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ABSTRACT
Background. Previous studies in human patients suggest depth of sedation may be
affected by environmental noise or music; however, related data in domestic animals
is limited. The objective of the current study was to investigate the effect of noise and
music on dexmedetomidine-induced (DM- 10 µg/kg, IM) sedation in 10 dogs.
Methods. In a crossover design, post-DM injection dogs were immediately subjected
to recorded human voices at either 55–60 decibel (dB) (Noise 1) or 80–85 dB (Noise
2); classical music at 45–50 dB (Music); or background noise of 40–45 dB (Control+).
Control− included IM saline injection and exposure to 40–45 dB background noise.
Sedation was assessed via monitoring spontaneous behavior and accelerometry (delta-
g) throughout three 20-min evaluation periods: baseline, noise exposure, and post-
treatment. Sedation was further assessed during two restraint tests at 30 min (R1) and
40 min (R2) post-injection. A mixed model for crossover design was used to determine
the effect of noise exposure and time on either spontaneous behavior scores or delta-g.
The restraint scores were analyzed using a two-way repeated measures ANOVA.
Results. Spontaneous behavior scores indicated less sedation during Noise 2 compared
to Control+ (P = 0.05). R2 restraint scores for all DM treatments except Noise 2
indicated significantly higher sedation than Control− [C+ (P = 0.003), M (P = 0.014)
and N1 (P = 0.044)].
Discussion. Results suggest that the quality of sedation is negatively impacted by high-
intensity noise conditions (80–85 dB), but exposure to music did not improve sedation
in this population of research dogs.

Subjects Animal Behavior, Veterinary Medicine, Anaesthesiology and Pain Management
Keywords Noise, Dexmedetomidine, Canine, Classical music, Sedation

INTRODUCTION
The acoustic environment of veterinary hospitals and its effects on patients
has not been fully analyzed, although the impact of noise has been extensively
scrutinized in human healthcare (Hasfeldt, Laerkner & Birkelund, 2010; Hsu et al., 2012;

How to cite this article Albright et al. (2017), Effect of environmental noise and music on dexmedetomidine-induced sedation in dogs.
PeerJ 5:e3659; DOI 10.7717/peerj.3659

https://peerj.com
mailto:jalbrig1@utk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3659
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3659


Konkani & Oakley, 2012). Nevertheless, noise stimulation in animals increases arousal and
induce ‘‘fight or flight’’ behavioral and physiological responses through the autonomic and
endocrine systems (Turner, Bauer & Rybak, 2007). The World Health Organization defines
noise as ‘‘unwanted sound’’ and has identified hospital patients as a population particularly
susceptible to the deleterious effects of noise (Berglund, Lindvall & Schwela, 1999). Heart
rate, anxiety, and ventricular arrhythmias (Morrison et al., 2003), in addition to poor sleep
quality, delayed wound healing, and diminished immune response have resulted in human
patients being treated within loud hospital environments (Pope, 2010; Hsu et al., 2012).
Also in human patients, it has been shown that obtaining a stable preoperative sedation
under noisy conditions is significantly hindered and may necessitate the use of additional
medications, potentially compromising the respiratory and cardiovascular stability of the
patient (Rego, Watcha & White, 1997).

The decibel (dB) quantifies energy within sound waves and is the most common unit
of measurement for sound intensity (Berglund, Lindvall & Schwela, 1999;Hsu et al., 2012).
According to the Centre for Disease Control and Prevention, a normal human conversation
is approximately 60 dB, a leaf blower at 15 m distance creates a 90 dB sound, and standing
by a siren at close range is perceived as 120 dB (Centers for Disease Control and Prevention,
2015). Based on sound assessment studies conducted in intensive care units in veterinary
hospitals, sound spikes above 80 dB were consistently detected (Fullagar et al., 2015).

In contrast to the negative effects of noise, perioperative use of slow-tempo music
has received attention as a source of anxiolysis and analgesia in human surgical patients
(Moris & Linos, 2013; Hole et al., 2015; Van der Heijden et al., 2015). Although the studies
evaluating anxiolytic effects of music in veterinary patients are limited, the use of classical
music has shown some potential in improving stress-related behaviors and physiologic
parameters in both cats and dogs (Bowman et al., 2015;Mira et al., 2016).

