

Genome-wide identification of CBL family and expression analysis of *CBLs* in response to potassium deficiency in cotton (#17551)

1

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready [submit online](#). The manuscript starts on page 4.

Important notes

Editor and deadline

Sheila McCormick / 22 May 2017

Files

1 Table file(s)

Please visit the overview page to [download and review](#) the files not included in this review PDF.

Declarations

No notable declarations are present

Please read in full before you begin

How to review

When ready [submit your review online](#). The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit <https://peerj.com/about/editorial-criteria/>

7 Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging “modern” with “cursorial”.

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genome-wide identification of CBL family and expression analysis of *CBLs* in response to potassium deficiency in cotton

Tingting Lu^{1,2}, Gaofeng Zhang³, Lirong Sun⁴, Ji Wang⁵, Fushun Hao^{Corresp. 3}

¹ College of Life Sciences, Henan University, State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan, China

² Henan University of Animal Husbandry and Economy, College of Pharmaceutical Engineering, Zhengzhou, Henan, China

³ College of Life Sciences, Henan University, State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Kaifeng, Henan, China

⁴ College of Life Sciences, Henan University, Key Laboratory of Regional Climate-Environment for Temperate East Asia, Kaifeng, Henan, China

⁵ College of Life Sciences, Henan University, Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Kaifeng, Henan, China

Corresponding Author: Fushun Hao

Email address: haofsh@henu.edu.cn

Calcineurin B-like (CBL) proteins, as calcium sensors, play pivotal roles in plant responses to diverse abiotic stresses and in growth and development through interacting with CBL-interacting protein kinases (CIPKs). However, knowledge about CBLs functioning in upland cotton is scarce at present. Here, we conducted a genome-wide survey and identified 13, 13 and 22 CBL genes in the progenitor diploid *G. boreum* and *G. raimondii*, and their cultivated allotetraploid *G. hirsutum*, respectively. Analysis of chromosomal location, physical properties, conserved domain and phylogeny indicated rather conserved nature of CBLs among the three cotton species. Moreover, cotton CBLs have closer genetic evolutionary relationship with cocoa than with other plants. Most CBL genes underwent evolution under purifying selection in cotton. Additionally, nearly all cotton CBL genes were expressed in the root, stem, leaf, flower and fiber. Many *CBLs* were preferentially expressed in the flower while several *CBLs* were mainly expressed in roots. Expression patterns of GhCBL genes in response to potassium deficiency were also studied. Most GhCBLs were moderately upregulated in roots after treatments with low-potassium stress. Besides, yeast two-hybrid experiments indicated that GhCBL1-2, GhCBL1-3, GhCBL4-4, GhCBL8, GhCBL9 and GhCBL10-3 interacted with GhCIPK23, respectively. Our results provided a comprehensive view of the *CBLs* and valuable information for cotton CBLs, which will help researchers to further investigate the roles and functional mechanisms of the CBLs in cotton.

1 **Title page**

2 **Title:**

3 **Genome-wide identification of CBL family and expression analysis of *CBLs* in**
4 **response to potassium deficiency in cotton**

5 **Authors:**

6 **Tingting Lu^{1,2*}, Gaofeng Zhang^{1*}, Lirong Sun¹, Ji Wang¹ and Fu-Shun Hao¹**

7 **¹State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress**
8 **Biology, College of Life Sciences, Henan University, Kaifeng, China**

9 **²Henan University of Animal Husbandry and Economy, Zhengzhou, China**

10 *** These authors **contribute** equally to this work**

11 **Corresponding author**

12 **Fu-Shun Hao, haofsh@henu.edu.cn**

13 **Genome-wide identification of CBL family and expression analysis of *CBLs* in
14 response to potassium deficiency in cotton**

15 **Tingting Lu^{1,2*}, Gaofeng Zhang^{1*}, Lirong Sun¹, Ji Wang¹ and Fu-Shun Hao¹**

16 **1 State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant**

17 **Stress Biology, College of Life Sciences, Henan University, Kaifeng, China**

18 **2 Henan University of Animal Husbandry and Economy, Zhengzhou, China**

19 **ABSTRACT**

20 Calcineurin B-like (CBL) proteins, as calcium sensors, play pivotal roles in plant
21 responses to diverse abiotic stresses and in growth and development through
22 interacting with CBL-interacting protein kinases (CIPKs). However, knowledge about
23 CBLs functioning in upland cotton is scarce at present. Here, we conducted a
24 genome-wide survey and identified 13, 13 and 22 CBL genes in the progenitor diploid
25 *G. arboreum* and *G. raimondii*, and their cultivated allotetraploid *G. hirsutum*,
26 respectively. Analysis of chromosomal location, physical properties, conserved
27 domain and phylogeny indicated rather conserved nature of CBLs among the three
28 cotton species. Moreover, cotton CBLs have closer genetic evolutionary relationship
29 with cocoa than with other plants. Most CBL genes underwent evolution under
30 purifying selection in cotton. Additionally, nearly all cotton CBL genes were
31 expressed in the root, stem, leaf, flower and fiber. Many *CBLs* were preferentially
32 expressed in the flower while several *CBLs* were mainly expressed in roots.
33 Expression patterns of GhCBL genes in response to potassium deficiency were also
34 studied. Most *GhCBLs* were moderately upregulated in roots after treatments with
35 low-potassium stress. Besides, yeast two-hybrid experiments indicated that
36 GhCBL1-2, GhCBL1-3, GhCBL4-4, GhCBL8, GhCBL9 and GhCBL10-3 interacted
37 with GhCIPK23, respectively. Our results provided a comprehensive view of the
38 *CBLs* and valuable information for cotton CBLs, which will help researchers to
39 further investigate the roles and functional mechanisms of the CBLs in cotton.

40 **Keywords** Cotton; calcineurin B-like proteins (CBLs); gene family; phylogeny; gene

41 expression

42 INTRODUCTION

43 Calcium ion (Ca^{2+}) is a ubiquitous secondary message in plants. It plays pivotal roles
44 in mediating and regulating many fundamental growth and developmental processes
45 and in response to various environmental stimuli (Luan, 2009; Kudla, Batistić &
46 Hashimoto, 2010; Sarwat et al., 2013). The Ca^{2+} signals are primarily perceived by
47 some Ca^{2+} sensors including Ca^{2+} dependent protein kinases, calmodulins and
48 calcineurin B-like proteins (CBLs), and then are transmitted by these sensors to
49 downstream targets to initiate diverse cellular responses (Luan, 2009; Kudla, Batistić
50 & Hashimoto, 2010; Sarwat et al., 2013).

51 CBLs are a kind of proteins sharing sequence similarity with the B subunit of
52 calcineurin B in yeast and neuronal calcium sensors in animals (Kudla et al., 1999).
53 Each CBL has at least three EF domains and Ca^{2+} -binding sites (Mohanta et al., 2015;
54 Mao et al., 2016). CBLs have been addressed to relay Ca^{2+} signals through interacting
55 with and activating the CBL-interacting protein kinases (CIPKs). Moreover,
56 CBL-CIPK has been demonstrated to serve as an essential signaling network
57 regulating plant responses to multiple abiotic stresses such as salinity, K^+ deficiency,
58 excess of Mg^{2+} and drought (Sanyal, Pandey & Pandey, 2015; Thoday-Kennedy et al.,
59 2015; Mao et al., 2016). It also modulates growth and development, absorption and/or
60 transport of nitrate, ammonium and iron, sustaining of H^+ homeostasis, and
61 transduction of reactive oxygen species signals in plants (Sanyal, Pandey & Pandey,
62 2015; Thoday-Kennedy et al., 2015; Mao et al., 2016).

63 In *Arabidopsis*, 10 genes (*CBL1-10*) encoding CBL proteins have been found
64 (Kolukisaoglu et al., 2004). *CBL1* and/or *CBL9* were reported to positively regulate
65 the uptake and/or transport of K^+ , NO_3^- , NH_4^+ , aluminum and iron, and the promotion
66 of stomatal opening (Li et al., 2006; Xu et al., 2006; Ho et al., 2009; Mao et al., 2016;
67 Tian et al., 2016; Ligaba-Oseña et al., 2017; Straub, Ludewig & Neuhäuser, 2017).
68 CBL1 and CBL9 also affect abscisic acid (ABA)-induced stomatal closure (Pandey et

69 al., 2004; Cheong et al., 2007), and ROS signaling (Drerup et al., 2013). *CBL2* plays a
70 negative role in the activation of plasma membrane (PM) H⁺-ATPase (Fuglsang et al.,
71 2007). Moreover, *CBL2* and *CBL3* are cooperatively implicated in sequestering Mg²⁺
72 and modulation of pollen germination and tube growth (Steinhorst et al., 2015; Tang
73 et al., 2015). *CBL3* are also engaged in K⁺ distribution and translocation (Liu et al.,
74 2013). *CBL4* was proved to be a crucial regulator for excluding Na⁺ and translocation
75 of AKT2 (*Arabidopsis* K⁺ transporter 2) from endoplasmic reticulum to PM (Held et
76 al., 2011). *CBL10* is involved in enhancing salt tolerance, stimulating K⁺ absorption,
77 and modulating GTPase activity (Kim et al., 2007; Ren et al., 2013; Cho et al., 2016).
78 In cotton, *GhCBL2* and *GhCBL3* appear to modulate fiber elongation (Gao et al.,
79 2008). Besides, many *CBLs* in other plant species also play important parts in
80 regulating the responses to various abiotic stress as well as growth and development
81 (Li et al., 2014a; Thoday-Kennedy et al., 2015).

82 In recent years, multiple CBL gene families have been identified at genome-wide
83 levels in rice, maize, wheat and other plants (Kolukisaoglu et al., 2004; Zhang et al.,
84 2014; Sun et al., 2015; Li et al., 2016; Zhang et al., 2016). Some conserved domains
85 such as EF-hands, myristoylation and palmitoylation sites were discovered in CBLs
86 (Kolukisaoglu et al., 2004; Mohanta et al., 2015). The expression patterns of many
87 *CBL* genes were also investigated in different tissues and in response to various
88 abiotic stresses in plants (Mohanta et al., 2015; Zhang et al., 2016). These findings lay
89 the foundation for people to further explore the functional mechanisms of CBLs in
90 plants. However, to date, knowledge about genomics and evolutionary information of
91 CBLs in upland cotton is limited.

