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ABSTRACT
Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) has emerged as the
most popular neuroimaging technique used to depict the biological microstructural
properties of human brain white matter. However, like other MRI techniques, tradi-
tional DW-MRI data remains subject to head motion artifacts during scanning. For
example, previous studies have indicated that, with traditional DW-MRI data, head
motion artifacts significantly affect the evaluation of diffusion metrics. Actually,
DW-MRI data scanned with higher sampling rate are important for accurately
evaluating diffusion metrics because it allows for full-brain coverage through the
acquisition of multiple slices simultaneously and more gradient directions. Here, we
employed a publicly available multiband DW-MRI dataset to investigate the associ-
ation between motion and diffusion metrics with the standard pipeline, tract-based
spatial statistics (TBSS). The diffusion metrics used in this study included not only
the commonly used metrics (i.e., FA and MD) in DW-MRI studies, but also newly
proposed inter-voxel metric, local diffusion homogeneity (LDH). We found that the
motion effects in FA and MD seems to be mitigated to some extent, but the effect on
MD still exists. Furthermore, the effect in LDH is much more pronounced. These
results indicate that researchers shall be cautious when conducting data analysis and
interpretation. Finally, the motion-diffusion association is discussed.

Subjects Neurology, Radiology and Medical Imaging
Keywords White matter, Head motion, Microstructure, Diffusion MRI

INTRODUCTION
Diffusion-weighted MRI (DW-MRI) has become one of the most popular MRI techniques

in brain research, as well as in clinical practice. One key application of DW-MRI is

diffusion tractography which can be used for the visualization of white matter (WM)

tracts (Golby et al., 2011) and construction of the brain neuroanatomical connectome

(Gong et al., 2009). Also, it has become a convenient tool for deriving regional measures of

diffusivity and anisotropy. These metrics are believed to reflect biological microstructural

properties of the white matter, and have been extensively applied as biological markers for
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studying WM under normal and clinical conditions (Johansen-Berg, 2010; Le Bihan, 2003;

Le Bihan et al., 2001; Travers et al., 2012).

However, like other MRI techniques, DW-MRI remains subject to specific biological

factors (e.g., temperature), uncertainty from the scanner (e.g., machine SNR, field shim)

and, in particular, motion artifacts. Thus, movement of the head during scanning is

undesirable, since it not only displaces the brain matter in space but also interferes with

the readout of MR signals. Indeed, recent studies have discovered that head motion

may introduce unwanted biases. Ling and his colleagues have shown that head motion

is associated with both fractional anisotropy (FA) and mean diffusivity (MD) (the effect

is greater for MD) (Ling et al., 2012). A recent study have also found group differences in

head motion can induce group differences in white matter tract-specific diffusion metrics,

and such effects can be more prominent in some specific tracts than others (Yendiki et

al., 2013). However, these studies on head-motion artifacts have employed traditional

DW-MRI data with relatively low sampling rate (e.g., 9 s) and hence few gradient

directions (e.g., n = 30). In fact, previous works have indicated that more unique sampling

directions may decrease bias of diffusion metrics (e.g., FA and MD) (Landman et al., 2007;

Tijssen, Jansen & Backes, 2009). Recently, several promising imaging techniques have been

proposed, including MR-encephalography (Zahneisen et al., 2011) and multiband echo

planar imaging (Moeller et al., 2010). Using the multiband scanning protocol, sampling

across the whole brain at any given time is allowed through the acquisition of multiple

slices simultaneously. Hence, additional gradient directions can be acquired in the same

scan duration without loss in spatial resolution. Both of the advantages appear to result in

evaluating diffusion metrics more accurately, but little is known about the head motion

effects on diffusion metrics from the multiband dataset.

