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ABSTRACT

Carbon nanotubes (CNTs) have a broad range of applications and are generally
considered human-engineered nanomaterials. However, carbon nanostructures have
been found in ice cores and oil wells, suggesting that nature may provide appropriate
conditions for CNT synthesis. During forest wildfires, materials such as turpentine
and conifer tissues containing iron under high temperatures may create chemical
conditions favorable for CNT generation, similar to those in synthetic methods. Here,
we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs)
produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The
MWCNTs showed an average of 10 walls, with internal diameters of ~2.5 nm and
outer diameters of ~14.5 nm. To verify whether MWCNT generation during forest
wildfires has a biological effect on some characteristic plant species of these ecosystems,
germination and development of seedlings were conducted. Results show that the
utilization of comparable synthetic MWCNTs increased seed germination rates and
the development of Lupinus elegans and Eysenhardtia polystachya, two plants species
found in the burned forest ecosystem. The finding provides evidence that supports the
generation and possible ecological functions of MWCNTs in nature.
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INTRODUCTION

Carbon nanotubes (CNTs) have been the subject of extensive research in recent years
because of their extraordinary properties and broad range of biotechnological applications.
Although CNTs are commonly considered human-engineered nanomaterials, it has been
generally accepted that nature may provide appropriate conditions for their synthesis. CNT
occurrences have usually been sought in extreme environments (e.g., at high temperatures
and pressures), where evidence has suggested their formation. For example, encapsulated
CNTs have been found in the coal-petroleum mix of oil wells (Velasco-Santos et al., 2003)
and in Greenland ice-core samples dated from the Neolithic Stone Age (10,000 years ago)
(Esquivel & Murr, 2004); however, the source of these CNTs has not yet been identified.
There have also been questions regarding the validity of these reports because of the lack
of clear high-resolution transmission electron microscopy (HR-TEM) images, Raman
analysis, or diffraction patterns (Mackenzie et al., 2008).

Previous studies have speculated that CNTs can form in volcanoes, based on the
observation that Mount Etna’s lava can catalyze the synthesis of multiwalled CNTs
(MWCNTS) (Su et al., 2008; Su ¢ Chen, 2007). However, no direct evidence of the
formation of CNTs within volcanoes has been confirmed. Further, plant products such as
turpentine, eucalyptus oil, neem oil, palm oil, and olive oil have been used as raw materials
for chemical vapor deposition (CVD) in CNT synthesis (Afre et al., 2005; Ghosh et al.,
2007; Kumar, Tiwari & Srivastava, 2011; Suriani et al., 2009). In addition, plant and fungal
tissues containing transition metals have been used as natural catalyst precursors in the
production of CNTs by CVD (Zhao et al., 2011).

Oleoresin extraction is commonly performed in the forestlands of Michoacdn, México,
where oleoresin is collected from the trunks of living pines, and turpentine is obtained from
steam distillation. Alpha-pinene, which is used as a raw material for solvent production,
is one of the most important components of turpentine documented as an effective
compound from which high-quality and high-yield MWCNTSs can be synthesized by
CVD (Lara-Romero et al., 2011). Pine species such as Pinus leiophylla, Pinus oocarpa, Pinus
montezumae, Pinus pseudostrobus, and Pinus teocote are considered the most important
tree species for oleoresin extraction in the Mexican industry. The ecosystems in Michoacén,
México associated with these species of conifers are prone to wildfires. During the drought
season, wildfires can cause temperatures between 600 and 900 °C; this, coupled with the
presence of turpentines (or alpha-pinene) and conifer tissues containing iron, provides
conditions similar to those required for CNT formation in a process like CVD.

Moreover, MWCNTs have also been described as plant growth promoters, favoring seed
germination and an increase in the fresh weight of tomato plants (Khodakovskaya et al.,
2012; Yang, Cao & Rui, 2017). Recently, nanotechnology tools have developed CNTs for
potential applications in agriculture, including crop protection, pollution control, waste
management, pesticide detection, nanosensing, and as nanofertilizers (De La Torre-Roche
et al., 2012; Gogos, Knauer & Bucheli, 2012; Hong, Peralta-Videa ¢ Gardea-Torresdey, 2013;
Khodakovskaya et al., 2012; Yang, Cao ¢ Rui, 2017). Contrary to the beneficial applications
of CNTs, negative effects of nanoparticles on edible plants have also been discussed
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(Miralles, Church ¢ Harris, 2012); thus, the known effects of MWCNTs on plants are still
limited, as are the responses of the natural and agricultural ecosystems to human-engineered
nanomaterials (Yang, Cao ¢ Rui, 2017).