92 Cotton is an essential fiber crop worldwide. It supplies lint for the textile industry.
93 However, cotton growth and development are severely threatened by diverse abiotic
94 stresses such as drought, salinity and potassium starvation (Allen, 2000). Therefore,
95 enhancing stress tolerance of cotton cultivars is one of most important strategies for us
96 to improve their productivity and quality. Potassium is a vital macronutrient for plants,
97 especially for cotton. Potassium shortage in soil seriously affects the yield and quality
98 of cotton (Oosterhuis et al., 2013). Moreover, it has been demonstrated that K⁺ uptake

99 is controlled by CBLs through interacting with CIPK23 in *Arabidopsis* and rice under
100 potassium deficiency (Li et al., 2014a; Mao et al., 2016). Accordingly, it needs
101 urgently to determine which and how CBLs modulate K⁺ absorption in cotton. In this
102 report, genome-wide and comprehensive analyses of the CBL family in *G. arboreum*,
103 *G. Raimondii* and *G. Hirsutum* were conducted. The expression patterns of *CBLs* in
104 tissues and in response to potassium deficiency were monitored. These data will
105 provide a basis for further investigating the functions of CBLs in cotton in the future.

106 MATERIALS AND METHODS

107 Identification of CBL family in cotton

108 The protein sequences of 10 *Arabidopsis* CBLs were applied to search the sequence
109 databases of *G. arboreum* (BGI-CGB v2.0 assembly genome), *G. Raimondii* (JGI
110 assembly v2.0 data.) and *G. Hirsutum* (NAU-NBI v1.1 assembly genome)
111 (www.cottongen.org), respectively. The BLAST program with default parameters
112 (E-value < e⁻¹⁰) was used. The full-length amino acid sequences of CBL proteins were
113 aligned using ClustalW software through pairwise and multiple alignment with
114 default parameters. The cotton CBL domains were identified by Pfam and HMMER
115 software. Genes with questionable CBL annotations (i.e. having a typical CBL
116 domain but low E-value or low coverage of a domain) were manually reanalyzed.

117 Analysis of CBLs family

118 The properties of CBL proteins were analyzed using online tools ExPaSy
119 (<http://web.expasy.org/protparam/>). The subcellular localizations of all cotton CBLs
120 were examined according to the information from the website
<http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/>. The locations of cotton CBLs in
121 chromosomes were calculated by MapInspect software. Structures of the CBLs were
122 determined by GSDS (<http://gsds.cbi.pku.edu.cn/>). The conserved domains in CBLs
123 were affirmed by SMART (smart.embl-heidelberg.de). The motifs in cotton CBLs
124 were analyzed by MEME (meme-suite.org/tools/meme). The nucleotide substitution
125 parameter Ka (non-synonymous) and Ks (synonymous) values data were calculated
126

127 by PAML program. The tandem duplications in the gene family were measured by
128 MCscanx soft.

129 **Phylogenetic analysis of CBLs**

130 The databases were downloaded from the websites for various plant species including
131 *Arabidopsis thaliana* (<http://www.arabidopsis.org/>), *Oryza sativa*
132 (<http://rapdb.dna.affrc.go.jp>), *Vitis vinifera*
133 (<http://www.genoscope.cns.fr/spip/Vitis-vinifera-e.html>), *Populus trichocarpa*
134 (<http://www.phytozome.net/poplar>), *Glycine max*
135 (<http://www.phytozome.net/soybean>), *Theobroma cacao* (<http://cocoagendb.cirad.fr>),
136 *Carica papaya* (<http://asgpb.mhpcc.hawaii.edu>) and castor bean
137 (<http://castorbean.jcvi.org>). Phylogenetic trees were generated based on the alignment
138 results using the neighbor joining method (Neighbor-Joining, NJ) and 1,000 bootstrap
139 trials with the Clustal W tool and MEGA 5.0 software
140 (<http://www.megasoftware.net/>).

141 **Expression analysis of *GhCBL* genes in tissues and in response to potassium
142 deficiency**

143 For measuring the expression of *GhCBLs* in tissues, roots, stems and leaves were
144 collected from 20-day-old *Gossypium hirsutum* TM-1 plants normally grown in soil.

145 Flowers were isolated in the morning at the first day of anthesis. The fibers were
146 obtained from the ovules. For monitoring the expression of *GhCBLs* in responding to
147 potassium deprivation, cotton plants grew in clean small pebbles (watered by liquid
148 1/2 MS medium) in a growth chamber (day/night temperature cycle of 28°C/26°C, 14
149 h light/10 h dark, and about 50% relative humidity) for 3 weeks. Then, the plants were
150 watered with K⁺-lacked liquid 1/2 MS medium (KNO₃ was replaced by NH₄NO₃ and
151 KH₂PO₄ was replaced by NH₄H₂PO₄) for 0 h, 6 h, 2 d and 5 d, respectively. The
152 cotton roots were collected, immediately frozen in liquid nitrogen and stored at -70°C.
153 Total RNA of samples was extracted using RNA Pure Plant Kit's protocol (TIANGEN
154 Company). The purity of RNA was examined using a Nanodrop2000 nucleic acid

155 analyzer. The A260/280 ratio for each RNA sample was about 2.0. Then, total cDNA
156 was synthesized using M-MLV reserve transcriptase synthesis system (Promega,
157 USA).

158 Quantitative real-time RT-PCR (qRT-PCR) experiments were performed using the
159 cDNA, SYBR Green Master mix, the specific primers of *GhCBL* genes (Table 1), and
160 an ABI 7500 real-time PCR system. *GhUBQ7* was used as the internal control. At
161 least three biological replicates were carried out.

162 Table 1 Gene primers used for quantitative real-time RT-PCR experiments

Genes	AGI number	Forward primers (5'-3')	Reverse primers (5'-3')
<i>GhUBQ7</i>	Gh_A11G0969	GAAGGCATTCCACCTGA CCAAC	CTTGACCTTCTTCTTCTTG TGCTTG
<i>GhCBL1-1</i>	Gh_A11G0257	GAGCGTAACGAGGTCAA GCAAA	CTTCCCGTCCTGATTAATG TCC
<i>GhCBL1-2</i>	Gh_D11G0276	TTTGTTCGAGCACTCAA TGT	TTGCCTCAATCGTTCATC AG
<i>GhCBL1-3</i>	Gh_A03G0043	GACATTCTTGGAAAGCCG ATA	CTGAGGTATGGGAGGGTC AT
<i>GhCBL1-4</i>	Gh_D09G1875	AGAGTAATGACCCTCCC ATACCTAA	CGAGCGAGTATTCTCCGA CAA
<i>GhCBL1-5</i>	Gh_A09G1766	GGATGCCGACACTAACCC AGG	TCCAACAAACGTAGCGGCC
<i>GhCBL3-1</i>	Gh_A01G0740	AGTTTGCTCGTGCTCTCT CTGT	ATCATCTGAAAGGTTCATG CCA
<i>GhCBL3-2</i>	Gh_D01G0760	GCAAGAGAGACCCTTT TAGTG	AATCTTATCGTCAATGGGC G
<i>GhCBL3-3</i>	Gh_A13G1099	GGGCTGATTAACAAGGA GGAGT	ACAGAAAGAGCACGAGC AAACT
<i>GhCBL3-4</i>	Gh_D13G1364	ATGGGCTGATTAACAAG GAGGAG	GACAGAAAGAGCACGAG CGAAC
<i>GhCBL3-5</i>	Gh_A04G0051	GCGGTGATAGATGACGG ACT	GACAGAGAGAGCACGAG CAA
<i>GhCBL3-6</i>	Gh_D05G3682	TACACGCTTCCGACCCCT ATT	ATCAATGAGCCCGTCGTA AC
<i>GhCBL4-1</i>	Gh_A11G0126	ACGGCTAGTGAAGTACA ATCCC	CGAACAAATCAAAACCC TGTC
<i>GhCBL4-2</i>	Gh_D11G0140	TTCTTGCTGCTGAAACAC CT	CGAACAAATCAAAACCC TG
<i>GhCBL4-3</i>	Gh_A12G2144	TAAGCGTCTTCATCCCA AC	TGATTCACCAAGCAGAGC CA
<i>GhCBL4-4</i>	Gh_A09G1696	AACTTAGACACAAGGCT GGGTATG	GAGGTTCTGCTTATTGCTG TTTT
<i>GhCBL4-5</i>	Gh_D12G2320	CCTGAGGAGGTCAAGGA GATG	AAATTGGGTTGCGAGCTA CAA

<i>GhCBL9</i>	Gh_D08G1764	GACATTCTGGATGCCG ACA	ACGCAGCAACCTCGTCTA CT
<i>GhCBL10-1</i>	Gh_A06G0800	AGTCTCACAGTGGCGGC A	TTCATTGGCAAGACGGGT AA
<i>GhCBL10-2</i>	Gh_D06G0922	GTCGCGAGAAATGCCGT TAT	ATTCTCGCCGTATGGAGT TTG
<i>GhCBL10-3</i>	Gh_A05G0335	CTGAAATGAATTGTCC GATGAC	ACTGGAAATAGTAGTTCA TCACGGA
<i>GhCBL10-4</i>	Gh_D05G0440	TCTGGAATGAATTGTC GGATG	CTGGAAATAGGAGTTCTT CACGG

163 **Yeast two-hybrid (Y2H) analysis**

164 The full-length CDS sequences of *GhCBLs* and *CIPK23* genes were amplified,
 165 sequencing and cloned into pGBKT7 and pGADT7 vectors, respectively, using
 166 primers listed in Table 2. The plasmids were then transformed into yeast strain AH109
 167 according to the method described in Yeast Protocols Handbook (Clontech).
 168 cotransformants were plated on non-selective SD/-Leu/-Trp (synthetic dropout
 169 medium without Leu and Trp) solid medium and selective SD/-Leu/-Trp/-His/-Ade
 170 solid medium. Serial 1:10 dilutions were made in water, and 2 µl of the dilution was
 171 dropped to generate one spot. Plates were incubated at 30 °C for 3-4 d. X- α -Gal
 172 staining assay was carried out following the instruction