Here, the primary aim was therefore to investigate the relationship between head

motion and diffusion metrics estimated from the multiband dataset. In this study, we

examined the two tensor-based metrics most typically reported (i.e., FA and MD). Given

the fact that they only reflect diffusion properties solely within the voxel, we also examined

a newly proposed model-free inter-voxel metric, referred to as local diffusion homogeneity

(LDH) (Gong, 2013). We hypothesized that motion effects would be mitigated in the

multiband DW-MRI data. It has been suggested that head motion alters the measure of

diffusion metrics even after motion and eddy current correction (Ling et al., 2012; Tijssen,

Jansen & Backes, 2009; Yendiki et al., 2013), and that it may also provide information

regarding neuronal processing (Yan et al., 2013a; Yan et al., 2013b). Moreover, LDH is a

recently proposed metric and has not been fully validated yet (Gong, 2013). In addition,

unlike FA and MD, LDH directly depends on the raw diffusivity series without assuming a

prior diffusion model (Gong, 2013). Therefore, we also hypothesized that the association

between head motion and LDH would be quite different to the tensor-based metrics, and

may be more sensitive to motion artifacts. We tested these hypotheses by (1) confirming

the test-retest reliability of both diffusion metrics and head motion across scan sessions,

and (2) by examining the relationship between the averaged diffusion metrics and head

motion. We also examined the relationship in each scan session.
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MATERIALS AND METHODS
Dataset
The dataset used in this study was from the NKI-RS Multiband Imaging Test-Retest Pilot

Dataset (Mennes et al., 2013). There were 20 participants (34.3 ± 14.0 years). For each

participant, the DW-MRI scans were performed twice (session 1 and session 2), around

one week apart. Diffusion weighted images were collected a standard pulse sequence with

2-mm-thick axial slices and 137 directions: TE 85 ms; TR 2400 ms; b value, 1500 s/mm2;

flip angle, 90◦.

Image processing
DW-MRI images were processed with FMRIB’s Software Library (FSL, http://www.fmrib.

ox.ac.uk/fsl). Non-brain tissue was removed using the Brain Extraction Tool (BET) with

a fractional intensity threshold of 0.2, and then raw DW images were affinely registered to

the nonDW image, to partially correct for the effects of motion and eddy currents. Then,

by fitting a tensor model at each voxel using DTIFit from the FSL (Smith et al., 2004), we

obtained the fractional anisotropy (FA) and mean (MD) diffusivity, used in subsequent

TBSS analysis (Smith et al., 2006; Smith et al., 2007).

To compare between subjects, the TBSS framework was used. In detail, first, we

non-linearly aligned the individual FA maps to FSL’s standard 1 mm isotropic FA template

(FMRIB58 FA) and averaged them to generate a study specific mean FA map. Next, voxels

with an FA > 0.2 in the mean FA map were masked out, and the reminder was thinned

to create a white matter “skeleton”. The resulting skeleton contained WM tracts common

to all subjects. Individual FA maps were then projected onto the mean FA skeleton by

filling the skeleton with FA values from the nearest tract center. The same non-linear

transformations derived for the FA maps were applied to the MD maps.

In terms of the LDH metric, it is a novel model-free metric that defines the regional

inter-voxel coherence of diffusion series (Gong, 2013). Technologically, LDH is quantified

within the neighbors (n = 27) via the Kendell’s coefficient concordance (KCC), after

the estimation of the diffusivity strengths along each gradient direction. To compare

between subjects, the LDH maps were also projected onto the WM skeleton mask using the

TBSS framework described above. In addition, we used the same approach with different

neighbor size (i.e., n = 7 and n = 19) for quantifying the LDH, and also used another

approach for quantifying the regional coherence with information theory (Kong, Zhen &

Liu, 2014). The results in these cases were all similar to those of the original LDH (data not

shown).

The DW-MRI data preprocessing and TBSS analysis pipelines were both implemented

using Nipype (Gorgolewski et al., 2011), a flexible, lightweight and extensible neuroimaging

data processing framework in python. The pipeline for calculating both original and

improved LDH was implemented in Python.
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Assessment of in-scanner head motion
To retrospectively estimate head motion during scanning, DW images were realigned

to the non-DW image with FMRIB’s Linear Image Registration Tool (FLIRT), and at

the same time, an affine transformation matrix was obtained for each image. Then, for

each image, the root mean squared (RMS) deviation (Jenkinson et al., 2002), a summary

statistic of in-scanner head motion, was calculated from its transformation using the tool

rmsdiff from FSL. Since it summarizes six translational and rotational parameters, the

RMS has been widely used in the neuroimaging community. For instance, it has been used

in fMRI and DTI data processing to check the extent of head motion and make decisions

about cohort formation or matching (e.g., Ikuta et al., 2014; Kochunov et al., 2013; Kong,

2014). Technically, the RMS can be calculated directly from the affine matrices with the

formula (1).