This report, as a first attempt to understand the roles of crystalline nanomaterials in
plant ecosystems and to scarce evidence of naturally-formed MWCNTs in the biosphere.
The main objective of this study was to provide evidence of spontaneously and naturally
occurring MWCNTSs from Pinus species following a forest wildfire event, and their possible
effects on germination and development of species found in the burned forest ecosystem.

MATERIALS & METHODS

Sample collection from a pine forest

During the dry season (June 2012), samples of burned wood were randomly collected from
mature trees of two different pine forest sites in Michoacédn, west-central México, which
had been recently affected by forest wildfires. The sites were ‘Cerro Huashan, Nahuatzen’
(19°38'35”N, 101°56'46"W; sampling P. oocarpa 2 weeks after fire extinguishment) and
‘Cerro de la Cruz, Uruapan’ (19°26'40”N, 102°2'56"W; sampling P. pseudostrobus and
P. montezumae 8 weeks after fire extinguishment). At least 20 samples of each pinus
species were collected from each forest wildfire site. Sampling was collected under the
supervision of the Ministry of Environment and Natural Resources specifications (Nom-
059-SEMARNAT-2010) and the conservation program for flora and fauna of the Pico de
Tancitaro (APFFPT) from Michoacdn, México; established by the Mexican decree law of
august 19, 2009; and the Program for the Sustainable Management of Mountain Ecosystems
Pico de Tancitaro, Michoacdn, México (APFFPT-2009). Wood samples were ground and
thoroughly mixed for further analyses.

CNT analysis

Samples of burned wood from various types of pine trees were characterized by Raman
spectroscopy, thermogravimetry (TGA), and high-resolution transmission electron
microscopy (HR-TEM), at least 20 samples of each pinus species were analyzed. Raman
spectroscopy was performed using a micro-Raman spectrometer (Labram System model
Dilor) equipped with a 20 mW He-Ne laser emitting at 514 nm, a holographic notch filter
(supertNotch-Plus; Kaiser Optical Systems, Inc., Ann Arbor, MI, USA), and a 256 x 1,024
pixel charge-coupled device (CCD) image recorder. All measurements were carried out at
room temperature with no special sample preparation.

TGA was carried out using a microbalance (Chan D-200) (Doudrick, Herckes ¢
Westerhoff, 2012), where 40-50 mg samples of burned wood from the different pine
species collected after a natural fire and MWCNTs synthesized by spray pyrolysis of
a-pinene/ferrocene were air-heated between 25 and 700 °C at a rate of 5 °C/min, to
obtain TGA combustion curves of the samples.

HR-TEM micrographs were obtained from a Philips CM-200 analytical TEM operating
at 200 kV. Specimens for HR-TEM analysis were prepared by dispersing the samples
in acetone through sonication for 2 min and air-drying a drop of the suspension on a
perforated, carbon-coated Cu® grid.
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Seed germination and plant pot-growing using synthetic MWCNTs
Seeds of Lupinus elegans and Eysenhardtia polystachya, collected from the pine forest of
Michoacdn, México, were sterilized with 95% sulfuric acid for 20 min and by soaking
in 1% sodium hypochlorite (NaOCI) for 3 min, respectively; both were then rinsed
with sterile distilled water. The seeds of each species were divided into six separate sets
of 100 seeds and incubated in a suspension of 0 (Control), 10, 20, 30, 40, or 50 pug/mL
MWCNTs (Sigma-Aldrich, St. Louis, MO, USA; Cat. No. 698849; CVD-produced synthetic
multiwalled CNTs, OD = 6.0-13.0 nm, ID = 2.0-6.0 nm length = 2.5-20 um, average wall
thickness 7-13 graphene layers, >98% purity) for 10 min. The MWCNTSs were dispersed
in water by a three-step acid treatment. The first step consists on ultrasonic mixing the
MWCNTs with concentrated HCI for 4 h, after refluxing MWCNTs in nitric acid for 8 h
at 80 °C, and finally refluxing sample in a 1:1 mixture of sulfuric and nitric acids for 4 h at
80 °C. Each seed set was then placed on moistened filter papers in five Petri plates (20-30
seeds per plate) and randomly distributed in a germination chamber. Germination was
evaluated after 10 days of incubation at 26 °C with a 12:12 light/dark cycles.