As a common practice in veterinary medicine, patients often receive an intramuscular
(IM) injection of sedative agents to achieve sedation, anxiolysis and increased compliance
for performing minor procedures or establishing an intravenous access prior to general
anesthesia. Dexmedetomidine (DM) is a highly selective alpha-2 adrenergic agonist used
to achieve sedation and as a preanesthetic agent in veterinary patients (Granholm et
al., 2007; Canfrán et al., 2016), although it may induce transient adverse cardiovascular
effects that could be clinically detrimental in hemodynamically unstable patients or those
with significant pre-existing diseases (Murrell & Hellebrekers, 2005). Beneficial effects of
dexmedetomidine aremediated by activation of alpha-2 adrenergic receptors and a decrease
in noradrenaline release and CNS excitation (Murrell & Hellebrekers, 2005; Granholm et
al., 2007).

The objective of the present study was to determine the effects of noise with various
intensities and classical music on the quality of DM-induced sedation in dogs. Sedation
was assessed by scoring spontaneous behavior, evaluating movement through the use of an
accelerometer and response to restraint. We hypothesized that dogs exposed to loud noise
would be less sedated compared with those exposed to classical music and control animals
with no extra noise intervention.
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MATERIALS AND METHODS
Animals
Participants were 10 healthy male purpose-bred beagles (8 neutered, 2 intact) with a
mean ± SD weight of 12.4 ± 1.9 kg and 4.2 ± 1.3 years of age. All procedures were
approved by the University of Tennessee Animal Care and Use Committee (Protocol No.
2376). The dogs were individually housed in indoor kennels and maintained on regular
12 hr/12 hr light/dark cycle with light conditions between 0600–1800 hr. Dogs had free
access to water in kennels and were fed at 1700 daily during this study, although those
receiving sedation were given their meal the following morning. This feeding schedule
allowed a fasting period of 12 h prior to exposure to an experimental condition.

Testing area
Testing occurred in an isolated room with 1.2 m thick concrete walls. The thick walls and
empty anteroom connecting the testing room to the main building insulated the area from
outside noises. The testing arena within the roomwas a circular enclosure (0.7 H× 1.5 Lm)
constructed of plastic panel walls and cotton/polyester blankets. The entire experimental
sessions were video-recorded on each day using two cameras (Sony HDR-CX44; Sony
Corp., Tokyo, Japan) placed on tripods (Sunpak 8001UT Tripod; ToCAD America Inc.,
Rockaway, NJ, USA) on opposite ends of the enclosure, approximately 1 m above the floor.
The intensity of the noise was measured by placing a sound meter (UT352; Uni-Trend
Technology, Hong Kong) in the center of the enclosure, approximately 0.5 m above the
floor. The baseline, or background noise was determined to be 40–45 dB based on the
average maximum and minimum readings from the sound meter recorded over a period
of 5 min, at 3 time points between 0800–1800 h on the day prior to testing when no animal
was present or intervention was underway. Testing occurred between the hours of 0800 and
1500. The room was maintained at a dim luminance of 6.6 cd/m2 and 20 ◦C temperature
throughout the experiment.

Experimental protocol
Acclimation protocol
Acclimation occurred two days prior to the experiment by placing an accelerometer on
the ventral portion of each dog’s collar (HeyrexVet, Heyrex, Limited). Dogs were then
individually brought to the testing arena and allowed to investigate, receive attention,
and eat canned food (Science Diet Adult Light, Hill’s Pet Nutrition, Topeka, KS, USA)
from a rubber toy (Kong Classic; The Kong Company, Golden, CO, USA) for 30 min. To
acclimatize the animals to the auditory stimuli, music and voice recordings, similar to those
used in the experimental phase, were played during the last 10 min of the acclimation phase
at approximately 5 dB above the background noise level. In addition, on intervening days
between experiments, dogs were brought into the enclosure for 30 min and underwent
the same acclimation protocol to reduce any aversion to the testing arena that may have
developed on experiment days.
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Figure 1 Experimental session timeline.DM, dexmedetomidine.

