (1996) Lipid nutrition and fish recruitment. Marine Ecology
 Progress Series 134: 315-316.
- 537 Binion, S. (2011) Evaluating spatial and temporal overlap between larval alosines and potential
- 538 zooplankton prey in lower Roanoke River and Albemarle Sound, North Carolina. Thesis. East
- 539 Carolina University, Greenville, NC.
- 540 Boehlert, G.W. and B.C. Mundy. (1988) Role of behavioral and physical factors in larval and
- 541 juvenile fish recruitment to estuarine nursery areas. American Fisheries Society Symposium542 3:51-67.
- 543 Boesch, D.F., and R.F. Turner. (1984) Dependence of fisheries species on salt marshes: the role
 544 of food and refuge. Estuaries and Coasts 7: 460-468.
- 545 Boschker, H.T., J.C. Krombamp, and J.J. Middelburg. (2005) Limnology and Oceanography 50:
 546 70-80.
- 547 Brett, M.T. and D.C. Müller-Navarra. (1997) The role of highly unsaturated fatty acids in aquatic
 548 foodweb processes. Freshwater Biology 38: 483-499.
- 549 Brett, M.T., D.C. Müller-Navarra, A.P. Ballantyne, J.L. Ravet, C.R. Goldman. (2006) Daphnia
- 550 fatty acid composition reflects that of their diet. Limnology and Oceanography 51: 2428-2437.
- 551 Burns, C., M.T. Brett, and M. Schallenberg. (2010) A comparison of the trophic transfer of fatty
- acids in freshwater plankton by cladocerans and calanoid copepods. Freshwater Biology
- 553 56:889-903.

- 554 Cervetto, G., R. Gaudy, and M. Pagano. (1999) Influence of salinity on the distribution of
- 555 Acartia tonsa (Copepoda, Calanoida). Journal of Experimental Marine Biology and Ecology
- 556 239: 33-45.
- 557 Chambord, S., T. Maris, F. Colas, T. van Engeland, A.C. Sossu, F. Azemar, M. Le Coz, T. Cox,
- L. Buisson, S. Souissi, P. Meire, and M. Tackx. (2016) Mesozooplankton affinities in a
- recovering freshwater estuary. Estuarine, Coastal, and Shelf Science 177: 47-59.
- 560 Chick, J.H. and M.J. Van Den Avyle. (1999) Effects of zooplankton spatial variation on growth
- of larval striped bass: an experimental approach. Transactions of the American FisheriesSociety 128: 339-351.
- 563 Chick, J.H., A.P. Levchuk, K.A. Medley and J.H. Havel. (2010) Underestimation of rotifer
- abundance a much greater problem than previously appreciated. Limnology and
- 565 Oceanography: Methods 8, 79-87.
- 566 Clarke, K.R. and R.N. Gorley. (2006) Primer V6: User Manual/Tutorial. Primer-E Ltd.
- 567 Plymouth, United Kingdom.
- 568 Cooper, J.E., R.A. Rulifson, J.J. Isely, S.E. Winslow. (1998) Food habits and growth of juvenile
- striped bass, *Morone saxatilis*, in Albemarle Sound, North Carolina. Estuaries 21: 307-317.
- 570 Copeman, L.A., C.C. Parrish, J.A. Brown, M. Harel. (2002) Effects of docosahexaenoic,
- 571 eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and
- 572 pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment.
- 573 Aquaculture 210: 285-304.
- 574 Czesny, S. and K. Dabrowski. (1998) The effect of fatty acids concentration in wild and
- 575 domesticated walleye (Stizostedion vitreum) eggs on embryos' viability. Aquatic Living
- 576 Resources 11: 371-378.

- 577 Dalsgaard, J., M. St. John, G. Kattner, D. Müller-Navarra and W. Hagen. (2003) Fatty acids
- 578 trophic markers in the pelagic marine environment. Advances in Marine Biology 46: 225-340.
- 579 Desvilettes, C.H., G. Bourdier, C.H. Amblard and B. Barth. (1997) Use of fatty acids for the
- assessment of zooplankton grazing on bacteria, prtozoans and microalgae. Freshwater Biology38, 629-637.
- 582 Farkas, T., and S. Herodek. (1964) The effect of environmental temperature on the fatty acid
- 583 composition of crustacean plankton. Journal of Lipid Research 5: 369-373.
- 584 Folch, J., M. Lees, and G.H. Sloane Stanley. (1957) A simple method for isolation and
- 585 purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497-509.
- 586 Fraser, A.J., J.R. Sargent, J.C. Gamble, and D.D. Seaton. (1989) Formation and transfer of fatty
- acids in an enclosed marine food chain comprising phytoplankton, zooplankton, and herring
- 588 (*Clupea harengus* L.) larvae. Marine Chemistry 27: 1-18.
- 589 Gladyshev, M.I., N.N. Sushchik, O.N. Makhutova, O.P. Dubovskaya, E. S. Kravchuk, and E.B.
- 590 Khromechek. (2010) Correlations between fatty acid composition of seston and zooplankton
- and effects of environmental parameters in a eutrophic Siberian reservoir. Limnologica 40:
- 592 343-357.
- Goncalves, A.M.M., U.M. Azeiterio, M.A. Pardal and M. De Troch. (2012) Fatty acid profiling
 reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuarine, Coastal
 and Shelf Science 109: 70-80.
- Goulden, C.E. and A.R. Place. (1990) Fatty acid synthesis and accumulation rates in daphniids.
 Journal of Experimental Zoology 256: 168-178.
- 598 Greene, K.E., J.L. Zimmerman, R.W. Laney, and J.C. Thomas-Blate. (2009) Atlantic coast
- 599 diadromous fish habitat: A review of utilization, threats, recommendations for conservation,