Pot-growing tests examined samples from all six treatments, each with 12 replicates
(72 plants in total for each seed type). Previously sterilized seeds (as described above)
were directly planted in 5-cm-diameter polyethylene containers filled with 375 mL of the
growth medium (Creci-root) provided by a local nursery. These containers were then
divided into six separate sets and seeds were treated directly with 1.0 mL of a suspension
of either 0 (Control), 10, 20, 30, 40, or 50 ug/mL MWCNTs, then covered with ~1.0 cm of
plant growth substrate. The containers were arranged at random in trays and watered on
alternate days for five weeks. At the end of the 5-week period, the plants were harvested,
and biometric variables (leaf area and, fresh and dry weights of shoots and roots) were
recorded. Data were statistically analyzed using Graph Pad software with an analysis of
variance (one-way ANOVA), and mean were compared using Tukey’s post hoc tests at a
significance level of p < 0.05.

RESULTS

Identification and characterization of CNTs in the burned wood of
resinous forests, after wildfire

Burned wood samples were collected after an intense wildfire in a resinous pine forest
in the Michoacan state of Mexico (June 2012). This forest mainly comprised P. oocarpa,
P. pseudostrobus, and P. montezumae. Samples of the carbonized trees of these species were
first analyzed by Raman spectroscopy. The Raman spectra of three different burned wood
samples indicate that P. oocarpa and P. pseudostrobus samples show characteristic bands for
CNTs, i.e., the D and G bands (Fig. 1A). The D band was observed at approximately 1,370
cm™!, and the G band, also known as the tangential band, was observed at approximately
1,600 cm ™!, which arises from the E;, mode of the graphite plane and confirms the
presence of sp? electronic hybridization in the carbon bond network. Unexpectedly, the
2D (G’) band, which is associated with the source or metal load and temperature during
synthesis, was not found in the Raman spectra. Moreover, no CNT signals were detected
in the samples of burned tree bark obtained from P. montezumae (Fig. 1A).
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Figure 1 Analysis of the burned wood samples of Pinus species collected after a forest wildfire event.
(A) Raman scattering spectra (He-Ne laser emitting at 514 nm) of the Pinus burned wood samples of:
(black) MWCNTs produced by chemical vapor deposition method using alpha-pinene/ferrocene as raw
material, (red) P. oocarpa, (blue) P. pseudostrobus, and (green) P. montezumae. The characteristic bands
of CNTs, i.e., the D band (1,370 cm™'), G band (1,600 cm™'), and G’ band (2,640 cm™!) are shown.

(B) Thermogravimetric analysis (TGA) of the burned wood samples from P. oocarpa, P. pseudostrobus,
P. montezumae, and synthetic MWCNTs (pyrolyzed at 610 °C).

Thermogravimetric analysis (TGA) was used to determinate the amount of MWCNTs
in the burned wood of P. oocarpa, P. pseudostrobus, and P. montezumae (Fig. 1B). Weight
losses up to ~150 °C correspond to the release of water contained in the samples, whereas
weight losses in the range of 200-300 °C and 300-400 °C are attributed to the degradation
of hemicellulose and cellulose, respectively. Weight losses in the range of 370-550 °C are
attributed to the ligneous components such as biochar (Esquivel ¢» Murr, 2004; Mackenzie
et al., 2008; Velasco-Santos et al., 2003). Relevantly, the weight loss detected at 610 °C in
the P. oocarpa samples, which coincides with that in a synthetic-origin MWCNTs sample,
corresponds to CNT combustion. Thus, according to the TGA analysis, P. montezumae
contains approximately 10% (w/w) moisture, 38% (w/w) hemicellulose, 46% (w/w)
cellulose, and 4% (w/w) ligneous species; P. pseudostrobus is composed of approximately
5% (w/w) moisture, 7% (w/w) hemicellulose, 22% (w/w) cellulose, and 66% (w/w) of
ligneous components; and P. oocarpa is composed of approximately 14% (w/w) moisture,
18% (w/w) hemicellulose and cellulose, and 60% (w/w) ligneous components. Relevantly,
the TGA plot indicates that the burned wood samples of P. oocarpa contained ~2.8% (w/w)
of CNTs and P. pseudostrobus less than 0.1% (w/w), and the remaining weight of ~5-10%
(w/w) is attributed to metals and elements.