RMS =


1

5
R2Trace(ATA) + tT t (1)

In formula (1), R is a radius specifying the volume of interest (R = 80 mm, approximately

the mean distance from the cerebral cortex to the center of the head), A is a 3 × 3 ‘rotation’

matrix and t is a 3 × 1 column vector of translation. One thing to note is that since the

RMS uses all the information from the affine matrices (including the shear and scaling, if

present), it could include the electrical properties of each participant’s head. Nevertheless,

the RMS does provide a sensitive index of in-scanner head motion.

Here, the RMS was calculated from 2 transformations of consecutive images (Jenkinson

et al., 2002). That is, in-scanner head motion was measured as the summary measure of

head motion relative to the preceding volume as the previous studies (Satterthwaite et

al., 2012; Van Dijk, Sabuncu & Buckner, 2012). Finally, head motion was calculated by

averaging the RMS deviations for all volumes.

Test-retest reliability of diffusion metrics and head motion
estimate
The voxel-wise test-retest reliability for each diffusion metric was calculated with the

intra-class correlation coefficient (ICC) (Shrout & Fleiss, 1979).

ICC =
BMS − EMS

BMS + (k − 1)EMS
(2)

The formula estimates the correlation of the subject signal intensities between sessions,

modeled by a two-way ANOVA, with random subject effects and fixed session effects. In

this model, the total sum of squares is split into subject (BMS), session (JMS) and error

(EMS) sums of squares; the k is the number of repeated sessions. The reliability measure

for whole-brain analysis was implemented in python and can be accessed from Nipype

(Gorgolewski et al., 2011). The test-retest reliability for head motion estimate was also

calculated with ICC.
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Table 1 A basic summary of head motion and the motion effects in three diffusion metrics. The
column Motion includes the averaged motion in the sample. The column Motion-Brain Association
includes the summary of motion effects in different diffusion metrics (i.e., FA, MD, and LDH). n.r.
indicates null results; Plus sign (+) indicates a positive relationship, while minus (−) indicates a negative
relationship.

Sample Motion Motion-Brain Association

FA MD LDH

Session 1 1.1(0.32) n.r. +
*

−
*

Session 2 1.26(0.38) n.r. +
*

−
**

Averaged 1.18(0.29) n.r. +
**

−
**

Notes.
* p < 0.10 TFCE corrected.

** p < 0.05 TFCE corrected.

Relationship between in-scanner head motion and diffusion
metrics
To maximize the signal to noise ratio of head motion estimates, first we calculated the

average head motion for each participant across two sessions. Analogously, for accurate

measures of microstructure estimates, the MD, FA and LDH metrics finally used were

also taken from the average of the TBSS results across the two sessions. To examine the

possible relationship between head motion and diffusion regional metrics, we conducted

a statistical analysis using general linear models (GLMs), for the three metrics respectively,

with head motion as the variable of interest. In these models, gender, age and handedness

were controlled as confounding covariates. Handedness was included here because it is

associated with brain structure and the neural processing of attention, while attention

deficit may cause more head motion (e.g., Durston et al., 2003; Schmidt, Simões &

Schmidt, 2013). Voxel-wise statistical analysis was performed with Threshold-Free Cluster

Enhancement (TFCE) correction (Smith & Nichols, 2009) for multiple comparisons,

considering fully corrected p-value <0.05 as significant. In addition, the same statistical

procedure was conducted for both session 1 and session 2 respectively.

RESULTS
Test-retest reliability of diffusion metrics and head motion esti-
mate
All of the diffusion metrics in this study showed relatively high test-retest reliability: FA:

Mean ICC = 0.71; MD: Mean ICC = 0.71; LDH: Mean ICC = 0.75. In addition, the

magnitude of head motion seemed acceptable (Table 1) and showed medium reliability

(ICC = 0.54), which is consistent with previous studies (Van Dijk, Sabuncu & Buckner,

2012). Although all of the diffusion metrics, as well as the head motion estimate, are

relatively reliable across the two scans, they were not exactly the same due to some random

artifacts, including motion artifacts and machine noises. Thus, for accurate measures

of this microstructure and the head motion estimate, we first averaged the head motion
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Figure 1 Results from the tract-based spatial statistics (TBSS) analyses depicting the voxels that
showed significant associations between head motion and diffusion metrics. Data are presented for
the analyses involving both Mean Diffusivity (MD; A) and Local Diffusion Homogeneity (LDH; B) as
the dependent measure. Participants with higher motion exhibited higher apparent values of MD, but
lower LDH. Voxels survived the TFCE correction (p < 0.05) across the whole white matter skeleton are
displayed.

and diffusion metrics across the two sessions and mainly examined the results with the

averaged data.