600	and research needs. Atlantic States Marine Fisheries Commission Habitat Management Series	
601	No. 9, Washington, D.C.	
602	Gulati, R.D. and W.R. Demott. (1997) The role of food quality for zooplankton: remarks on the	
603	state-of-the-art, perspectives and priorities. Freshwater Biology 38: 753-768.	
604	Haney, J.F. and D.J. Hall. (1973) Sugar-coated Daphnia: A preservation technique for Cladocera.	
605	Limnology and Oceanography 18: 331-333.	
606	Hiatt, Ashley. (2013) Climate Summary: June 2013. State Climate Office of North Carolina.	
607	http://nc-climate.ncsu.edu/climateblog?id=28. Accessed 15 September 2013.	Formatted: Font: (Default) Times New Roman
608	Hjort, J. (1914) Fluctuations in the great fisheries of northern Europe viewed in the light of	
609	biological research. Rapp. Pv. Reun. Cons. Perm. Int. Explor. Mer. 29: 1-228.	
610	Islam, M.S., H. Ueda, and M. Tanaka. (2005) Spatial distribution and trophic ecology of	
611	dominant copepods associated with turbidity maximum along the salinity gradient in a highly	
612	embayed estuarine system in Ariake Sea, Japan. Journal of Experimental Marine Biology and	
613	Ecology 316: 101-115.	
614	Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. (2004) Quantitative fatty acid signature	
615	analysis: a new method of estimating predator diets. Ecological Monographs 74: 211-235.	Formatted: Font: 12 pt
616	Johnson, W.S. and D.M. Allen. (2012) Zooplankton of the Atlantic and Gulf coasts: a guide to	
617	their identification and ecology, 2 nd edition. John Hopkins University Press. Baltimore,	
618	Maryland.	
619	Kainz, M., M.T. Arts and A. Mazumder. (2004) Essential fatty acids in the planktonic food web	
620	and their ecological role for higher trophic levels. Limnology and Oceanography 49: 1748-	
621	1793.	

622	Kainz, M.J., M. Perga, M.T. Arts and A. Mazumder. (2009) Essential fatty acid concentration of
623	different seston sizes and zooplankton: a field study of monomictic coastal lakes. Journal of
624	Plankton Research 31: 635-645.
625	Kimmel D.G., and M.R. Roman. (2004) Long-term trends in mesozooplankton abundance in
626	Chesapeake Bay USA: influence of freshwater input. Marine Ecology Progress Series 267: 71-
627	83.
628	Kimmerer, W.J. (2002) Effects of freshwater flow on abundance of estuarine organisms:
629	physical effects or trophic linkages? Marine Ecology Progress Series 243: 39-55.
630	Lawrence, D., I.Valiela, and G. Tomasky. (2004) Estuarine calanoid copepod abundance in
631	relation to season, salinity, and land-derived nitrogen loading, Waquoit Bay, MA. Estuarine,
632	Coastal and Shelf Science 61: 547-557.
633	Leech, D., S. Ensign and M. Piehler. (2009) Zooplankton Assessment Project (ZAP):
634	Reassessing prey availability for river herring in the Chowan River Basin- Year 2. North

- 635 Carolina Sea Grant Report. FRG 08-EP-06/ 09-EP-03.
- 636 Malzahn, A.M., N. Aberle, C. Clemmesen, and M. Boersma. (2007) Nutrient limitation of
- 637 primary producers affects planktivorous fish condition. Limnology and Oceanography 52:638 2062- 2071.
- 639 Marques, S.C., U.M. Azeiteiro, J. C. Marques, J. M. Neto, and M.A. Pardal. 2006. Zooplankton
- and icthyoplankton communities in a temperate estuary: spatial and temporal patterns. Journalof Plankton Research 28: 297-312.
- 642 Martino, E.J. and E.D. Houde. (2010) Recruitment of striped bass in Chesapeake Bay: spatial
- and temporal environmental variability and availability of zooplankton prey. Marine Ecology
 Progress Series 409: 213-228.