173 Table 2 Gene primers used for yeast two-hybrid experiments

Genes	AGI number	Forward primers (5'-3')	Reverse primers (5'-3')
<i>GhCBL1-2(BD)</i>	Gh_D11G0276	CCGGAATTCCATGGGCTG CTTTCAATCT	CGCGGATCCTGTGGCAAC CTCATCA
<i>GhCBL1-3(BD)</i>	Gh_A03G0043	CCGGAATTCCATGGGTTG CTTCATTCT	CGCGGATCCAGTGGCAAC TTCATCTAC
<i>GhCBL1-4(BD)</i>	Gh_D09G1875	CGCGGATCCATGGGCTG CTTGCAATGTAAA	GCACTGCAGTATGCCATT CGCCGAGCGAGT
<i>GhCBL1-5(BD)</i>	Gh_A09G1766	ATAGGATCCATGGGCTG CTTGCAATGTA	GCACTGCAGGTATAACAT CGGTATTATGTACCT
<i>GhCBL3-2(BD)</i>	Gh_D01G0760	CGCGGATCCATGTTGCA GTGCATAGAC	GCACTGCAGTGTATCATC AACTTGAGAGTGGAAAA
<i>GhCBL3-4(BD)</i>	Gh_D13G1364	CGCGGATCCATGGGAAT TTGTTGTTT	GCACTGCAGTTGCCACC CATATTCAACT
<i>GhCBL4-1(BD)</i>	Gh_A11G0126	CGCGGATCCATGAAATG GTGTTTCAAAC	GCACTGCAGATCTCCATT GACGGAGACGCT
<i>GhCBL4-3(BD)</i>	Gh_A12G2144	CGCGGATCCATGGGTTG TTTTGCTTG	GCACTGCAGCTTATTCCC AACGATTCAGCT
<i>GhCBL4-4(BD)</i>	Gh_A09G1696	CGCGGATCCATGGGCTG	GCACTGCAGGTTTTCTC

		CTTTGCTTG	AATTCTCACTGGT
<i>GhCBL8(BD)</i>	Gh_D09G1801	CGCGGATCCATGGCTG CTTTGCTTGAAGAA	GCACTGCAGATTCTCAC TGGTGCTGCAAATCTGA GAC
<i>GhCBL9(BD)</i>	Gh_D08G1764	CCGGAATTCATGGCTG CTTCATTCT	CGCGGATCCCGCAGCAAC CTCGTCTA
<i>GhCBL10-3(BD)</i>	Gh_A05G0335	CGCGGATCCATGGATTG AACTAGCAAAACC	GCACTGCAGCCGGAGATA GGAAAGGGCAA
<i>GhCIPK23(AD)</i>	Gh_A06G1219	CCGGAATTCATGGCGAA TCGCACTAGT	CGCGGATCCACCATCCTT TTCTTCCAC

174 **RESULTS**175 **Genome-wide identification of the CBL family in two progenitor diploid and
176 their tetraploid cotton species**

177 The CBL genes in cotton were identified using the homologous alignment method
178 based on the whole genome data of the sequenced *Gossypium* species including
179 diploid *G. Arboreum*, *G. Raimondii* and their tetraploid *G. Hirsutum* as well as of the
180 *Arabidopsis*. A total of 13, 13, and 22 CBL genes were respectively detected in A
181 genome (*G. Arboreum*), D genome (*G. raimondii*) and A₁D₂ genome (*Gossypium*
182 *hirsutum*) using 10 *Arabidopsis* CBL gene coding and protein sequences as queries
183 (Table 3). Further, the CBL candidate genes in *Gossypium* were confirmed by domain
184 analysis programs of Pfam and SMART. The cotton CBL family members were
185 named according to their orthologous similarity to the 10 *Arabidopsis* CBL proteins
186 (Mohanta et al., 2015).

187 Most cotton CBLs had very similar physical properties (Table 3). The open
188 reading frame (ORF) lengths of the CBL genes in *Gossypium* ranged from 570 bp to
189 882 bp except that of *GhCBL3-6*, whose ORF length was 3981 bp. The GaCBL and
190 GrCBL proteins contained 199-279 and 209-253 amino acids (AA), respectively,
191 while GhCBLs were composed of 189-293 AA except *GhCBL3-6*, which consisted of
192 1326 AA. The molecular weights (MWs) of GaCBLs varied from 23.25 kDa
193 (GaCBL10-1) to 32.43 kDa (GaCBL10-2), and of GrCBLs ranged from 23.25 kDa
194 (GrCBL3-3) to 29.26 kDa (GrCBL10-1). The sizes of GhCBLs were 21.64 kDa
195 (GhCBL3-4) to 33.56 kDa (GhCBL10-1) with an exception of *GhCBL3-6* (150.21

196 kDa). The theoretical isoelectric point (pI) is small for the overwhelming majority of
197 CBLs, ranging from 4.65 (GaCBL9) to 5.64 (GhCBL4-5). By contrast, PI of
198 GhCBL3-6 was 8.05 (Table 3).

199 Putative subcellular localizations of the cotton CBL proteins were also analyzed.

200 It is predicted that all of CBLs proteins were located in cell membrane except that
201 GhCBL3-6 was in the nucleus (Table 3). The quite different characteristics of
202 GhCBL3-6 from other members suggest that GhCBL3-6 likely play a special role in
203 cotton.

204 Table 3 The CBL family genes in cotton

Gene name	Gene ID	PI	MW (kDa)	Hydrophilicity	Predicted subcellular localization	amino acid residues	coding sequence
GaCBL1-1	Cotton_A_16036	4.74	24.33	-0.163	Cell membrane	213	642
GaCBL1-2	Cotton_A_16034	4.74	24.33	-0.163	Cell membrane	213	642
GaCBL1-3	Cotton_A_16590	5.06	25.39	-0.216	Cell membrane	221	666
GaCBL1-4	Cotton_A_09151	4.72	24.39	-0.142	Cell membrane	213	642
GaCBL2	Cotton_A_07469	4.78	25.94	-0.2	Cell membrane	226	681
GaCBL3-1	Cotton_A_06492	4.77	25.98	-0.189	Cell membrane	226	681
GaCBL3-2	Cotton_A_02147	5.08	27.68	-0.314	Cell membrane	240	723
GaCBL4-1	Cotton_A_02388	4.81	24.88	-0.13	Cell membrane	220	663
GaCBL4-2	Cotton_A_13237	4.97	24.47	-0.173	Cell membrane	215	648
GaCBL8	Cotton_A_08153	4.89	23.48	-0.134	Cell membrane	205	618
GaCBL9	Cotton_A_13238	4.65	24.22	-0.141	Cell membrane	210	633
GaCBL10-1	Cotton_A_14000	4.55	23.25	-0.175	Cell membrane	199	600
GaCBL10-2	Cotton_A_34841	4.82	32.43	-0.028	Cell membrane	279	840
GrCBL1-1	Gorai.007G030300	4.72	24.38	-0.143	Cell membrane	213	642
GrCBL1-2	Gorai.003G178700	4.71	24.45	0.075	Cell membrane	214	645
GrCBL1-3	Gorai.004G191400	4.67	23.86	0.016	Cell membrane	209	630
GrCBL1-4D	Gorai.006G214700	4.99	25.39	-0.226	Cell membrane	221	666
GrCBL3-1	Gorai.013G150400	4.79	25.96	-0.208	Cell membrane	226	681
GrCBL3-2	Gorai.002G102900	4.77	25.98	-0.189	Cell membrane	226	681
GrCBL3-3	Gorai.009G450400	4.84	23.25	-0.21	Cell membrane	226	681
GrCBL4-1	Gorai.007G015400	4.78	24.91	-0.193	Cell membrane	233	702
GrCBL4-2	Gorai.006G207100	4.98	25.26	-0.161	Cell membrane	221	666
GrCBL4-3	Gorai.008G255900	5.11	24.02	-0.161	Cell membrane	211	636
GrCBL9	Gorai.008G255800	4.66	24.58	-0.139	Cell membrane	213	642
GrCBL10-1	Gorai.010G101400	4.74	29.26	-0.096	Cell membrane	252	759

GrCBL10-2	Gorai.009G045600	4.83	29.23	-0.095	Cell membrane	253	762
GhCBL1-1	Gh_A11G0257	4.72	24.44	-0.148	Cell membrane	213	642
GhCBL1-2	Gh_D11G0276	4.79	24.38	-0.145	Cell membrane	213	642
GhCBL1-3	Gh_A03G0043	4.98	22.76	-0.163	Cell membrane	199	600
GhCBL1-4	Gh_D09G1875	5.06	25.69	-0.194	Cell membrane	224	675
GhCBL1-5	Gh_A09G1766	5.51	23.23	-0.165	Cell membrane	200	603
GhCBL3-1	Gh_A01G0740	4.77	25.98	-0.189	Cell membrane	226	681
GhCBL3-2	Gh_D01G0760	4.77	25.99	-0.189	Cell membrane	226	681
GhCBL3-3	Gh_A13G1099	4.84	23.25	-0.21	Cell membrane	202	609
GhCBL3-4	Gh_D13G1364	4.98	21.64	-0.205	Cell membrane	189	570
GhCBL3-5	Gh_A04G0051	5.14	21.76	-0.274	Cell membrane	189	570
GhCBL3-6	Gh_D05G3682	8.05	150.21	-0.284	Nucleus	1326	3981
GhCBL4-1	Gh_A11G0126	4.77	23.01	-0.059	Cell membrane	201	606
GhCBL4-2	Gh_D11G0140	4.82	24.97	-0.185	Cell membrane	220	663
GhCBL4-3	Gh_A12G2144	4.97	24.5	-0.175	Cell membrane	215	648
GhCBL4-4	Gh_A09G1696	5.27	28.4	-0.184	Cell membrane	248	747
GhCBL4-5	Gh_D12G2320	5.64	25.06	0.023	Cell membrane	218	657
GhCBL8	Gh_D09G1801	4.85	24.74	-0.177	Cell membrane	217	654
GhCBL9	Gh_D08G1764	4.74	23.8	-0.032	Cell membrane	209	630
GhCBL10-1	Gh_A06G0800	5.18	33.56	-0.143	Cell membrane	293	882
GhCBL10-2	Gh_D06G0922	4.95	30.41	-0.159	Cell membrane	265	798
GhCBL10-3	Gh_A05G0335	5.16	30.48	-0.114	Cell membrane	262	789
GhCBL10-4	Gh_D05G0440	5.01	30.25	-0.08	Cell membrane	262	789