HR-TEM images and fast Fourier transforms (FFTs) of the P. oocarpa samples clearly
indicated the presence of CNTs. HR-TEM images and their corresponding FFTs show
diffraction patterns characteristic of graphitic crystalline carbon (Figs. 2A-2C). HR-
TEM data obtained from P. oocarpa samples revealed the presence of highly crystalline
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Figure 2 Identification of MWCNTs in the burned wood samples of Pinus oocarpa collected after a
forest wildfire event. (A—C) HR-TEM images of the burned wood samples at different magnifications,
(D) FFT image, (E) analysis of the FFT image, and (F) EDS analysis. Representative images are shown.

MWCNTs, consisting of 10 walls with inner and outer diameters of ~2.52 nm and ~12-15
nm, respectively (Fig. 2C). The FFT image displayed one pair of sharp spots, and a line scan
along those spots confirmed the presence of sharp spots corresponding to highly ordered
carbon (narrow spots). The estimated plane-to-plane distance between the walls is 0.335
nm, which is in agreement with the nominal distance between the planes in crystalline
CNTs (Figs. 2D-2E). The bright spots in the dark-field HR-TEM images indicate the
presence of metals on the carbon tubes, and the corresponding energy-dispersive X-ray
spectroscopy (EDS) analysis confirmed the presence of iron (Fig. 2F), suggesting that this
iron could have acted as a catalyst during CNT formation.

For the burned wood samples of P. pseudostrobus, HR-TEM images and the
corresponding FFT data show preferential formation of coil-shaped nanoparticles
consisting of curved crystalline multiwalled carbon layers (Fig. 3A). The FFT images of
these MWCNTSs reveal one pair of sharp spots and a line scan along those spots confirmed
the presence of highly ordered carbon. The estimated distance between the lattice fringes
of the carbon walls is 0.335 nm, which is in agreement with the nominal distance between
the planes of graphite (Figs. 3B—3C). The corresponding EDS analysis reveals the presence
of several elements such as calcium, potassium, and phosphorous, but no evidence of
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Figure 3 Identification of MWCNTs in the burned wood samples of Pinus pseudostrobus collected af-
ter a forest wildfire event. (A) HR-TEM images of the burned wood samples at several magnifications,
(B) FFT image, (C) FFT analysis, and (D) EDS analysis. Representative images are shown.

the presence of iron or other transition metals is found (Fig. 3D). Unexpectedly, no
evidence of CNT structures was found in P. montezumae samples; however, amorphous
carbon structures were abundant (Figs. 4A—4B). The FFT spectrum displayed diffuse spots,
characteristic of amorphous carbon, and EDS analysis confirmed the presence of iron,
calcium, and phosphorous (Figs. 4C—4E). These findings provided evidence of naturally
occurring MWCNTSs from Pinus species after forest wildfire events.

Synthetic multiwalled CNTs increase seed germination in plants
growing in resinous Pinus forests

The MWCNTs found in burned P. oocarpa and P. pseudostrobus wood samples had ~10
layers, with an inner diameter of ~2.52 nm and an outer diameter of ~14.59 nm. To
investigate if MWCNTSs with structural features similar to those found in the natural
samples could have a biological effect over some plants species characteristic of these
ecosystems (L. elegans and E. polystachya), we conducted a germination and development of
seedlings test. This assay was based on previous studies on the positive or negative effects on
plant germination and the development of seedlings grown by MWCNT treatment (FHorng,
Peralta-Videa & Gardea-Torresdey, 2013; Khodakovskaya et al., 2012; Miralles, Church &
Harris, 2012). We supplemented the seed germination and early seedling growth with
10-50 pg/mL of the synthetic MWCNTs with structural features similar to those found in
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Figure 4 Identification of the carbon structures in the burned wood samples of Pinus montezumae
collected after a forest wildfire event. (A) HR-TEM images of the burned wood samples at the same
magnifications, (B) FFT image, (C) FFT analysis, and (D) EDS analysis. Representative images are shown.

the P. oocarpa and P. pseudostrobus wood samples of burned forest (average wall thickness
~7-13 layers; inner diameter of ~2—6 nm; outer diameter of ~12-20 nm; length of 2.5-20
wm).