- 645 Masclaux, H., A. Bec, M.J. Kainz, F. Perriere, C. Desvilettes and G. Bourdier. (2012)
- 646 Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature
- 647 and food. Freshwater Biology 57: 696-703.
- 648 Masclaux, H., M.E. Perga, M. Kagami, C. Desvilettes, G. Bourdier, and A. Bec. (2013) How
- 649 pollen organic matter enters freshwater food web. Limnology and Oceanography 58: 1185-
- 650 1195.
- 651 McHugh, J.L. (1967) Estuarine nekton. American Association for the Advancement of Science
- 652 Publications 83: 581-620.
- 653 Metcalfe, L.D and A.A. Schmitz. (1961) The rapid preparation of fatty acid esters for gas
- chromatographic analysis. Analytical Chemistry 33: 363-364.
- 655 Moderan, J., V. David, P. Bouvais, P. Richard and D. Fichet. (2012) Organic matter exploitation
- in a highly turbid environment: planktonic food web in the Charente estuary, France. Estuarine,
- 657 Coastal Shelf Science 98: 126-137.
- 658 Mouny, P. and J.C. Dauvin. (2002) Environmental control of mesozooplankton community
- structure in the Seine estuary (English Channel). Oceanologica Acta 25: 13-22.
- 660 Mullen, D.M., C.W. Fay, and J.R. Moring. (1986) Species profiles: life history and
- 661 environmental requirements of coastal fishes and invertebrates (North Atlantic)
- alewife/blueback herring. Biological Report 82. USFWS and Army Corps of Engineers.
- 663 Müller-Navarra, D.C., M.T. Brett, A.M. Liston and C.R. Goldman. (2000) A highly unsaturated
- fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74-
- 665 77.

- 666 Müller-Navarra, D.C., M.T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita, and C.R.
- 667 Goldman. 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes.
- 668 Nature 427: 69-72.
- Müller-Navarra, D. (2008) Food web paradigms: the biochemical view on trophic interactions.
 International Review Hydrobiology 93: 489-505.
- 671 Napolitano, G.E., R.J. Pollero, A.M. Gayoso, B.A. MacDonald and R.J. Thompson. (1997) Fatty
- acid as trophic markers of phytoplankton blooms in the Bahia Blanca Estuary (Buenos Aires,
- Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology25: 739-755.
- 074 25: 759-755.
- 675 NCDENR (North Carolina Department of Environment and Natural Resources). (2006)
- 676 Basinwide assessment report Chowan River Basin. NCDENR. Raleigh, North Carolina.
- 677 NCDMF (North Carolina Division of Marine Fisheries). (2007) North Carolina fisheries
- 678 management plan amendment 1 river herring. NCDMF. Morehead City, North Carolina.
- 679 Newton, G.M. (1996) Estuarine ichthyoplankton ecology in relation to hydrology and
- 200 zooplankton dynamics in a salt-wedge estuary. Marine and Freshwater Research. 47: 99-111.
- 681 Odum, E.P. (1980) The status of three ecosystem-level hypotheses regarding salt marsh
- estuaries: tidal subsidy, outwelling, and detritus-based food chains. In: Kennedy VS (ed)
- 683 Estuarine Perspectives. Academic, New York.
- 684 Orsi, J.J. and W.L. Mecum. (1986) Zooplankton distribution and abundance in the Sacramento-
- 685 San Joaquin delta in relation to environmental factors. Estuaries 9, 326-339.
- 686 Park, G.S., and H.G. Marshall. (2000) The trophic contributions of rotifers in tidal freshwater
- and estuarine habitats. Estuarine, Coastal, and Shelf Science 51: 729-742.

- 688 Paulsen, M., C. Hammer, A.M. Malzahn, P. Polte, C. von Dorrien, and C. Clemmesen. (2014)
- 689 Nutritional situation for larval Atlantic herring (Clupea harengus L.) in two nursery areas in the
- 690 western Baltic Sea. ICES Journal of Marine Science 71: 991-1000.
- Persson, J., and T. Vrede. (2006) Polyunsaturated fatty acids in zooplankton: variation due to
- taxonomy and trophic position. Freshwater Biology 51: 887-900.
- 693 Rainuzzo, J.R., K.I. Reitan, and Y. Olsen. (1997) The significance of lipids at early stages of
- marine fish: a review. Aquaculture 155: 103-115.
- Ravet, J.L., M.T. Brett, and G.B. Arhonditsis. (2010) The effects of seston lipids on zooplankton
- fatty acid composition in Lake Washington, Washington, USA. Ecology 9: 180-190.
- 697 Rossi, S., A. Sabates, M. Latasa and E. Reyes. (2006) Lipid biomarkers and trophic linkages
- 698 between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW
- 699 Mediterranean. Journal of Plankton Research 28: 551-562.
- 700 RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
- 701 <u>http://www.rstudio.com/</u>.
- 702 Rulifson, R.A., J.E. Cooper, D.W. Stanley, M.E. Shepherd, S.F. Wood and D.A. Daniel. (1993)
- Food and feeding of young finfish species in lower Roanoke River, Batchelor Bay, and western
- Albemarle Sound, North Carolina, 1982-1988. Albemarle-Pamlico Estuarine Study APES 90-
- 705 16:21-27 to U.S. Environmental Protection Agency.
- 706 Sargent, J., L. McEvoy, A. Estevez, G. Bell, M. Bell, J. Henderson, D. Tocher. (1999) Lipid
- nutrition of marine fish during early development: current status and future directions.
- 708 Sheaves, M., R. Baker, I. Nagelkerken, and R.M. Connolly. (2014) True value of estuarine and
- coastal nurseries for fish: incorporating complexity and dynamics. Estuaries Coasts doi:
- 710 10.1007/s12237-014-9846-x.