Relationship between the head motion estimate and diffusion
metrics
In Table 1, we also show a basic summary of the main head motion results of diffusion

metrics across all three analyses.

Among the two mostly commonly used regional diffusion metrics (i.e., FA and MD),

these results indicated that head motion was mainly associated with the MD values. The

degree of head motion was positively associated with increased MD mainly within white

matter tracts in left hemisphere, including anterior limb of internal capsule, posterior limb

of internal capsule, genu of corpus callosum and body of corpus callosum (Fig. 1). In the

current report, we focus on voxels that survived the TFCE correction (p < 0.05) (Smith &

Nichols, 2009) within the whole white matter skeleton. For the analyses examining FA, no

voxel survived correction for multiple comparisons.

For the analyses examining the inter-voxel diffusion metric (i.e., LDH), we found

that wide-spread white matter showed significant negative association with head motion

(p < 0.05, TFCE corrected; Fig. 1). This association mainly involved the bilateral superior

longitudinal fasciculus, body and genu of corpus callosum, cingulum, superior, anterior
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Figure 2 Results from the tract-based spatial statistics (TBSS) analyses depicting the voxels that
showed significant associations between head motion and diffusion metrics. Since no voxel survived
statistical correction for multiple comparisons (p < 0.05) in most of the analyses (except LDH in Session
2), they are displayed at a more tolerant threshold (p < 0.10, TFCE corrected).

and posterior corona radiate, retrolenticular part of internal capsule, fornix, cerebral

peduncle, middle cerebellar peduncle, right anterior and posterior limb of internal capsule,

right external capsule and sagittal stratum.

Overall, with the same criterion of significance (p < 0.05, TFCE corrected), we found

the most number of motion-related voxels with LDH (34551 voxels, 32.25%) and then MD

(2686 voxels, 2.51%). No voxel survived with FA.

In addition, we also examined the association between head motion and diffusion

metrics with data from the two sessions respectively. Although no voxel survived statistical

correction for multiple comparisons (p < 0.05) in most of the analyses (except LDH

in Session 2), there were some voxels that showed a significant trend (p < 0.10, TFCE

corrected; Fig. 2).

DISCUSSION
Like any other MRI technique, DW-MRI signal is subject to head motion artifacts, how-

ever, the relationship between diffusion metrics and head motion remains incompletely

understood. Previous studies have shown a significant relationship between diffusion

metrics and head motion (Ling et al., 2012) with conventional scanning protocol. The

current study expands on previous work by exploring the relationship between motion

and diffusion metrics (including the recently proposed inter-voxel metric, LDH) with

a multiband dataset. We found that the motion effects in FA and MD seems to be

mitigated to some extent, but the effect on MD still existed. In addition, the effect is

much more pronounced in LDH. Since these results are present following standard
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processing procedures, researchers shall be cautious when conducting data analysis and

interpretation.

Previous studies suggested a positive association between motion and MD, with

increased magnitude of MD as a result of increased total motion (Ling et al., 2012). The

results of this study, with multiband dataset, replicate this finding, as a positive relationship

between head motion and the magnitude of MD was present in the left hemisphere tracts.

The significant association was mainly located in the deeper white matter (e.g., corpus

callosum and the internal capsule). Interestingly, these tracts have often been reported

in the literature to differ between a variety of clinical populations and healthy subjects

(Carrasco et al., 2012; Travers et al., 2012). For examining FA, we found no significant

relationship between head motion and FA after multiple comparison correction. On the

one hand, our findings appear consistent with the previous finding (Ling et al., 2012)

that the head motion’s bias is more pronounced in MD than FA. But on the other hand,

given the reduction of the number of motion-related voxels (multiband dataset: 0 voxel

for FA, 2686 voxels for MD; Ling et al. (2012): 2422 voxels for FA, 22679 voxels for MD),

the motion effect seems to be mitigated in the multiband dataset. This may be due to

several advantages of the multiband dataset. First, the multiband dataset was acquired

with much more gradient directions than traditional datasets, which would result in more

accuracy when evaluating diffusion metrics. Second, the multiband scanning protocol

allows full-brain coverage through the acquisition of multiple slices simultaneously. This

could avoid displacements of brain within a TR and further mitigate the motion effects.