205 **Distribution of cotton CBL family members in the whole genome**

206 Chromosomal distributions of the cotton *CBL* genes were examined. In general., *CBL*
207 members were unevenly distributed among the *Gossypium* chromosomes. Thirteen
208 *GaCBLs* were distributed on 7 chromosomes. Among them, three *GaCBLs* were
209 located on each of Gachr07 and Gachr11 chromosomes. Two *GaCBLs* harbored each
210 of Gachr06 and Gachr13, and one *GaCBL* was on Gachr01, Gachr08 and Gachr09,
211 respectively (Fig.1). Thirteen *GrCBL* genes were identified on 9 chromosomes. Each
212 of the four chromosomes Grchr06, Grchr07, Grchr08 and Grchr09 owned 2 genes,
213 and other chromosomes (Grchr02, Grchr03, Grchr04, Grchr10, Grchr13) individually
214 contained 1 gene (Fig.1). Likewise, 22 *GhCBL* family members were mapped onto 17
215 chromosomes dispersedly. Each of the five chromosomes Ghchr09, Ghchr11,
216 Ghchr19, Ghchr21 and Ghchr23 had 2 members, and other chromosomes individually

217 carried one member (Fig.1). We observed the phenomena of two CBL genes jointing together in a chromosome. For instance, GaCBL4-2 and GaCBL9 were mapped
218 within 16.0 Mb in Gachr06, and GrCBL4-3 and GrCBL9 were mapped within 53.8
219 Mb in Grchr08. These findings suggest that tandem duplication play a role in
220 generating these genes during evolution.
221

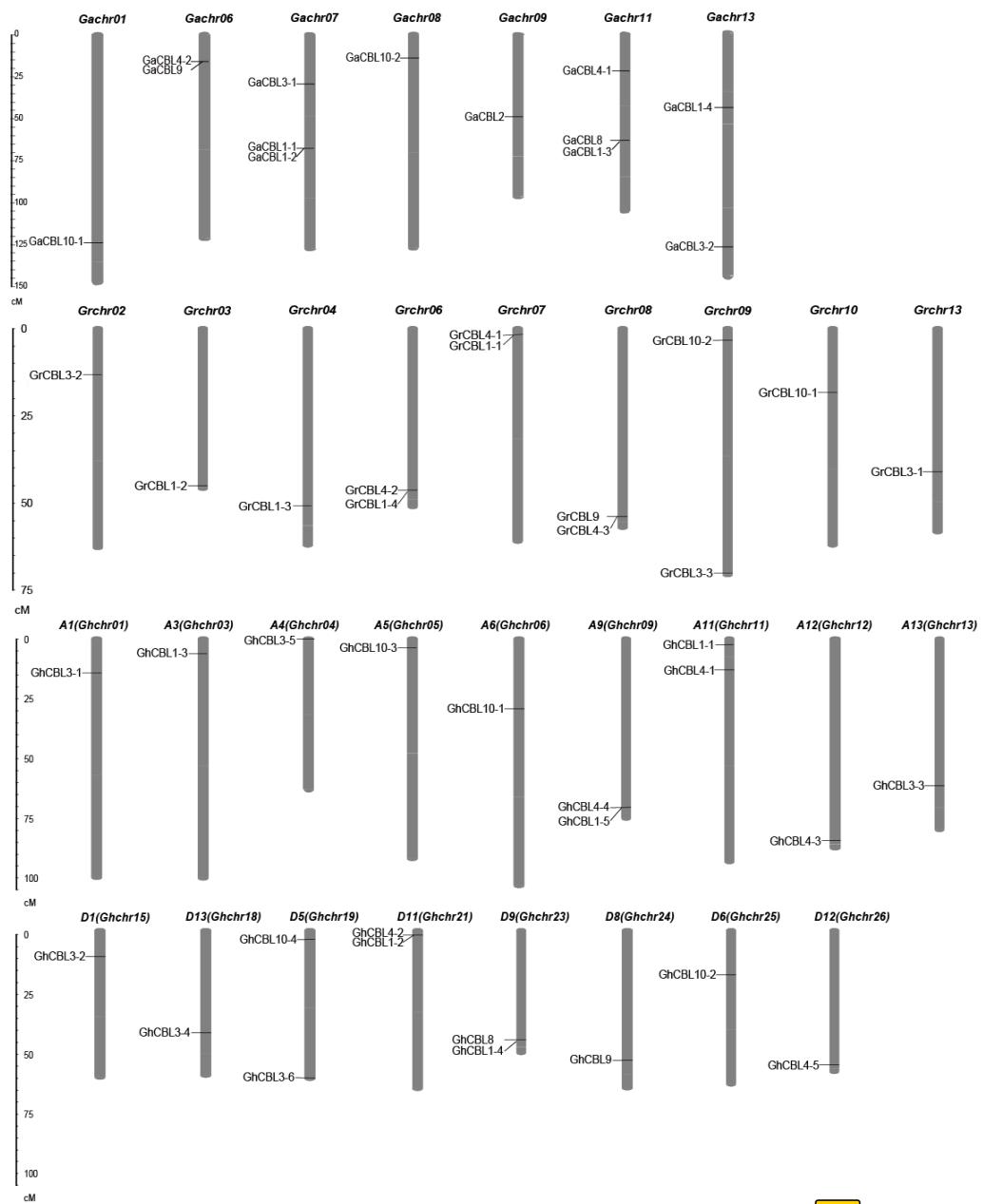


Fig.1 Distributions of the *CBL* family genes on chromosomes in cotton

GaCBLs are from *G. Arboreum*, *GrCBLs* are from *G. Raimondii* and *GhCBLs* are from *G. Hirsutum*.

222 **Phylogenetic analysis and structural properties of *CBL* genes in different cotton
223 species**

224 To determine the **evolutionary** relationship of the CBLs among *G. arboreum*, *G.*
225 *raimondii*, and *G. hirsutum*, the phylogenetic tree for the cotton CBLs was
226 constructed. The cotton CBLs can be classified into four families (I to IV) (Fig.2a).
227 Family I consisted of 12 CBLs (3 GaCBLs, 3 GrCBLs and 6 GhCBLs). The members
228 in family II were 8 CBLs (2 GaCBLs, 2 GrCBLs and 4 GhCBLs). Family III
229 contained 14 CBLs (4 GaCBLs, 4 GrCBLs and 6 GhCBLs). Family IV had 14 CBLs
230 (4 GaCBLs, 4 GrCBLs and 6 GhCBLs) (Fig.2a).

231 The structure of a protein is closely related to its functions in cells. We therefore
232 identified the intron-exon structures of *CBL* genes in *Gossypium* by mapping the
233 cDNA sequences onto their genomic sequences. Most of *GaCBLs* and *GrCBLs* owned
234 8 exons except that *GaCBL3-2*, *GrCBL10-1*, *GrCBL10-2* had nine and *GaCBL9*,
235 *GrCBL1-2* had seven. The majority of *GhCBLs* carried 7-11 exons, but *GhCBL4-4*
236 had 3 exons and *GhCBL3-6* had 22 exons (Fig. 2a).

237 The putative domains in the cotton CBL proteins were also investigated.
238 EF-hand motifs, which bind to Ca^{2+} ions to transfer calcium signals, were observed in
239 all cotton CBL members. Each CBL proteins had 3 EF-hand motifs except for
240 *GaCBL9*, which contained 2 such motifs (Fig. 2a). Furthermore, a conserved
241 myristoylation motif (MGCXXS/T) was detected in the N-terminal regions of 11
242 cotton CBL proteins. These proteins included 4 GaCBLs, 2 GrCBLs and 5 GhCBLs
243 (Fig. 3b, c). A conserved palmitoylation site with N-terminal Cys residue at third,
244 fourth, fifth or sixth position in AA sequence also existed in many cotton CBL
245 members. The two sites are important in the attachment of a protein to membrane
246 (Mohanta et al., 2015).