Treatment protocol
Using a Latin-square crossover design, each dog was assigned to be exposed to all of the
treatment conditions with a minimum of 48 h between the treatments. The timeline of
the experiment on each day is shown in Fig. 1. Each experiment was comprised of three
20 min periods for a total of 60 min. Briefly, on each experimental day, an activity monitor
collar was fitted to the animal at least 1 h prior to testing. The animal was then placed
in the enclosure for 20 min. During this period, referred to as baseline period in this
report, the animal was only exposed to the premeasured background noise (40–45 dB)
and was evaluated using accelerometry and spontaneous behavior scoring as described
below (Evaluation of sedation). At the end of this period, the dog was given either DM
(Dexdomitor, Zoetis) (10 µ g/kg, IM, epaxial muscle) or an equivalent volume of saline,
according to the treatment assignment and was immediately subjected to one of the
following five noise conditions for 20 min (noise exposure period):

- Negative control (C−): Saline injection and exposure to 40–45 dB background noise
- Positive control (C +): DM injection and exposure to 40–45 dB background noise
- Noise 1 (N1): DM injection and exposure to 55–60 dB recorded human voice
- Noise 2 (N2): DM injection and exposure to 80–85 dB recorded human voice
- Music (M): DM injection and exposure to 45–50 dB music.

All sounds were .wav sound files and played using an iPhone 6S (Apple Inc.) via two
portable speakers (iHome iBT60; SDI Technologies, Rahway, NJ, USA) mounted to the
tripods. At the onset of the noise exposure period, the dogs were immediately exposed to
the noise or music at the predetermined dB level.

The music consisted of the initial 20 min of a commercial classical music marketed
to produce a calming effect in dogs (Through a Dog’s Ear, Vol 1, BioAcoustic Research,
Inc.). A dB of 45–50 was selected as the experimental music level after preliminary trials
with different laboratory dogs exposed to the same music clips seemed the most relaxed
at this dB level. N1 and N2 auditory stimuli were created by layering and staggering the
recordings of two male and two female voices reading the same text, and looping the 90 sec
clip for continuous play. Recordings were made using a Tascam DR-40 (TEAC America,
Inc., Montebello, CA , USA) handheld 4-track recorder. A level of 55–60 dB was chosen for
N1 based on estimated average dB level of the authors’ veterinary hospital anesthesia area
over 5 min on three different typical medical procedure days. The N2 dB 80–85 level was
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Table 1 Spontaneous behavior scoring description and rubric. The summed behavioral scores (body,
head and eye) were averaged to determine a composite score for each evaluation period.

Behavior Score Description

Posture 4 Lateral recumbency, one shoulder and hip in full contact
with floor, and/or 4 limbs extended

3 Front limbs sternal, hip shifted laterally, hind limbs
extended

2 Sternal recumbency, hip and/or shoulder shifted laterally,
limbs tucked under body, neck turned laterally

1 Sternal recumbency, 4 limbs square
0 Sitting
−1 Standing motionless >3 s
−2 Continuously walking
−3 Circling, digging, pawing

Head 1 Head down
0 Head up

Eyes 3 Sunken, unfocused
2 Closed > 60 s
1 Closed > 10 s <60 s
0 Open > 10 s
−1 Scanning, 3+movements of pupil from center position/s

selected as the highest experimental level (N2) because it has been documented in veterinary
hospitals (Fullagar et al., 2015) but remains below the level considered dangerous to the
hearing of humans (Berglund, Lindvall & Schwela, 1999; Centers for Disease Control and
Prevention, 2015). To the authors’ knowledge, no data on dB levels at which dog hearing
is damaged in dogs are available. Nevertheless, these safety guidelines were followed to
minimize risk to the dogs and humans involved in the study.

After the noise exposure period, the applied noise or music playing was stopped and
the animal was exposed only to the previous background noise for another 20 min
(post-treatment period) during which the evaluation of sedation was continued.

Evaluation of sedation
The effect of each treatment on the animal was assessed using three methodologies;
evaluating the spontaneous behavior, evaluating the body movements via accelerometry
and response to a restraint test.