Formatted: Font: (Default) Times New Roman

- 711 Smyntek, P.M., M.A. Teece, K.L. Schulz, and A.J. Storch. (2008) Taxonomic differences in the
- 712 essential fatty acid composition of groups of freshwater zooplankton relate to reproductive
- demands and generation time. Freshwater Biology 53: 1768-1782.
- 714 Stottrup, J.G., J.G. Bell and J.R. Sargent. (1999) The fate of lipids during development and cold
- storage of eggs in the laboratory-reared calanoid copepod, *Acartia tonsa* Dana, and in response
- to different algal diets. Aquaculture 176: 257-269.
- 717 Tackx, M.L., N. de Pauw, R. van Mieghem, F. Azemar, A. Hannouti, S. van Damme, F. Fiers, N.
- 718 Daro, and P. Meire. (2004) Zooplankton in the Schelde estuary, Belgium and the Netherlands.
- 719 Spatial and temporal patterns. Journal of Plankton Research 26: 133-141.
- Taipale, S., P. Kankaala, K. Hamalainen, R.I. Jones. (2008) Seasonal shifts in the diet of the lake
 zooplankton revealed by phospholipid fatty acid analysis. Freshwater Biology 54: 90-104.
- 722 Townsend, D.W. 1983. The relations between larval fishes and zooplankton in two inshore areas
- of the Gulf of Maine. Journal of Plankton Research 5: 145-173.
- 724 Vargas, C.A., R. Escribano, and S. Poulet. (2006) Phytoplankton food quality determines time
- 725 windows for successful zooplankton reproductive pulses. Ecology 87: 2992-2999.
- 726 Wacker, A. and E. von Elert. (2001) Polyunsaturated fatty acids: evidence for non-substitutable
- biochemical resources in *Daphnia galeata*. Ecology 82: 2507-2520.
- 728 Walsh, H.J., L.R. Settle, and D.S. Peters. (2005) Early life history of blueback herring and
- alewife in the lower Roanoke River, North Carolina. Transactions of the American Fisheries
- 730 Society 134: 910-926.
- 731 Winder, M. and A.D. Jassby. (2011) Shifts in zooplankton community structure: Implications for
- food web processes in the upper San Francisco Estuary. Estuaries and Coasts 34: 675-690.

733	Webster, C.D. and R.T. Lovell. (1990) Response of striped bass larvae fed brine shrimp from	
734	different sources containing different fatty acid compositions. Aquaculture 90: 49-61.	
735	Webster, K.E. and R.H. Peters. (1978) Some size-dependent inhibitions of larger cladoceran	
736	filterers in filamentous suspensions. Limnology and Oceanography 23: 1238-1245.	
737		
738		
739		
740		
741		
742		
743		
744	Tables	
745	Table 1. Spearman correlations for the seston (Groups A-C), microzooplankton (Groups D-F),	Comment [T30]: The black part
746	and mesozooplankton (Groups G-J). Italicized numbers = <0.05 , and Bold numbers = <0.0001	white

	Α	В	С	D	Е	F	G	Н	Ι
Α	1								
В	0.64	1							
С	0.21	0.46	1						
D	0.42	-0.07	-0.04	1					
Е	0.04	-0.07	0.36	0.75	1				
F	-0.11	0.59	0.55	-0.47	-0.14	1			
G	0.39	0.54	0.11	0.29	0.25	0.38	1		
Н	0.5	0.82	0.75	0.21	0.36	0.67	0.54	1	
Ι	-0.53	-0.04	0.68	-0.25	0.36	0.63	0	0.36	1
J	-0.04	0.61	0.54	-0.43	0.75	0.99	0.43	0.68	0.57