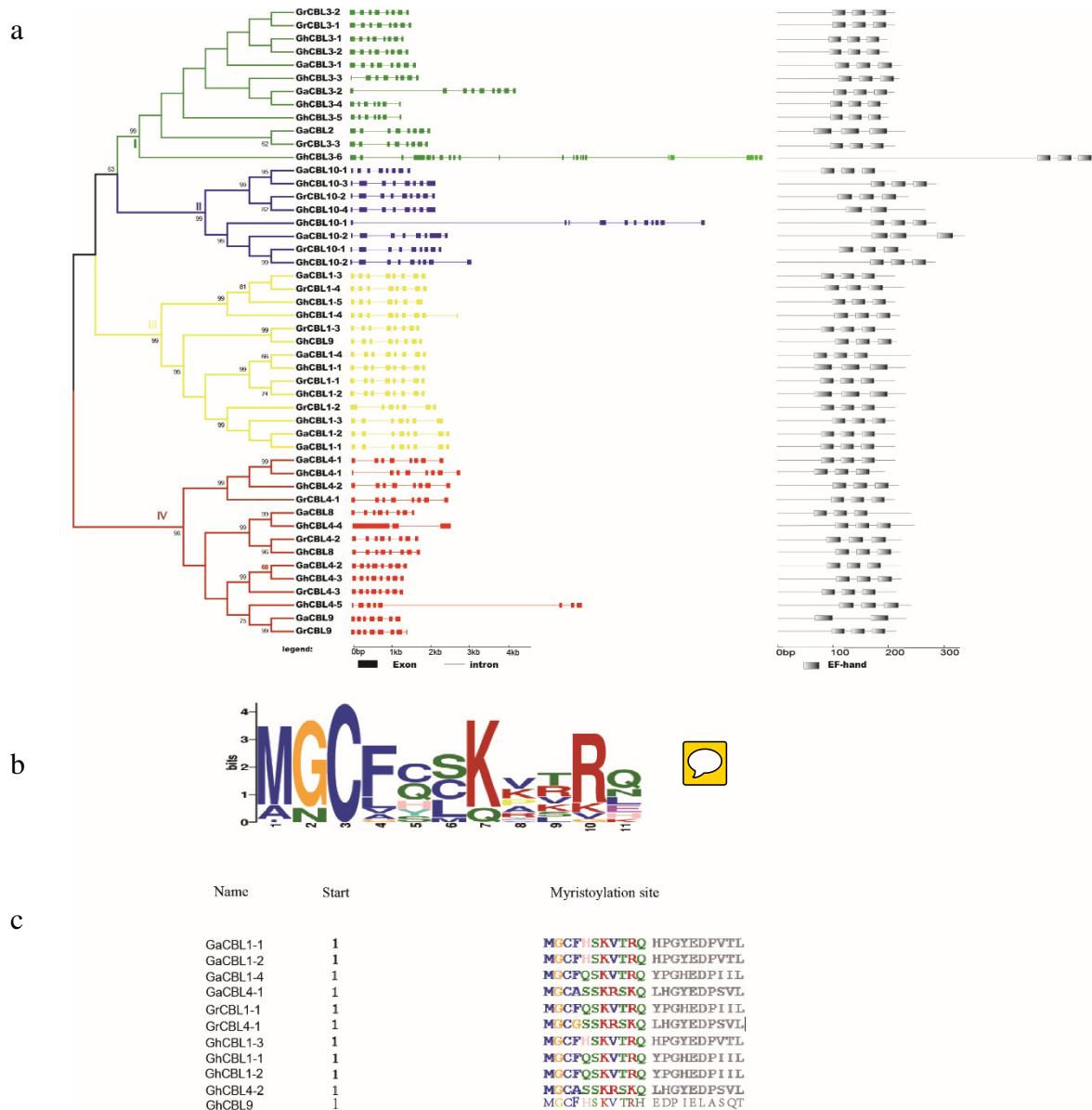


Fig. 2 Analysis of phylogenetic relationship, gene architecture and conserved domains of cotton CBLs

(a) The phylogenetic tree, exon-intron architecture and EF-hand domains of CBLs in *G. arboreum*, *G. Raimondii* and *G. hirsutum*. The four major subfamilies are numbered I to IV. The color boxes indicate exons, and the color lines indicate introns;

(b) The Logo of the myristoylation motif; (c) Multiple sequence containing the myristoylation motif in cotton CBLs.

247 Synteny analysis of cotton CBL genes

248 To better know the genetic origins and evolution of the tetraploid cotton species and
 249 the two diploid cotton species, we chose the most similar homologous gene pairs for

250 analysis. Collinear analysis results revealed that 10 homologous gene pairs existed
251 between *G. arboreum* and *G. hirsutum* (Fig. 3a). Moreover, 11 homologous gene pairs
252 were found between *G. raimondii* and *G. Hirsutum* (Fig. 3a). Using the same method,
253 7 homologous gene pairs were observed between *G. Arboreum* and *G. Raimondii*.
254 They distributed on 5 chromosomes in *G. Arboreum* and 5 chromosomes in *G.*
255 *Raimondii*, respectively (Fig. 3b). Moreover, 215 homologous gene pairs (both
256 orthology and paralogy) were found among the CBLs from the 3 cotton species of
257 cotton (Supplementary 1). These results imply that many cotton CBL genes may
258 evolve through segmental duplication.

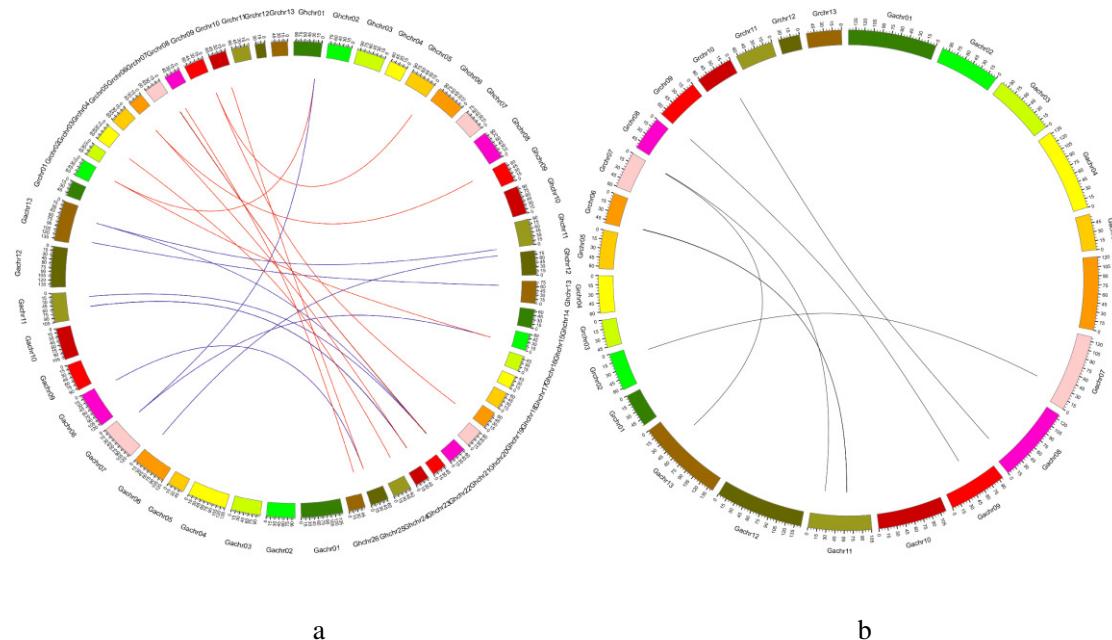


Fig. 3 Genome-wide synteny analysis of cotton CBL genes

(a) Synteny analysis between *G. hirsutum* and two diploid species *G. Arboreum* and *G. Raimondii*. Blue lines link gene pairs between *G. Arboreum* and *G. Hirsutum*, and red lines link gene pairs between *G. Raimondii* and *G. Hirsutum*; (b) Synteny analysis between *G. Arboreum* and *G. Raimondii*.

259 Analysis of Ka/Ks values of cotton CBLs

260 To better understand the divergence of the *CBL* genes after polyploidization, the value
261 Ka and Ks and their ratio (Ka/Ks) were evaluated for the homologous gene pairs
262 among *G. arboreum*, *G. raimondii* and *G. hirsutum* (Fig. 4). Results showed that the

263 Ka/Ks values among most of the homologous genes were less than 1, indicating they
264 evolved under the purifying selection effect. Only GhCBL10-2/GrCBL10-1 has a
265 Ka/Ks ratio more than 1, hinting that the gene pair may generate via the directional
266 selection.

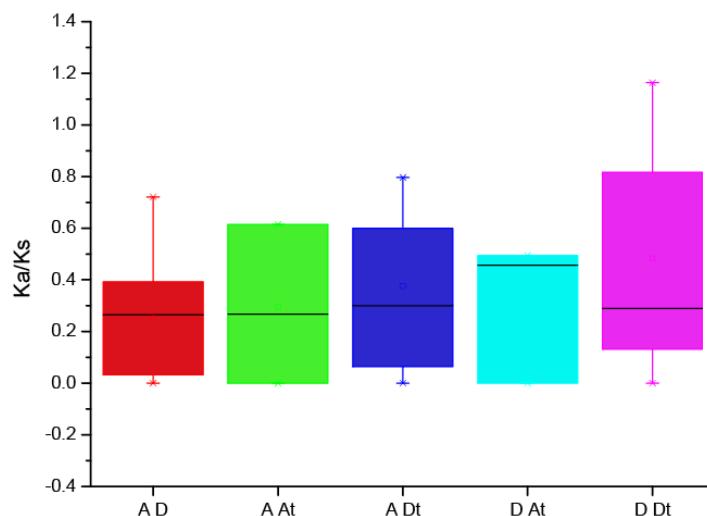


Fig 4. The Ka/Ks values of the homologous genes between the A genome, D genome and subgenomes of *G. Hirsutum* (A_tD_t)

267 **Phylogenetic relationship of CBLs in cotton and other plant species**

268 To gain insight into the evolutionary relationships among GaCBLs, GrCBLs, GhCBLs
269 and those of other plant species, we constructed a phylogenetic tree. Full-length
270 amino acid sequences of 126 predicted CBL proteins were obtained from *G.*
271 *arboreum*, *G. raimondii*, *G. Hirsutum*, *A. thaliana*, *C. papaya*, *G. max*, *V. vinifera*, *T.*
272 *cacao*, *P. trichocarpa*, *R. Communis* and *O. sativa*. Phylogenetic trees were generated
273 using the neighbor-joining method and MEGA 5.0 software. The CBLs family was
274 divided into thirteen subfamilies according to the topology of the phylogenetic tree
275 (Fig.5). As expected, the three cotton CBLs commonly clustered closely in a
276 subfamily. Most of them belonged to subfamily two, eight and thirteen. We found that
277 the CBL members from different dicotyledon species and rice always clustered in a
278 subfamily, indicating the CBLs emerged before the divergence from eudicots and
279 **monocots**. Moreover, the CBLs from cotton often clustered together with those from *T.*

280 Cacao (Fig.5). The results imply that cotton CBLs have closer relationship with those
281 from *T. Cacao* relative to other plants.

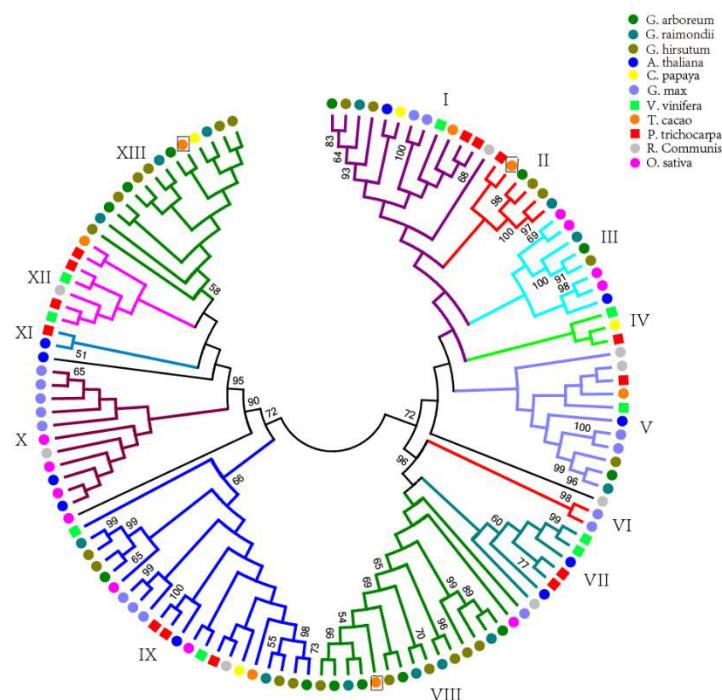


Fig. 5 Phylogenetic tree of CBLs in cotton and other plant species

The plants in the square frame indicated that the CBL genes have closer evolutionary relationship with cotton CBLs.