Animals’ spontaneous behavior was assessed every 5 min throughout the entire
experiment, and an average score was calculated and analyzed for each evaluation period
(baseline, noise exposure and post-treatment). The scoring system used was adapted
from previously reported canine sedation scales (Girard et al., 2009; Hofmeister, Chandler
& Read, 2010; Hopfensperger et al., 2013) with some modifications (Table 1). A single
blinded observer (JA) performed the behavioral assessments using video recordings in a
randomized order (arranged and coded by a non-observer) and played without sound.
Both video camera angles were available for scoring but a single view was used at each
assessment time point because the salient body postures or behaviors used for scoring
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Table 2 Resistance scoring description and rubric. Scores were combined as one composite restraint
score for each dog and each assessment point, restraint 1 (R1) and restraint 2 (R2).

Behavior Score Description

Restraint 1 No resistance (no struggling or appreciable muscle tone)
0 Mild Resistance (no struggling or movement away, but

muscle stiffening)
−1 Strong resistance (struggle)

Post-restraint 2 No movement
1 Ataxic standing
0 Immediately stand or sit, calm
−1 Escape attempts

Noise 2 No reaction
1 Ears-only orient
0 Head orients but no jump
−1 Jump away

were only visible from one view at any given time in the majority of trials. The summed
behavioral scores (body, head and eye) were averaged to determine a composite score for
each evaluation period. Possible scores ranged from 8 (least sedate) to −4 (most sedate).

For accelerometry, the activity monitor was placed on the collar to provide continuous
data regarding total body movement as an additional indicator of treatment effect on
animals’ behavior. Briefly, a tri-axial accelerometer captured dynamic body acceleration
along three axes throughout the entire 60 min of the experimental session (Chen & Bassett
Jr, 2005; Moreau et al., 2009). These raw vector magnitudes were transformed into gravity
units (g) by proprietary software algorithms. Delta-g is defined as the absolute change in
acceleration from the previous data point to the current and is a proxy for total movement
during a predetermined time period. For this study, data were condensed into one-minute
epochs, averaged, and analyzed for each evaluation period of the experiment. As a point
of reference for this device, a beagle-sized dog would produce a delta-g of close to 0 when
sleeping and approximately 200–250 delta-g at a continuous walk during a 1-min epoch
(Table S1).

To simulate clinical conditions, restraint testing was performed during the post-
treatment period at 30 min (Restraint 1- R1) and 40 min (Restraint 2- R2) after DM or
saline injection (Fig. 1). Restraint testing was performed by a single blinded observer (JA)
and at each time point consisted of encouraging the animal to walk to the investigator,
restraint for a simulated cephalic catheter placement, and exposure to a sharp noise (ametal
bowl being dropped from 0.5 m above the floor, at a distance of 1 m from the arena). The
same blinded observer evaluated and scored the ability of the subject to walk to the observer,
resistance to restraint, and reaction to sharp sound at R1 and R2 time points. Scoring was
performed using a previously reported canine sedation scale (Girard et al., 2009;Hofmeister,
Chandler & Read, 2010; Hopfensperger et al., 2013) with some modifications (Table 2). The
scores for each of the phases of the restraint testing were combined and reported as one
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composite restraint score for R1 and R2 time points. Possible scores ranged from 5 (most
sedate) to −3 (least sedate) for each time point.

Statistical analysis
Average scores for spontaneous behavior during evaluation periods and delta-g were
analyzed using mixed models for crossover design to determine the effects of evaluation
period and treatment, with subject as the random effect and treatment and evaluation
period as repeated factors. For the delta-g analysis, post-treatment period data were
analyzed separately and not included in themodel with baseline and noise exposure periods
because the restraint testing induced non-spontaneous activity during the post-treatment
period. The restraint scores were analyzed using a two-way repeated measures ANOVA.

Ranked transformation was applied when data violated ANOVA assumptions such as
non-normality and unequal variance. Post hoc multiple comparisons among evaluation
period and treatment scores were conducted with Tukey’s adjustment. Statistical
significance was identified at or below the level of 0.05. All analyses were conducted
in SAS 9.4 TS1M3 (SAS Institute Inc.).