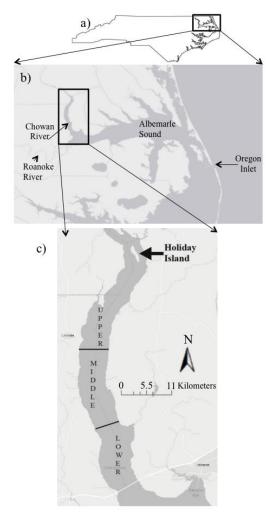
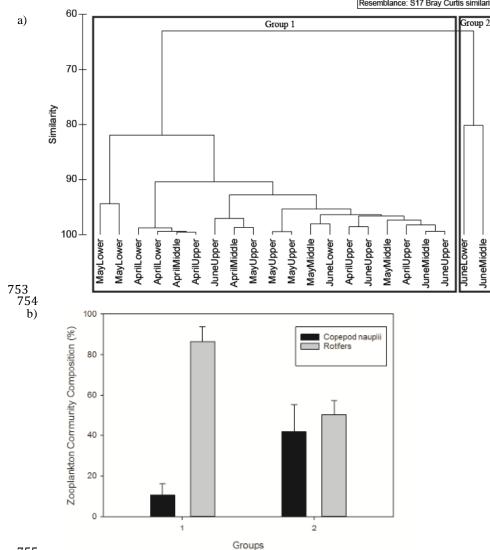



Figure 1. The overview of Albemarle Sound in North Carolina (a). The close up view of the

748 749 750 751 location for two main tributaries (Chowan and Roanoke Rivers), and the Albemarle Sound in North Carolina (b). The three sections used to collect zooplankton on the Chowan River (c).

752

Resemblance: S17 Bray Curtis similarity

755 Groups Figure 2. The two microzooplankton community composition groups from cluster analysis (a) at 756 757 65% similarity. The mean microzooplankton community composition (%, ±S.D.) for the two

758 groups from cluster analysis (b).

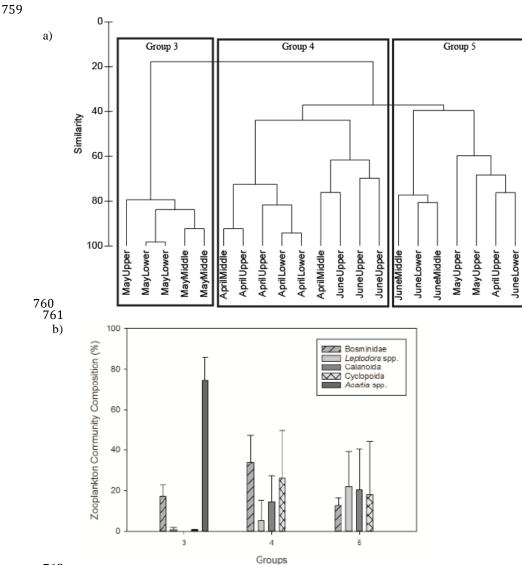
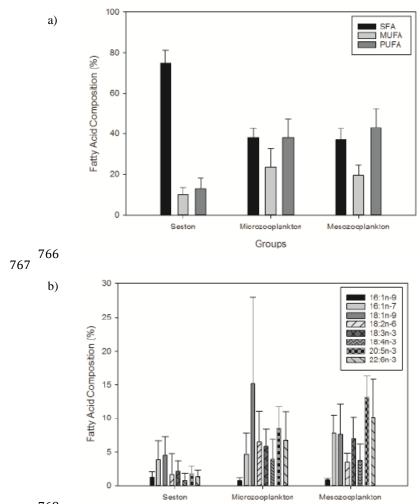
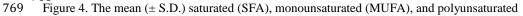
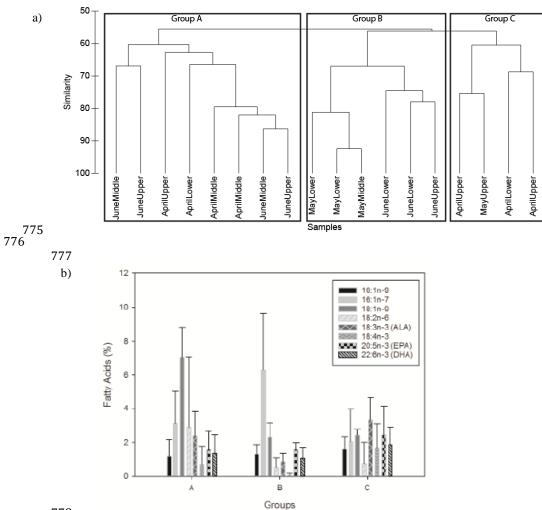




Figure 3. The three mesozooplankton community composition groups from cluster analysis (a) at 765 50% similarity. The mean mesozooplankton community composition (%, \pm S.D.) for the three groups from cluster analysis (b).