282 Annotation analysis of GhCBLs

283 Putative functions of GhCBLs were analyzed using KOG database. Only GhCBL3-6
284 was blasted out. It was predicted that GhCBL3-6 played roles in modulation of RNA
285 processing and modification, signal transduction, and coenzyme transport and
286 metabolism. Gene ontology (GO) database for these GhCBLs was also assessed. The
287 results showed that all of the 22 GhCBL members were capable of binding calcium
288 ion, like those of other plant species. These data indicate that GhCBLs and other
289 CBLs are of great importance in Ca^{2+} signal transduction in plants.

290 Expression analysis of *GhCBL* genes in tissues

291 The expression patterns of all the 22 *GhCBL* genes in tissues were monitored by
292 qRT-PCR. We found that most genes were highly expressed in flowers except that
293 *GhCBL4-3*, *GhCBL4-4*, and *GhCBL8* were dominantly expressed in roots. Moreover,
294 the transcripts of *GhCBL1-5*, *GhCBL1-1*, *GhCBL1-4* and *GhCBL9* were relatively

295 abundant in fiber, and those of *GhCBL4-3* were also numerous in flowers (Fig. 6).
296 These results suggest that *GhCBL4-3*, *GhCBL4-4* and *GhCBL8* may mainly function
297 in roots and other genes may chiefly act in flowers. *GhCBL1-1*, *GhCBL1-4*,
298 *GhCBL1-5* and *GhCBL9* probably play a part in fiber development in cotton.

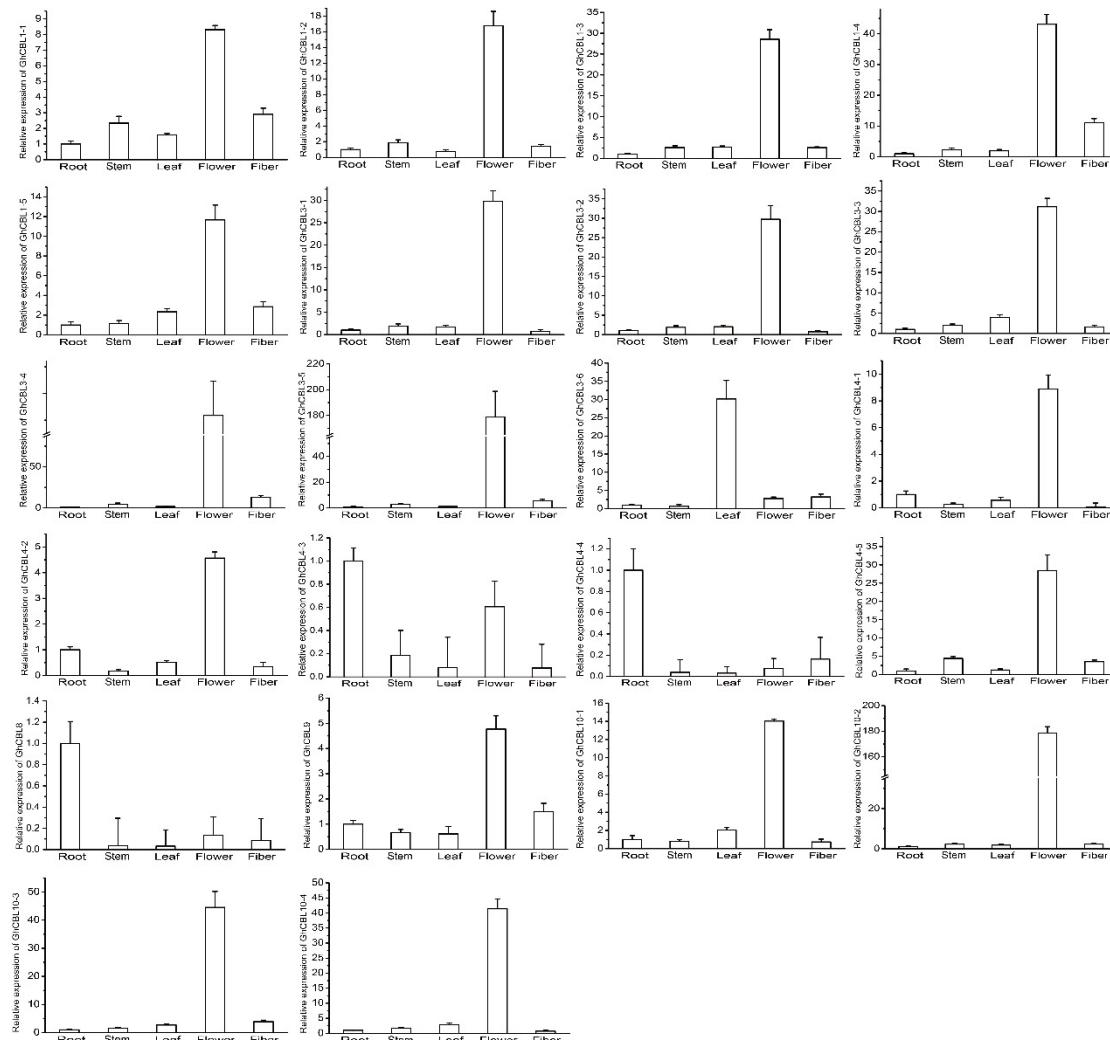


Fig. 6 Expression of 22 *GhCBL* genes in tissues of cotton

The relative expression of genes was calculated from 3 independent replicates. The expression value of a gene in roots was set as 1. The vertical bars represent the standard error.

299 **Expression patterns of *GhCBLs* in responding to potassium deficiency**

300 CBLs have been addressed to play key roles in response to K⁺ deprivation in
301 *Arabidopsis* and rice (Li et al., 2014a; Mao et al., 2016). Accordingly, we measured
302 the expression patterns of the 22 *GhCBL* genes in response to potassium deficiency.
303 As a whole, potassium deficiency moderately altered the expression levels of *GhCBL*

304 genes (Fig. 7). Under potassium deficiency, many genes were downregulated at 6 h,
305 but upregulated at 2 d and/or 5 d. These gene included *GhCBL1-1*, *GhCBL1-2*,
306 *GhCBL1-3*, *GhCBL1-5*, *GhCBL3-3*, *GhCBL3-4*, *GhCBL4-4*, *GhCBL10-1*,
307 *GhCBL10-3* and *GhCBL10-4*. The expression levels of *GhCBL3-6*, *GhCBL4-2*,
308 *GhCBL4-3*, *GhCBL8* and *GhCBL9* were decreased while those of *GhCBL1-4*,
309 *GhCBL3-5*, and *GhCBL10-2* were unchanged after shortage of potassium (Fig. 7).
310 These results suggest that a number of GhCBLs may play roles in response to
311 potassium starvation in cotton

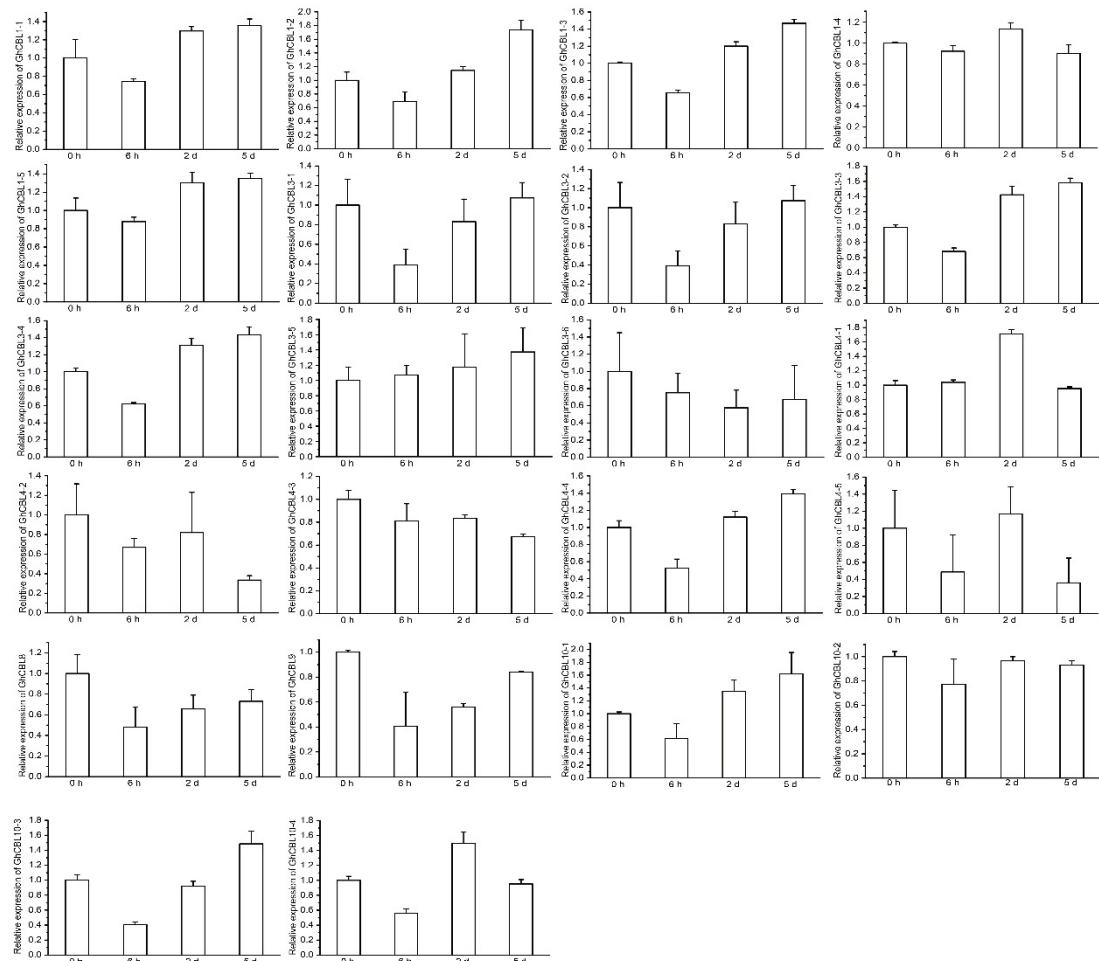


Fig. 7 Expression of 22 *GhCBL* genes under potassium deprivation

The relative expression of *GhCBLs* was examined under potassium deficiency for indicated period of time. The expression value of the gene at 0 h was set as 1. The vertical bars mean the standard error.