Finally, given the fact that multiband protocol is designed for a relatively high sampling

rate (i.e., a shorter TR), motion effects from a shorter duration would be expected to

decrease. All these advantages could result in higher accuracy and less irrelevant effects

(e.g., head motion) when evaluating diffusion metrics.

In addition, we also explored the relationship between head motion and LDH values

and found that there were widespread voxels significantly associated to head motion. It’s

worth noting that with a smaller neighbor sizes (n = 19 or n = 7) when calculating the

LDH, we observed the similar result (number of voxels that survived the TFCE correction:

35570 voxels for n = 19; 40 425 voxels for n = 7). This appears to be quite likely caused by

motion artifacts. Indeed, the significant voxels were rarely located in the occipital white

matter tracts, where motion artifacts may be much weaker than that in prefrontal lobe

when subjects are laying supine. These results suggest that LDH values might be more

subject to head motion artifacts. The increased susceptibility to motion may be due to the

fact that it is an inter-voxel metric which would be subject to shear in the displacement,

and that it is directly calculated with raw diffusivity series. Though previous studies have

shown LDH values change during aging, the newly proposed metric has not yet well

validated (Gong, 2013) and simulation and experimental work is required to confirm the

motion-LDH association.

So, why does the association between motion and diffusion metrics exist? The dominant

view at present is that head motion introduces artifacts into diffusion signals, similar to
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what has been noted in the fMRI literature (Bullmore et al., 1999; Friston et al., 1996; Hajnal

et al., 1994), which influence the calculation of diffusion metrics and further results of

cross-subject analysis. A common strategy for controlling motion effects in neuroimaging

cross-subject analysis is to regress or match motion estimates (Zuo et al., 2010a; Zuo et al.,

2012; Zuo et al., 2010b). Another strategy for mitigating head-motion artifacts is to remove

time series of high motion, which is called ‘scrubbing’ (Power et al., 2012). However, these

strategies have their limitations. On the one hand, scrubbing volumes with high motion

could not fundamentally change the relationship between motion and values of diffusion

metrics (Ling et al., 2012). On the other hand, they may also reduce the ability to detect

a significant effect of interest, and/or introduce sampling bias (Satterthwaite et al., 2012;

Wylie et al., 2014).

While researchers attempt to propose more sophisticated algorithms, there is growing

perception in the field that head motion reflects individual differences in psychological

traits and clinical conditions. For instance, previous studies showed that head motion was

correlated with some psychological and clinical measures, such as the autism symptom

severity score (Yendiki et al., 2013). In addition, previous fMRI studies suggest that the

association may reflect the neural processing related to head motion (Yan et al., 2013a; Yan

et al., 2013b). However, it is important to note that this problem in dMRI would not be as

serious as it is in fMRI, since in dMRI the neural processing causing the motion does not

directly affect the signal intensity. Nevertheless, these findings do suggest that head motion

might not simply be an uncorrelated random variable.

Taken together, as articulated previously (Van Dijk, Sabuncu & Buckner, 2012; Wylie et

al., 2014; Yendiki et al., 2013), these findings demonstrate the significance of developing

motion-compensated acquisition methods for DW-MRI and incorporating them into

neuroimaging studies in the future. Nevertheless, with current technologies, it appears

impossible to perfectly eliminate the motion effects. As a temporary solution, examining

both models with and without motion being regressed out will be expected. But in this

case, researchers should include both results in the report, rather than just pick a ‘better’

one. Additionally, researchers shall keep in mind that motion does not only influence MRI

signals, but also correlated with some meaningful individual differences. Alternatively,

replication in an independent sample would be helpful, since the effects of head motion on

diffusion metrics are usually random and not specific to some brain regions. Nevertheless,

for now, researchers shall be cautious when doing MRI data analysis and interpretation.

In sum, the results of this study indicate that, in the multiband diffusion data, there

are also significant associations between head motion and diffusion metrics, although

the motion effects appear to be mitigated compared to those with traditional datasets.

Specifically, head motion was associated with both MD and LDH, and no significant effect

was found for FA. Future studies should investigate the association between head motion

and diffusion metrics with larger multiband datasets.
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