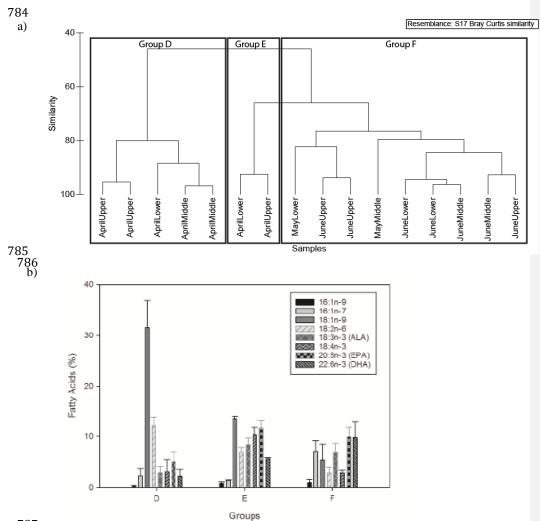
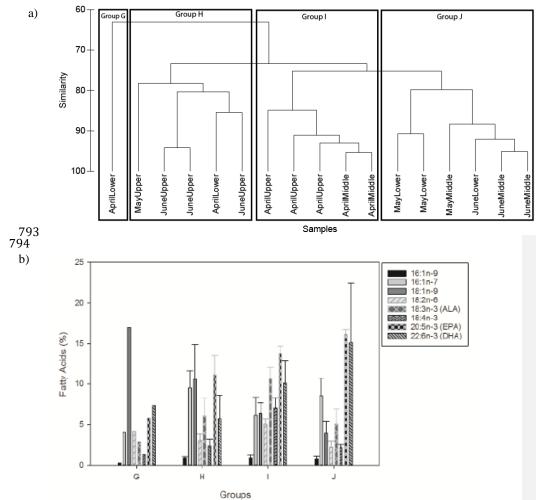
770 (PUFA) fatty acid composition (%) for the seston, microzooplankton, and mesozooplankton (a).

- The mean fatty acid composition (%, \pm S.D.) for the seston, microzooplankton, and
- 772 mesozooplankton (b).
- 773
- 774

Resemblance: S17 Bray Curtis similarity

Figure 5. The three seston fatty acid composition groups from cluster analysis (a) at 60%

- similarity. The mean seston fatty acid composition (%, ± S.D.) for the three groups from cluster analysis (b). The letters above the graphs represent significance differences using ANOSIM
- 783 (p<0.05).

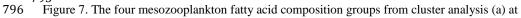


Figure 6. The three microzooplankton fatty acid composition groups from cluster analysis (a) at 60% similarity. The mean microzooplankton fatty acid composition (%, \pm S.D.) for the three groups from cluster analysis (b). The letters above the graphs represent significance differences using ANOSIM (p<0.05).

Resemblance: S17 Bray Curtis similarity

- 60% similarity. The mean mesozooplankton fatty acid composition (%, ± S.D.) for the four groups from cluster analysis (b). The letters above the graphs represent significance differences
- 799 using ANOSIM (p<0.05).

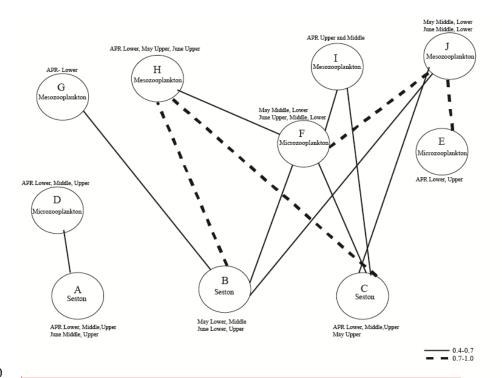


Figure 8. The seston, microzooplankton, and mesozooplankton groups correlated using

Spearman correlation. The letters represent the group designation from individual cluster
 analysis. Straight line shows correlations between 0.4 and 0.7, and weighted dash line shows

804 correlations between 0.7 and 1.0.

Comment [T31]: The line between C and J should be corrected and it should not cross others like that

Formatted: Heading 1,Heading 1_Dissertation, Line spacing: single

824 Appendix

825 Table A1: Mean fatty acid composition (± standard deviation) (percentage of total fatty acids

826 detected) of seston from the Chowan River by group. SFA: saturated fatty acids, MUFA:

827 monounsaturated fatty acids, and PUFA: polyunsaturated fatty acids.