Seed germination results showed that the addition of MWCNTs increased the number
of germinated seeds and significantly shortened the germination period (Fig. 5A). Seeds of
L. elegans and E. polystachya treated with MWCNTs exhibited increased germination rates
compared to untreated seeds. For L. elegans, a prolific plant in this forest, seed germination
rates were 62.5% higher after the addition of 30 ug/mL of the synthetic MWCNTs compared
to those of untreated plants. Moreover, E. polystachya seeds treated with MWCNTSs reached
germination rates 40% higher than those of the untreated seeds (Figs. 5A-5C).

We further investigated the effects of MWCNTSs on the growth and development of
L. elegans and E. polystachya seedlings by growing them in a medium supplemented with
different concentrations of the synthetic nanoparticles and measuring the yield of variables
such as fresh and dry plant biomass, number of lateral roots, and foliar area (Figs. 6A—6B).
L. elegans plants germinated and grown in the MWCNT dose range of 10-50 ug/L exhibited
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Figure 5 Effect of synthetic MWCNTs on the seed germination rate of Lupinus elegans and Eysenhard-
tia polystachya. Seed germination of the native plants from the Pinus forest was evaluated after 10 days
with MWCNTs treatment and recorded after 5-week of cultivation. (A) L. elegans seed germination, (B)

E. polystachya seed germination, (C) quantitative data (A) and (B) assays. Bars represent mean =+ standard
error of three independent experiments, # = 30 each. One-way analysis of variance (ANOVA) was carried
out with Tukey’s post hoc test; statistical significance (P < 0.05) between treatments with respect to con-
trol is indicated with different lowercase letters.

a significant amount of vegetative biomass at 30 ug/L and a decrease at 50 ug/L of MWCNTs
(Fig. 6A). Significant increases in the fresh weight of the shoot and root, dry weight of
the shoot, number of lateral roots, and foliar area (90.23%, 132.59%, 84.51%, 91.05%,
and 93.72%, respectively) were observed in treated plants, compared to the untreated
plants (Figs. 6C—6H). Results also suggest that the plant growth stimulation correlates with
the increment in the shoot and root dry weights; when plants were treated with 30 pg/L
of MWCNTs these variables reached a maximum of 45.2% and 120.46%, respectively,
compared to those of the untreated plants (Figs. 6E—6F). E. polystachya plants grown in
media supplemented with increasing doses of MWCNTSs (10-50 ug/L) showed a large
vegetative biomass at 50 ug/L and no negative effects of these nanotubes were recorded
at any dosage level tested (Fig. 6B). The maximum increases in the shoot and root fresh
and dry weight, number of lateral roots, and foliar area (87.8%, 302.78%, 148%, 114.54%,
313.66%, and 150.39%, respectively) were observed in treated plants, compared to the
untreated ones (Figs. 6C—6H). These results show that synthetic MWCNTs increase seed
germination and plant growth in two plant species growing in the studied resinous Pinus

forests ecosystem.

DISCUSSION

Our observations clearly support the hypothesis that MWCNTSs can be formed
spontaneously in nature and are capable of self-assemble without human interference.
Although the process was not directly studied, the formation of MWCNTs during a
resinous forest wildfire could be the consequence of a synthetic CVD-like mechanism.