RESULTS
Spontaneous behavior scores
Behavior scores during noise exposure period were similar to the baseline values for
all treatments. Post-treatment scores were significantly higher than the baseline scores
for all treatments [C− (P = 0.015), C + (P = 0.022), M (P = 0.001), N1 (P = 0.006),
N2 (P = 0.011)]. Behavior scores during post-treatment periods for treatments N1 and
N2 were higher than their respective noise exposure periods [N1 (P = 0.046) and N2
(P = 0.015)] but did not differ for any other treatment (Fig. 2).

Spontaneous behavior scores for baseline or post-treatment periods did not differ
significantly among treatments. Behavior scores during noise exposure period in treatment
N2 were lower than C+ (P = 0.05) but did not differ significantly among other treatments
(Fig. 2).

Accelerometry (delta-g)
There were no significant differences in delta-g values for any of the periods among
treatments or between baseline and noise exposure periods for any treatment (Fig. 3).

Restraint test scores
Restraint scores at R1 time point were significantly higher in treatment N2 compared to
the Control− treatment (P = 0.012) (Fig. 4). There were no significant differences among
R1 scores for other treatments. Restraint scores at the R2 time point did not significantly
differ among treatments that received DM (C +, N1, N2 and M), but the R2 scores for the
majority of DM treatments (except treatment N2) were greater than the saline (Control−)
treatment - [C + (P = 0.003), M (P = 0.014) and N1 (P = 0.044)]). Restraint scores did
not differ significantly between R1 and R2 within treatments.
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Figure 2 Mean spontaneous behavior scores± standard error of the mean for 3 evaluation periods
(baseline, noise exposure, post-treatment) in 5 treatments (Control−, Control+, Music, Noise 1, Noise
2) (n = 10 dogs). Higher scores reflected more sedation. Different letters indicate significant differences
(P ≤ 0.05) within each treatment. * Indicates significant difference (P = 0.05) during noise exposure pe-
riod between treatments Control+ and Noise 2.

Figure 3 Mean delta-g values± standard error of the mean for 3 experimental periods (baseline, noise
exposure, post-treatment) in 5 noise treatments (Control−, Control+, Music, Noise 1, Noise 2) (n= 10
dogs). Higher scores reflected more movement. (A) No significant differences found in delta-g values col-
lected during baseline evaluation and noise exposure periods within or among treatments. (B) No signifi-
cant difference was found among post-treatment evaluation periods.

DISCUSSION
The results of this study suggest that noise pollution can affect the quality of DM-induced
sedation in dogs. Based on the spontaneous behavior scores, dogs receiving DM were more
sedated while kept in an environment with less noise pollution [40–45 dB (Control+)]
compared to more noisy conditions [80–85 dB (Noise 2)]. In other words, as was
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Figure 4 Mean restraint scores± standard error of the mean for restraint test 1 (R1) and restraint
test 2 (R2) in 5 noise treatments (Control−, Control+, Music, Noise 1, Noise 2) (n = 10 dogs). Higher
scores reflected more sedation. Different letters indicate significant differences (P ≤ 0.05) at R1 time point
treatments and different numbers indicated significant differences (P ≤ 0.05) R2 time points among treat-
ments.

hypothesized, the depth of DM sedation may be significantly reduced if animals are
exposed to a high intensity noise. The latter noise intensity approximates the sound of a
heavy truck passing at 15 m (Centers for Disease Control and Prevention, 2015), and noise
levels approaching this range have been reported in veterinary hospital treatment areas
(Fullagar et al., 2015). It is thus reasonable to assume that sedation in veterinary patients
may be compromised by such environmental noise pollution.

In the current study, neither spontaneous behavior nor delta-g scores during moderate
intensity noise exposure treatments (50–60 dB, Noise 1 and Music) significantly differed
from treatment Control+ (40–45 dB). Therefore, based on these results, this level of noise
(40–60 dB), which approximates the decibel level of a typical human conversation (60 dB)
(Centers for Disease Control and Prevention, 2015), may not significantly impact the level of
sedation in dogs after receiving 10 µg/kg of DM, IM. However, the dogs in Control+
treatment appeared to be more sedated clinically during the noise exposure period
compared to the same period for Noise 1 andMusic treatments. Furthermore, spontaneous
behavioral scores did not statistically differ during noise exposure for Control+ (DM) and
Control− (saline) treatments.