	Seston				
		Group			
	A (8)	B (5)	C (4)		
14:0	6.6 ± 1.8	11.2 ± 5.1	7.6 ± 1.0		
15:0	1.5 ± 1.5	1.3 ± 0.4	1.7 ± 0.3		
16:0	47.7 ± 5.5	54.0 ± 5.1	50.8 ± 4.4		
17:0	2.3 ± 0.4	2.7 ± 0.7	2.6 ± 0.2		
18:0	14.2 ± 5.6	9.7 ± 1.2	11.4 ± 2.5		
20:0	0.4 ± 0.3	0.3 ± 0.1	0.4 ± 0.2		
∑SFA	72.7	79.2	74.0		
16:1n-9	1.2 ± 1.0	1.3 ± 0.6	1.6 ± 0.7		
16:1n-7	3.1 ± 1.9	6.3 ± 3.3	2.1 ± 1.9		
18:1n-9	7.0 ± 1.8	2.3 ± 0.8	2.4 ± 0.3		
18:1n-7	0.3 ± 0.2	0.1 ± 0.2	0.1 ± 0.1		
20:1	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.1		
∑MUFA	11.7	10.1	6.4		
18:2n-6	2.9 ± 4.2	0.6 ± 0.6	0.8 ± 1.2		
18:3n-3	2.4 ± 1.4	0.9 ± 0.5	3.3 ± 1.3		
18:4n-3	0.7 ± 1.1	0.1 ± 0.1	1.7 ± 1.4		
20:2n-6	0.5 ± 0.4	0.2 ± 0.2	0.7 ± 0.5		
20:3n-6	0.4 ± 0.1	0.4 ± 0.3	0.3 ± 0.2		
20:4n-6	0.9 ± 0.6	0.8 ± 0.4	0.8 ± 0.5		
20:3n-3	0.6 ± 0.3	0.4 ± 0.3	1.1 ± 0.6		
20:4n-3	0.6 ± 1.4	0.5 ± 0.3	2.3 ± 1.9		
20:5n-3	1.6 ± 1.1	1.6 ± 0.4	2.4 ± 1.7		
22:5n-6	0.7 ± 0.5	0.8 ± 0.8	1.2 ± 0.6		
22:5n-3	0.8 ± 0.6	0.7 ± 0.6	1.2 ± 0.7		
22:6n-3	1.4 ± 1.1	1.1 ± 0.6	1.9 ± 1.0		
∑PUFA	13.5	8.1	17.7		

- Table A2: Mean fatty acid composition (percentage of total fatty acids detected) of microzooplankton (<60 μ m) from the Chowan River by groups. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, and PUFA: polyunsaturated fatty acids.

	l	Microzooplank	ton
		Groups	
	D (5)	E (2)	F (8)
14:0	2.6 ± 0.5	3.7 ± 0.9	5.9 ± 1.1
15:0	0.3 ± 0.1	0.5 ± 0.2	1.1 ± 0.3
16:0	27.4 ± 3.0	24.5 ± 0.3	23.5 ± 3.4
17:0	0.4 ± 0.1	0.6 ± 0.0	1.2 ± 0.3
18:0	3.4 ± 0.8	3.4 ± 0.0	7.1 ± 0.3
20:0	1.8 ± 0.4	0.8 ± 0.1	0.2 ± 0.1
∑SFA	35.9	33.5	39.0
16:1n-9	0.3 ± 0.1	0.8 ± 0.3	0.9 ± 0.6
16:1n-7	2.2 ± 1.6	1.4 ± 0.1	7.1 ± 2.0
18:1n-9	31.6 ± 5.3	13.5 ± 0.5	5.3 ± 3.1
18:1n-7	0.7 ± 0.8	0.8 ± 0.2	1.9 ± 0.5
20:1	0.6 ± 0.2	0.8 ± 0.1	1.4 ± 0.6
∑MUFA	35.4	17.3	16.6
18:2n-6	12.2 ± 1.6	6.9 ± 0.9	2.8 ± 1.2
18:3n-3	2.9 ± 1.3	8.4 ± 1.3	7.0 ± 1.7
18:4n-3	3.2 ± 2.3	10.3 ± 1.5	2.8 ± 0.7
20:2n-6	0.4 ± 0.1	0.5 ± 0.1	0.3 ± 0.1
20:3n-6	0.1 ± 0.1	0.1 ± 0.0	0.2 ± 0.1
20:4n-6	0.6 ± 0.7	0.4 ± 0.1	3.2 ± 0.5
20:3n-3	0.3 ± 0.1	1.0 ± 0.2	0.4 ± 0.1
20:4n-3	1.3 ± 0.4	2.8 ± 0.1	2.1 ± 0.3
20:5n-3	5.0 ± 2.0	11.7 ± 1.4	9.9 ± 2.0
22:5n-6	0.2 ± 0.2	1.0 ± 0.1	2.3 ± 0.9
22:5n-3	0.2 ± 0.2	0.2 ± 0.1	1.9 ± 1.1
22:6n-3	2.1 ± 1.5	5.6 ± 0.3	9.8 ± 3.2
ΣPUFA	28.5	48.9	42.7

Table A3: Mean fatty acid composition (± standard deviation) (percentage of total fatty acids detected) of mesozooplankton from the Chowan River by group. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, and PUFA; polyunsaturated fatty acids.

ids.