312 **Several GhCBLs can interact with GhCIPK23 *in vitro***

313 To examine whether GhCBLs interact with GhCIPK23, yeast two-hybrid experiments

314 were performed and total of 12 GhCBLs were measured. Among them, GhCBL1-2,
315 GhCBL1-3, GhCBL4-4, GhCBL8, GhCBL9 and GhCBL10-3 were observed to
316 interact with GhCIPK23. Furthermore, GhCBL1-2 and GhCBL9, the respective
317 homologues of Arabidopsis CBL1 and CBL9, displayed more strong interactive
318 signals with GhCIPK23 in yeast, suggesting that GhCBL1-2 and GhCBL9 may **direct**
319 regulate GhCIPK23 in cotton.

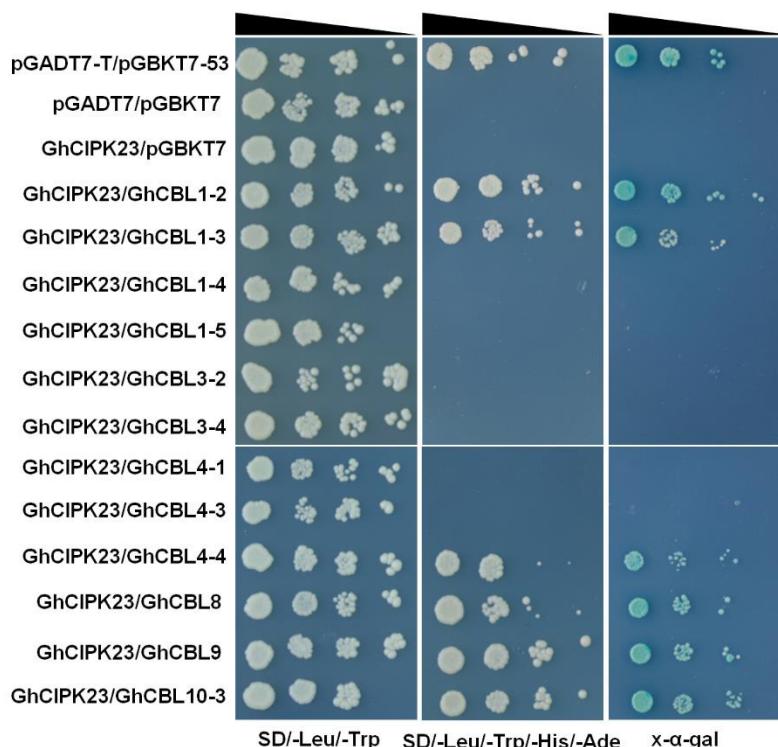


Fig. 8 Yeast two-hybrid analysis of interactions between GhCBLs and GhCIPK23

The yeast cells containing the indicated plasmids were grown on the non-selective SD/-Leu/-Trp solid medium and selective SD/-Leu/-Trp/-His/-Ade solid medium, followed by X- α -Gal staining. The reduced cell densities in the dilution series are shown by narrowing triangles. The first row represents a positive control, the 2th and 3th rows represent two negative controls.

320 DISCUSSION

321 In the present study, we identified 13, 13 and 22 *CBL* genes in *G. Arboreum*, *G.*
322 *Raimondii* and *G. Hirsutum* genomes, respectively (Table 3). Among the 22 *GhCBL*
323 genes, 11 and 11 were assigned to the A_t and D_t subgenome, respectively. They were
324 similar to the number of *CBLs* found in *G. Arboreum* and *G. Raimondii*, respectively.

325 We detected that 8 *GaCBLs* and 9 *GrCBLs* were homologous genes of *GhCBLs*.
326 However, homologues of 5 *GaCBLs* and 4 *GrCBLs* were not discovered in genome of
327 *G. hirsutum*. These findings indicate that the 8 *GaCBLs* and 9 *GrCBLs* have been
328 maintained in *G. hirsutum* after polyploidization event, while the 5 *GaCBLs* and 4
329 *GrCBLs* are lost or regenerated after the event. Moreover, we observed 5 *GhCBLs*
330 (*GhCBL1-3*, *GhCBL3-5*, *GhCBL4-1*, *GhCBL4-4*, *GhCBL10-1*) in A_t subgenome and 2
331 *GhCBLs* (*GhCBL3-4*, *GhCBL3-6*) in D_t had no homologues in A genome of *G.*
332 *Arboreum* and D genome of *G. Raimondii*, implying that they are new evolved genes.

333 The physical properties of most *GaCBLs* and *GrCBLs* were similar to those of
334 *GhCBLs* (Table 3), suggesting that the functions of the CBLs from the three cotton
335 species remained to be conservative during evolutionary. The majority of cotton CBLs
336 was predicted to localize in the membrane, just like many CBLs in *Arabidopsis* and
337 rice. In *Arabidopsis*, CBL1 and CBL9 were described to localize in the PM. CBL2,
338 CBL3 and CBL6 localize in tonoplast whereas CBL10 is in both PM and tonoplast
339 (Mao et al., 2016). Rice CBL1 is also present in PM. The localizations of the CBLs
340 should be consistent with their primary roles of sensing and transferring Ca^{2+} signals
341 in cotton. However, *GhCBL3-6* was predicted to be nuclear. Its roles are unknown at
342 present. Experimental characterization of *GhCBL3-6* might shed light on some novel
343 functions of it.

344 Analysis of gene distributions on chromosomes showed that most homologues of
345 *GaCBLs* and *GrCBLs* in *G. hirsutum* were present in their corresponding A_t and D_t
346 homologous chromosomes, respectively. These findings indicate that *GhCBLs*
347 originate from DNA polyploidization. However, some *GhCBLs* homologues of
348 *GaCBLs* and *GrCBLs* did not distribute on their corresponding A_t or D_t chromosomes,
349 indicating gene conversion events occurred during the evolution of *GhCBLs*.

350 Additionally, separated and jointed distributions of cotton CBLs genes in
351 chromosomes in combination with the colinearity results of these genes imply that
352 both segmental duplication and tandem duplication are essential for the generation of
353 cotton CBLs during genetic evolution

354 The number of introns in coding region of most cotton CBL genes is six or seven,

355 very similar to that in CBLs genes in *Arabidopsis*, rice, maize, wheat, canola and
356 eggplant (Kolukisaoglu et al., 2004; zhang et al., 2014; Sun et al., 2015; Li et al., 2016;
357 Zhang et al., 2016), reflecting the rather conserved structure of CBL genes in different
358 species. Moreover, nearly all cotton CBLs shared three conserved EF hand domains
359 with other higher plants (Fig. 2). In addition, many *CBLs* from cotton contained the
360 myristoylated and palmitoylated sites, which may facilitate the targeting of
361 CBL-CIPK complex to membrane. These features are also similar to those in
362 *Arabidopsis*, rice and other plants (Kolukisaoglu et al., 2004; Mohanta et al., 2015).
363 The conserved structure of these CBL family members in different plants might
364 reflect a very similar mode of action and/or conserved interaction with their target
365 protein CIPKs (Mohanta et al., 2015).

366 Results from phylogenetic analysis of CBLs from cotton and many other plants
367 revealed that CBLs in cotton have closer relationship with those in cocoa than in other
368 plants tested (Fig. 5). These findings cotton may have a more recent common
369 ancestor with cacao relative to other plant species, in line with the results of other
370 gene families in cotton (Li et al., 2014; Li et al., 2016)

371 Expression analysis results showed that almost all of the GhCBL genes were
372 expressed in various tissues including the root, stem, leaf, flower and fiber. Of note,
373 most genes were dominantly expressed in the flower (Fig. 6), suggesting that these
374 genes may play important parts in the reproductive development in cotton. Besides,
375 the expression levels of *GhCBL4-3* and *GhCBL4-4* in roots were clearly higher than
376 those of other genes. These data imply that the two genes may function in modulation
377 of ion transport or acclimation to diverse abiotic stresses in roots

378 The expression of 22 *GhCBLs* in responding to potassium starvation was
379 determined. Most genes were moderately upregulated at 2 d and/or 5 d post
380 low-potassium treatments (Fig. 7), indicating multiple GhCBL genes likely regulate
381 cotton response to potassium deprivation. Strikingly, in *Arabidopsis*, the expression of
382 *CBL1* and *CBL9* was reported to be stable, and the transcripts of *CBL10* in roots were
383 moderately decreased under low-potassium conditions (Cheong et al., 2007; Ren et al.,
384 2013). These results imply that constitutive expression of some *CBL* genes may be

385 enough for transmitting Ca^{2+} signals to downstream targets in response to potassium
386 deficiency in plants. Thus, those *GhCBLs* that were not upregulated by low-potassium
387 stress likely participate in modulation of potassium absorption and/or transport.

388 However, which and how *GhCBLs* regulate potassium uptake remained to be
389 investigated in the future.

390 *CIPK23* has been addressed to function in diverse cellular processes in
391 *Arabidopsis* (Mao et al., 2016). In this study, 6 out of 12 *GhCBLs* could interact with
392 *GhCIPK23* in yeast (Fig. 8), indicating that different *GhCBL* members may interplay
393 with and modulate *GhCIPK23* in various growth and/or stress responses in cotton.
394 The cotton homologues of *Arabidopsis* *CBL1* and *CBL9* suggest that *GhCBL1* and
395 *GhCBL9* probably play similar roles to *CBL1* and *CBL9* in cotton.

396 ACKNOWLEDGEMENTS

397 This work was supported by the Science and Technology Development Program of
398 He'nan in China (162102110005) and Foundation of He'nan Educational Committee
399 of China (15A210018, 17A180018 and 14B180029).

400 REFERENCES

401 Allen RD. 2010. Opportunities for engineering abiotic stress tolerance in cotton plants.
402 *Cotton*. Berlin: Springer Verlag, 127-160.