A type II error due to low sample size may be one factor contributing to a lack of
significant differences between the Control+ and Control−, and Control+ and moderate
noise/music treatment assessments. Preliminary power analysis based previous sedation
scores indicated 10 subjects would be sufficient; however, post-hoc analysis using these
data concluded a minimum number of dogs needed to detect a difference with α of 0.05
and a power of 80% in spontaneous would be 13–17 for these specific sedation evaluation
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metrics. Alterations from previously published behavior and restraint scoring scales made
in an attempt to increase the scale specificity for lighter sedation may account for the
decrease in power.

Individual behavioral variation in response to noise stimuli may have also confounded
the spontaneous behavior and delta-g results, particularly for the noise exposure period
comparisons. As in other noise aversion studies (Landsberg et al., 2015; Gruen et al., 2015),
some dogs showed active anxiety behaviors (pacing, panting, excessive self-directed licking)
in response to the distressing noise stimuli, whereas others became very still but alert when
exposed to the same noises. Including a trained observer score that accounts for active or
passive behavior, or conducting a negative control for each of the noise conditions may
have clarified these issues and strengthened the findings, although the latter would have
exposed the dogs to additional potentially stressful treatments.

The sedentary behavior primarily displayed by the dogs, regardless of the treatment,
also likely masked expected significant differences in spontaneous behavior scores and
delta-g among the various noise and DM treatments. Habituation, or learning not to
respond to a previously arousing stimulus, occurred throughout the trials, particularly
the quiet periods, under dim lighting and otherwise constant environmental conditions
despite several acclimation sessions in the room prior to and between experimental trials.
Stiles et al. (2011) also found a reduction of some behaviors in dogs due to habituation
after receiving a placebo injection; however, laboratory cats given an oral placebo did not
have a decrease in activity between the first and second 30-min increments when assessed
in their home cage environment (Orlando et al., 2015). The brighter lighting, presence of
toys, detection of conspecifics and strong familiarity with the setting, as well as species-
specific variance may explain the difference in initial activity levels between the studies.

Providing an additional acclimation period on the day of the experimental trials or
extending experimental periods beyond 20 min may have decreased the impact of the
habituation effect. Longer periods may have also provided a more appropriate duration
for the DM treatment effect. Twenty minutes was chosen based on previous studies
indicating that the onset of detectable sedative effects from 10 µ g/kg DM administered
IM is approximately15 min, with peak effects around 30 min, and sedation assessments
significantly higher than baseline for at least 60 min post-injection (Congdon et al., 2011).
However, the semitendinosus muscle was the injection site in that study and Carter,
Lewis & Beths (2013) demonstrated a slower onset of clinical sedation from DM and
hydromorphone injected to the lumbar epaxial muscles when compared to the same drugs
injected into the caudal thigh muscle. This was supported in the current study by higher
restraint scores at 40 min compared to 30 min post-injection with DM. Longer trial periods
or using caudal thigh as an injection site in the current study may have allowed the DM
sedation to more fully take effect and demonstrated greater differences in sedation scores
between DM and negative control treatments. Furthermore, a higher DM dose may have
produced significant differences in the Control− and DM treatments, although this may
have masked any effects among the noise treatment conditions.

In light of the issues regarding individual behavioral variation due to temperament and
learning, restraint scores may be more specific indicators of sedation than spontaneous
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behavioral and activity assessments. At R2 time point (40 min after DM administration),
as hypothesized, restraint scores for dogs in Control+, Noise 1, and Music, but not Noise
2 treatments, were significantly higher than saline Control− treatment scores. Performing
an additional restraint test before the conclusion of the noise exposure period would have
provided more clinically relevant data by assessing the effect noise during restraint. An
unexpected finding was the increased level of sedation in dogs during the previous R1 time
point (30 min post-DM injection) restraint testing for the loudest treatment (80–85 dB,
Noise 2) compared to Control−, whereas the low and moderate noise intensity treatments
(Control+, Noise 1, and Music) R1 restraint scores were not significantly higher than
Control−. High arousal during the 80 dB noise exposure period may have led to increased
fatigue in the dogs at the conclusion of the noise exposure when the restraint tests were
performed.