857	MUFA: m	onounsaturated	fatty acids,	and PUFA:	polyuns	saturated fatty	aci

	Mesozooplankton Groups					
	G (1) H (5) I (5) J (5)					
14:0	4.5	5.4 ± 0.9	5.2 ± 1.1	5.1 ± 1.1		
15:0	1.1	1.1 ± 0.4	0.7 ± 0.0	0.9 ± 0.1		
16:0	29.7	24.4 ± 2.6	19.5 ± 1.3	22.0 ± 1.5		
17:0	1.3	1.4 ± 0.4	1.0 ± 0.1	1.4 ± 0.3		
18:0	11.2	7.7 ± 1.2	5.1 ± 0.3	6.8 ± 0.7		
20:0	0.4	0.2 ± 0.0	0.2 ± 0.1	0.1 ± 0.1		
∑SFA	48.2	40.2	31.7	36.3		
16:1n-9	0.3	0.9 ± 0.2	0.9 ± 0.4	0.8 ± 0.4		
16:1n-7	4.1	9.5 ± 2.2	6.2 ± 2.2	8.6 ± 2.2		
18:1n-9	17.0	10.6 ± 4.3	6.4 ± 1.2	4.0 ± 1.4		
18:1n-7	2.1	3.9 ± 1.7	2.4 ± 0.4	3.0 ± 1.1		
20:1	0.3	0.1 ± 0.1	0.3 ± 0.1	0.2 ± 0.1		
∑MUFA	23.8	25.0	16.2	16.6		
18:2n-6	4.2	3.0 ± 0.9	5.1 ± 0.6	2.2 ± 0.7		
18:3n-3	2.9	6.1 ± 2.1	10.7 ± 1.5	5.1 ± 1.9		
18:4n-3	1.4	2.4 ± 0.8	7.1 ± 1.2	2.2 ± 0.4		
20:2n-6	0.2	0.2 ± 0.1	0.4 ± 0.1	0.2 ± 0.0		
20:3n-6	0.1	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0		
20:4n-6	3.7	4.2 ± 1.5	2.1 ± 0.6	2.5 ± 1.2		
20:3n-3	0.2	0.2 ± 0.1	0.5 ± 0.3	0.2 ± 0.1		
20:4n-3	0.8	0.6 ± 0.3	1.2 ± 0.6	0.8 ± 0.3		
20:5n-3	5.9	11.2 ± 2.4	13.8 ± 0.9	16.2 ± 0.6		
22:5n-6	0.4	0.4 ± 0.2	0.8 ± 0.2	1.8 ± 0.8		
22:5n-3	0.4	0.3 ± 0.2	0.4 ± 0.2	0.6 ± 0.3		
22:6n-3	7.3	5.7 ± 2.9	10.1 ± 2.8	15.1 ± 7.3		
∑PUFA	27.5	34.4	52.3	47.0		

Table A4: SIMPER similarity for seston fatty acid composition for the three groups. Sim/SD= Similarity standard deviation.
 870

Group	Fatty Acids	Average Percent	Average Similarity	Sim/SD	Contribution %
Α	18:1n-9	7.04	29.98	5.50	45.15
	16:1n-7	3.12	10.52	1.62	15.84
	18:3n-3	2.37	7.69	2.13	11.58
В	16:1n-7	6.53	32.44	2.88	44.86
	18:1n-9	2.27	12.82	4.84	17.72
	20:5n-3	1.55	9.67	3.31	13.37
С	18:3n-3	3.33	15.95	7.56	24.79
	18:1n-9	2.42	14.06	5.85	21.85
	20:5n-3	2.44	8.28	2.60	12.86
	22:6n-3	1.87	8.21	1.36	12.75

Table A5: SIMPER similarity for microzooplankton fatty acid composition for the three groups. Sim/SD= Similarity standard deviation.

Group	Fatty Acids	Average Percent	Average Similarity	Sim/SD	Contribution976 877
D	18:1n-9	31.63	48.12	9.98	56.70 878
	18:2n-6	12.15	18.83	13.12	22.18 879
Е	18:1n-9	13.46	22.41	N/A	24.23 880
	20:5n-3	11.72	18.32	N/A	19.81 881
	18:4n-3	10.29	15.74	N/A	17.02 882
	18:3n-3	8.43	12.87	N/A	13.92 883
F	20:5n-3	9.91	19.23	8.36	23.72 884
	22:6n-3	9.45	16.68	2.84	20158
	16:1n-7	7.98	13.58	3.64	16.76 885
	18:3n-3	6.80	12.86	4.24	15.87 886 887

889

897 898

902

Table A6: SIMPER similarity for mesozooplankton fatty acid composition for the four groups. Sim/SD= Similarity standard
 deviation. Group G does not have a similarity breakdown because of n=1.

Groups	Fatty Acids	Average Percent	Average Similarity	Sim/SD	Contribution %
G	N/A	N/A	N/A	N/A	N/A
Н	20:5n-3	11.24	20.41	17.74	25.07
	16:1n-7	9.53	16.68	4.37	20.49
	18:1n-9	10.58	15.72	3.84	19.31
	18:3n-3	6.14	10.08	4.61	12.38
Ι	20:5n-3	13.84	22.08	32.83	24.69
	18:3n-3	10.65	16.19	8.06	18.10
	22:6n-3	10.11	14.03	5.63	15.69
	18:4n-3	7.05	10.57	18.14	11.82
\mathbf{J}	20:5n-3	16.04	28.86	28.57	33.99
	22:6n-3	16.58	22.04	4.19	25.96
	16:1n-7	8.51	13.29	7.64	15.65