403 Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan
404 S. 2007. Two calcineurin B-like calcium sensors, interacting with protein kinase
405 CIPK23, regulate leaf transpiration and root potassium uptake in *Arabidopsis*.
406 *The Plant Journal* 52: 223-239 DOI 10.1111/j.1365-313X.2007.03236.x.

407 Cho JH, Lee JH, Park YK, Choi MN, Kim KN. 2016. Calcineurin B-like protein
408 CBL10 directly interacts with TOC34 (Translocon of the Outer membrane of the
409 Chloroplasts) and decreases its GTPase activity in *Arabidopsis*. *Frontiers in*
410 *Plant Science* 7:1911 DOI 10.3389/fpls.2016.01911.

411 Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K,
412 Kudla J. 2013. The calcineurin B-like calcium sensors CBL1 and CBL9 together
413 with their interacting protein kinase CIPK26 regulate the *Arabidopsis* NADPH

414 oxidase RBOHF. *Molecular Plant* 6: 559–569 DOI 10.1093/mp/sst009.

415 **Fuglsang** AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A,
416 Shabala S, Schumaker KS, Palmgren MG, Zhu JK. 2007. Arabidopsis protein
417 kinase PKS5 inhibits the plasma membrane H⁺-ATPase by preventing interaction
418 with 14-3-3 protein. *The Plant Cell* 19: 1617–1634 DOI 10.1105/tpc.105.035626.

419 **Gao** P, Zhao PM, Wang J, Wang HY, Du XM, Wang GL, Xia GX. 2008.
420 Co-expression and preferential interaction between two calcineurin B-like
421 proteins and a CBL-interacting protein kinase from cotton. *Plant Physiology and*
422 *Biochemistry* 46: 935-940 DOI 10.1016/j.jplphys.2008.05.001.

423 **Held** K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratgé-Faillie C,
424 Offenborn JN, Lacombe B, Dreyer I, Thibaud JB. 2011. Calcium-dependent
425 modulation and plasma membrane targeting of the AKT2 potassium channel by
426 the CBL4/CIPK6 calcium sensor/protein kinase complex. *Cell Research* 21:
427 1116–1130 DOI 10.1038/cr.2011.50.

428 **Ho** CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants.
429 *Cell* 138: 1184–1194 DOI 10.1016/j.cell.2009.07.004.

430 **Kim** BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee
431 SC, Kudla J, Luan S. 2007. The calcium sensor CBL10 mediates salt tolerance
432 by regulating ion homeostasis in *Arabidopsis*. *Plant Journal* 52: 473–484 DOI
433 10.1111/j.1365-313X.2007.03249.x.

434 **Kolukisaoglu** Ü, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and
435 their interacting protein kinases: Genomics of the *Arabidopsis* and Rice
436 CBL-CIPK signaling networks. *Plant Physiology* 134, 43–58 DOI
437 10.1104/pp.103.033068.

438 **Kudla** J, Batistic O, Hashimoto K. 2010. Calcium signals: the lead currency of plant
439 information processing. *The Plant Cell* 22:541-563 DOI
440 10.1105/tpc.109.072686.

441 **Kudla** J, Xu Q, Harter K, Gruisse W, Luan S. 1999. Genes for calcineurin B-like
442 proteins in *Arabidopsis* are differentially regulated by stress signals. *Proceedings*
443 *of the National Academy of Sciences of the United States of America* 96:

444 4718–4723.

445 Li J, Jiang MM, Ren L, Liu Y, Chen HY. 2016. Identification and characterization of
446 CBL and CIPK gene families in eggplant (*Solanum melongena* L.). *Molecular*
447 *Genetics and Genomics* 291:1769-1781 DOI 10.1007/s00438-016-1218-8.

448 Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W,
449 Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H,
450 Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu
451 S. 2014b. Genome sequence of the cultivated cotton *Gossypium arboreum*.
452 *Nature Genetics* 46:567-572 DOI 10.1038/ng.2987.

453 Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y. 2014a. The Os-AKT1 channel is
454 critical for K⁺ uptake in rice roots and is modulated by the rice CBL1-CIPK23
455 complex. *The Plant Cell* 26: 3387-3402 DOI 10.1105/tpc.114.123455.

456 Li L, Kim BG, Cheong YH, Pandey GK, Luan S. 2006. A Ca²⁺ signaling pathway
457 regulates a K⁺ channel for low-K response in *Arabidopsis*. *Proceedings of the*
458 *National Academy of Sciences of the United States of America* 103: 12625-12630
459 DOI 10.1073/pnas.0605129103.

460 Li W, Shang H, Ge Q, Zou C, Cai J, Wang D, Fan S, Zhang Z, Deng X, Tan Y, Song
461 W, Li P, Jamshed M, Lu Q, Gong W, Li J, Shi Y, Chen T, Gong J, Liu A, Yuan Y.
462 2016. Genome-wide identification, phylogeny, and expression analysis of
463 pectin methylesterases reveal their major role in cotton fiber development. *BMC*
464 *Genomics* 17:1000 DOI 10.1186/s12864-016-3365-z.

465 Ligaba-Oseña A, Fei Z, Liu J, Xu Y, Shaff J, Lee SC, Luan S, Kudla J, Kochian L,
466 Piñeros M. 2017. Loss-of-function mutation of the calcium sensor CBL1
467 increases aluminum sensitivity in *Arabidopsis*. *New Phytologist* 214: 830-841
468 DOI 10.1111/nph.14420.

469 Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH. 2013. A protein kinase, calcineurin
470 B-like protein-interacting protein kinase9, interacts with calcium sensor
471 calcineurin B-like protein3 and regulates potassium homeostasis under
472 low-potassium stress in *Arabidopsis*. *Plant Physiology* 161: 266–277 DOI
473 10.1104/pp.112.206896.

474 Luan S. 2009. The CBL-CIPK network in plant calcium signaling. *Trends in Plant*
475 *Science* 14: 37-42 DOI 10.1016/j.tplants.2008.10.005.

476 Mao J, Manik SMN, Shi S, Chao J, Jin Y, Wang Q, Liu H. 2016. Mechanisms and
477 physiological roles of the CBL-CIPK networking system in *Arabidopsis thaliana*.
478 *Genes* 7: 62 DOI 10.3390/genes7090062.

479 Mohanta TK, Mohanta N, Mohanta YK, Parida P, Bae H. 2015. Genome-wide
480 identification of calcineurin B-Like (CBL) gene family of plants reveals novel
481 conserved motifs and evolutionary aspects in calcium signaling events. *Plant*
482 *Biology* 15:189 DOI 10.1186/s12870-015-0543-0.

483 Oosterhuis DM, Loka DA, Raper TB. 2013. Potassium and stress alleviation:
484 Physiological functions and management of cotton. *Journal of Plant Nutrition*
485 and *Soil Science* 176: 331-343 DOI 10.1002/jpln.201200414.

486 Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D'Angelo C, Weinl S,
487 Kudla J, Luan S. 2004. The calcium calcineurin B-like 9 modulates
488 abscisic acid sensitivity and biosynthesis in *Arabidopsis*. *The Plant Cell* 16:
489 1912–1924 DOI 10.1105/tpc.021311.

490 Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH. 2013. Calcineurin
491 B-like protein CBL10 directly interacts with AKT1 and modulates K⁺
492 homeostasis in *Arabidopsis*. *The Plant Journal* 74:258-266 DOI
493 10.1111/tpj.12123.

494 Sanyal SK, Pandey A, Pandey GK. 2015. The CBL-CIPK signaling module in plants:
495 a mechanistic perspective. *Physiologia Plantarum* 155: 89–108 DOI
496 10.1111/ppl.12344.

497 Sarwat M, Ahmad P, Nabi G, Hu XY. 2013. Ca²⁺ signals: the versatile decoders of
498 environmental cues. *Critical Reviews in Biotechnology* 33: 97-109 DOI
499 10.3109/07388551.2012.672398.

500 Sun , Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G. 2015.
501 Identification and comprehensive analyses of the CBL, and CIPK, gene families
502 in wheat (*Triticum aestivum* L.). *Plant Biology* 15:269 DOI
503 10.1186/s12870-015-0657-4.

504 **Steinhorst** L, Mähs A, Ischebeck T, Zhang C, Zhang X, Arendt S, Schültke S,
505 Heilmann I, Kudla J. 2015. Vacuolar CBL-CIPK12 Ca^{2+} -sensor-kinase
506 complexes are required for polarized pollen tube growth. *Current Biology* 25:
507 1475–1482 DOI 10.1016/j.cub.2015.03.053.

508 **Straub** T, Ludewig U, Neuhäuser B. 2017. The kinase CIPK23 inhibits ammonium
509 transport in *Arabidopsis thaliana*. *The Plant Cell* 29: 409-422 DOI
510 10.1105/tpc.16.00806.

511 **Thoday-Kennedy** EL, Jacobs AK, Roy SJ. 2015. The role of the CBL-CIPK calcium
512 signaling network in regulating ion transport in response to abiotic stress. *Plant
513 Growth Regulation* 76: 3–12 DOI 10.1007/s10725-015-0034-1.

514 **Tian** QY, Zhang XX, Yang A, Wang TZ, Zhang WH. 2016. CIPK23 is involved in iron
515 acquisition of *Arabidopsis* by affecting ferric chelate reductase activity. *Plant
516 Science* 246: 70-79 DOI 10.1016/j.plantsci.2016.01.010.

517 **Tang** RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L, Zhang HX, Luan S. 2015. Tonoplast
518 CBL-CIPK calcium signaling network regulates magnesium homeostasis in
519 *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United
520 States of America* 112: 3134–3139 DOI 10.1073/pnas.142094412.

521 **Xu** J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) protein kinase,
522 interacting with two calcineurin B-like proteins, regulates K^+ transporter AKT1
523 in *Arabidopsis*. *Cell* 125: 1347-1360.

524 **Zhang** F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Fu J, Wang G, Zheng J. 2016.
525 Characterization of the calcineurin B-Like (CBL) gene family in maize and
526 functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments.
527 *Plant Science* 253:118-129 DOI 10.1016/j.plantsci.2016.09.011.

528 **Zhang** H, Yang B, Liu W-Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK,
529 Jiang YQ. 2014. Identification and characterization of CBL and CIPK gene
530 families in canola (*Brassica napus* L.). *BMC Plant Biology* 14:1 DOI
531 10.1186/1471-2229-14-8.