Lara-Romero et al. (2017), PeerdJ, DOI 10.7717/peerj.3658 915


https://peerj.com
http://dx.doi.org/10.7717/peerj.3658

Peer

Lupinus elegans

B Eysenhardtia polystachya

Synthetic MWCNTSs (ug/mL)

Synthetic MWCNTSs (pg/mL)

0.16

Synthetic MWCNTSs (pug/mL)

L. e/e'gans E. polyétachya

Synthetic MWCNTSs (ug/mL)

L. ele'gans E. poly\;tachya

1800
5 1.2 b b
2 Co ab 5914 E bb , 1600 G,
510 + £ 0.12 5 1400 ab+
] a 2 = 1200
3 08 a o 0.10 a a = a
< a 2 008 g 10001a
2 06 2 "™ a b, bl & 800 a
& b| T o.06 b4 bh <
ab = s
£ 04 2% £ a 5 600 be,. bec
5 02 a2 g 0041 a S 400 b bC
N AT & e = w0 2T
® 0.0 0.00 0 nal
I
. 18 14 T
S ,e/D PP s *"*|F sooofH
£ 44 + T 0.2 < b bc
S 1 ab £ £ 40.00 ‘|' ab
g 12 a 2 0.10 S | . ©
= 1013 ;o.os b b bl 830002 c%¢
©
2 os 5 0.06 blle b
= 0.6 c bbpab 8 20.00
= ¢l < 004 aa S a
s 04 cCcH % a ©
5 04 . |P-| r_"_,_l |+| 8 oo2la Hmm HH 10.00 |+|
x O "
3 []
0.0 0.00
QOO ONPAP D QNP PW P O TPPNYD QAOPPO® O AIPP 0D

Synthetic MWCNTSs (ug/mL)

L. ele'gans E. polyétachya

Figure 6 Effect of synthetic MWCNTs on the plant growth rate of Lupinus elegans and Eysenhardtia
polystachya. After seed germination of the native plants from the Pinus forest (as described above), they
were planted in 5—cm-diameter polyethylene containers filled with growth medium (Creci-root). These
containers were then divided into six separate sets and the seedlings were treated directly with 1.0 mL of
the suspension consisting of either 0 (control), 10, 20, 30, 40, or 50 pg/mL of synthetic MWCNTs. At the
end of the 5-week period, the plants were harvested, and biometric variables were recorded. (A) L. ele-
gans plant growth, (B) E. polystachya plant growth, (C-H) determination of the growth variables from (A)
and (B) assays: (C) shoot in fresh weight, (D) root in fresh weight, (E) shoot in dry weight, (F) root in dry
weight, (G), lateral roots number, and (H) foliar area. Bars represent mean = standard error of three in-
dependent assays, n = 72. One-way analysis of variance (ANOVA) was carried out with Tukey’s post hoc
test; statistical significance (P < 0.05) between treatments with respect to control is indicated with differ-

ent lowercase letters.

Production of MWCNTSs by CVD requires the presence of volatile carbon compounds,
which may act as precursors, in the gaseous state. P. oocarpa is a species rich in turpentine,
and its oleoresin is a mixture of highly volatile monoterpenes, including «- and B-pinenes,
which have been identified as highly effective MWCNT precursors capable of providing a
high yield (Lara-Romero et al., 2011). According to previous studies, coil-shaped crystalline
nanoparticles cannot be synthesized by processes other than CVD (Fejes & Hernddi, 2010;
Mhlanga et al., 2011). Therefore, the above hypothesis is also supported by the detection
of coil-shaped crystalline carbon nanoparticles in the HR-TEM images of the burned

P. oocarpa and P. pseudostrobus wood. In addition, as mentioned above, the impossibility
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to find MWCNTs into the P. montezumae samples and the sole presence of amorphous
carbon structures in this species, indicates that P. montezumae trees lacks either the
concentration of catalystics or the type of metal required for an effective synthesis of these
structures by a CVD like method (Lara-Romero et al., 2011; Zhao et al., 2011).

The presence of iron in the samples of P. oocarpa containing MWCNTs suggests that
this metal provided catalytically active sites for the CNT synthesis. Previous studies that
used plant tissue precursors to catalyze CNT growth have suggested that iron catalytic sites
are uniformly distributed in plant cells (Zhao et al., 2011). Consequently, CNTs formed
in plant tissues could be expected to have uniform diameters. This is consistent with our
HR-TEM observations (average wall thickness ~7-13 layers; inner diameter of ~2—6 nm;
outer diameter of ~12-20 nm; length of 2.5-20 um), which revealed that the MWCNTs
had homogeneous number of layers and external diameters. In addition, the TGA results
indicated that the burned wood samples of P. oocarpa after pyrolysis degradation contain
~2.8% wt of CNTs. Although it has been generally accepted that nature could provide the
conditions for their synthesis, there is scarce evidence of naturally formed MWCNTs in
the biosphere. Therefore, we provide evidence of spontaneously and naturally produced
MWCNTs from Pinus species, following forest wildfires.