The present study did not find any significant effect of classical music compared to the
control treatment. This is in contrast to the reports claimingmusicmay decrease anxiety and
postoperative pain in people (Tharahirunchot, Tatiyapongpinij & Uerpairojkit, 2011; Moris
& Linos, 2013; Hole et al., 2015; Van der Heijden et al., 2015), although other studies did
not demonstrate any beneficial effect of music in decreasing the amount of drugs required
to maintain an adequate plane of anesthesia (Kang et al., 2008; Ilkkaya et al., 2014). The
assumed positive effect of music is mediated by activation of brain areas associated with
rewards, as documented by functionalmagnetic resonance imaging (Salimpoor et al., 2013).
For veterinary patients, slow-tempo classical music appears to have a calming effect on
kenneled dogs (Wells, Graham & Hepper, 2002; Kogan, Schoenfeld-Tacher & Simon, 2012;
Bowman et al., 2015), and in another study on anesthetized cats, it resulted in decreased
blood pressure and heart rates when compared to other types of music (Mira et al., 2016).
However, the proposed intrinsic ‘‘deactivating’’ and calming effects of slow-tempo music
on the emotional state (Moris & Linos, 2013; Snowdon, Zimmermann & Altenmüller, 2015)
in people may be affected by prior experience and exposure to the music (Walker, 1996).
This may occur in animals as well and may have affected the results of the present study.
Dogs used in this study were purposefully bred for research and had limited or no exposure
to music. Therefore, performing a similar study using household pet dogs with prior music
exposure may conclude different results in relation to the effect of music on behavior and
sedation.

The results of this study may have been influenced by some other limitations. The
findings from the entirely male subject pool, comprised of dogs available at the time of
the study, may not generalize to female dogs. There are no known gender differences in
sedation quality to the authors’ knowledge. Also, the dogs were only exposed to voice
stimuli, not to the full range of sounds and frequencies that may induce a negative reactive
reaction in patients undergoing preanesthetic procedures. Therefore, only conclusions
regarding voice decibel levels should be drawn from these data.

Another possible limitation is the accelerometry device used in this study. The total
activity of similar product (Whistle, Whistle Labs) was shown to strongly correlate with
total activity from another monitor that has been validated in dogs (Actical, Animal Actical;
Starr Life Sciences Corp., Oakmont, PA, USA) (Yashari, Duncan & Duerr, 2015). Those two
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products and the HeyRex use similar tri-axial accelerometer technology but the HeyRex
device was chosen for use in this study because of both the affordability and the generation
of a numerical measurement unit (delta-g) instead of graphic intensity bars. Nevertheless,
the possibility that the data were not valid or delta-g was not specific enough to detect true
differences among the periods or treatments cannot be ruled out.

Accelerometry in canine studies has been used primarily to assess activity patterns
or pain over several days (Hansen et al., 2007; Guillot et al., 2011; Gerencsér et al., 2013).
Orlando et al. (2015) provided short-term activity data using a different monitor (Actical)
validated in cats after administration of trazodone, an antidepressant with sedating effects.
Significant differences in activity were reported between medicated and placebo conditions
for moderate and high doses of trazodone when data was assessed in 2-hour increments.
However, only activity levels post-administration of the higher trazodone dose significantly
differed from placebo when shorter 30-min increments were analyzed. Activity monitors
may best employed when assessing activity over longer periods of time for low or moderate
levels of sedation.

CONCLUSION
The findings of this study suggest that less noisy conditions are optimal for achieving
full sedation after DM administration, and noise intensity in veterinary hospitals, which
commonly spikes up to 80 dB, likely has a negative impact on the quality of sedation. The
findings of this study do not support the use of classical music to improve DM sedative
effects. More studies on moderate intensity noise and various subject populations along
with study design modification to strengthen findings are warranted.
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