In another context, the effects of nanomaterials such as CNTs on plant growth and
development has been documented, and it has been suggested that their effects are because
of factors such as the type of nanoparticles, concentration, plant species, and experimental
conditions, including the method of nanoparticle uptake (Tiwari et al., 2014); in contrast,
studies indicate that some CNTs nanomaterials show toxic effects on several plant models
(Miralles, Church ¢ Harris, 2012). With respect to human engineered MWCNTs, several
molecular mechanisms involved in their biological effects have been described. Genomic
analyses of Lycopersicon esculentum have indicated that exposure to MWCNTs altered
the total gene expression, with up-regulation of stress-related genes (Lahiani et al., 2015;
Lahiani et al., 2016), while that in Nicotiana tabacum has been found to cause alterations
in total gene expression, with up-regulation of genes related to cell-wall assembly/cell
growth, regulation of cell cycle progression, and aquaporin production (Lahiani et al.,
2015; Miralles, Church & Harris, 2012; Mukherjee et al., 2016; Yang, Cao & Rui, 2017).
Thus, the authors have suggested that size, composition, and specific surface characteristics
of the engineered nanomaterials may play important roles in their phytotoxicity (Hong,
Peralta-Videa & Gardea-Torresdey, 2013; Mukherjee et al., 2016).

In our work, the effect of MWCNTSs was evaluated using two plant species found in
the burned forest ecosystem, although the MWCNTs utilized are of synthetic origin;
these were acquired with structural characteristics similar to those of CNTs found in
burned wood samples from the resinous forest. Interestingly, seed germination and growth
promotion were observed in both the L. elegans and E. polystachya plant species tested,
with the influence of all the quantified biometrical plant variables; it was unlikely that
seed germination and growth promotion occurred exclusively owing to water retention
in the plant tissues (Fig. 6). In addition, the results did not indicate that CNTs had
toxic effects on seed germination or plant development in the concentration range used,
suggesting that at low dosages, MWCNTs function as plant-growth promoters. The plant
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growth dose-dependence also suggests that the concentrations at which CNTs exert their
maximum plant growth-promoting effect depend on the plant species. Although the
mechanisms of the observed biological effects were not investigated, the findings indicate
that the seed germination and plant-growth promotion was due to the activation of the
cell division and nutrient uptake and also increased water influx as previously suggested,
rather than an increase in the cell volume.

Forest fires are known to enhance the recruitment of a number of important native
species associated with forest ecosystems (Keeley ¢» Fotheringham, 1998; Keeley et al., 2011;
Turner et al., 1997), including E. polystachya (Orozco, 2008) and L. elegans (Diaz-Rodriguez
et al., 2013). In addition, products resulting from the combustion of wood, such as ash
(Keeley ¢» Fotheringham, 1998) and charred wood (Roy ¢ Sonie, 1992), have also been
shown to trigger germination and plant growth after forest fire events. The influence of
MWCNTs formed in burned wood after forest wildfires on plant growth or other post-fire
characteristic events in terrestrial ecosystems requires extensive studies.

CNT formation has usually been associated with extreme environments; however,
we have provided evidence that MWCNTs can be found in biotic environments after
atmospheric events. MWCNTs, formed in forest wildfires could be introduced into the soil
by burned plant material such as smoke or solid particles. If this is true, then MWCNTs
have been interacting with soil, organisms, and plants species since a long time. This may
explain our findings, which strongly suggest that MWCNTSs produced in resinous forest
wildfires promote seed germination and growth of native plants in forest ecosystems.

CONCLUSION

This study shows direct evidence of MWCNT generation during forest wildfires as a natural
phenomenon, strongly suggesting a possible impact on natural plants of the resinous forest
ecosystems through their effects on seed germination and plant growth promotion.
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