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ABSTRACT
Lipids are involved in a host of biochemical and physiological processes in corals. There-
fore, changes in lipid composition reflect changes in the ecology, nutrition, and health of
corals. As such, accurate lipid extraction, quantification, and identification is critical to
obtain comprehensive insight into a coral’s condition. However, discrepancies exist in
sample preparation methodology globally, and it is currently unknown whether these
techniques generate analogous results. This study compared the two most common
sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-
spraying and (2) crushing the coral in toto. Samples derived from each preparation
technique were subsequently analysed to quantify lipids and their constituent classes
and fatty acids in four common, scleractinian coral species representing three distinct
morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and
Pocillopora damicornis). Results revealed substantial amounts of organic material,
including lipids, retained in the skeletons of all species following air-spraying, causing
a marked underestimation of total lipid concentration using this method. Moreover,
lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue
were substantially different. In particular, the majority of the total triacylglycerol and
total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%,
respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy
for lipid quantification or identification in the coral holobiont. The in toto crushing
method is therefore recommended for coral sample preparation prior to lipid analysis
to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of
coral condition.

Subjects Biochemistry, Marine Biology
Keywords Lipids, Coral, Air-spraying, Holobiont, Fatty acids, Skeleton, Tissue

INTRODUCTION
Coral reefs worldwide are declining at an alarming pace due to the increasing diversity,
frequency, and scale of human impacts (Lesser, 2012; Hughes et al., 2017). Consequently,

How to cite this article Conlan et al. (2017), A comparison of two common sample preparation techniques for lipid and fatty acid analy-
sis in three different coral morphotypes reveals quantitative and qualitative differences. PeerJ 5:e3645; DOI 10.7717/peerj.3645

https://peerj.com
mailto:conlan@deakin.edu.au
mailto: jessconlan@live.com.au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3645
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3645


the urgency and prevalence of internationally-integrated research supporting coral reef
management, rehabilitation, and aquaculture efforts has increased (Leal et al., 2016).

Scleractinian corals are commonly used as biomonitors for phenological and ecological
phenomena in tropical reef ecosystems, given their high sensitivity to physical and chemical
changes in the marine environment (Goffredo et al., 2011; Filho et al., 2012). Specifically,
coral lipid reserves serve as a universal proxy for coral health status given their ubiquitous
nature (Anthony et al., 2009; Lesser, 2012). Lipids are a major component of the coral
proximate composition (10–40% of dry biomass) and their constituent classes and fatty
acids play important roles in energy storage, cell membrane structure, and overall fitness
(Bergé & Barnathan, 2005; Farre, Cuif & Dauphin, 2010). The quantity and nature of coral
lipids vary significantly in response to environmental factors such as season and food
availability, as well as with physiological processes such as photosynthesis, respiration,
and reproduction (Arai et al., 1993; Imbs, 2013). As such, lipid analysis is an important
and prevalent aspect of coral biology, with over 560 publications relating to coral lipids
published since 1970 (ISI Web of Science).

Likewise, coral lipid investigations are gaining momentum as tools for understanding
current and future climate change impacts on coral reefs, since total lipid content has been
shown to determine a coral’s ability to offset the adverse responses to climate change-
associated stressors (Baumann et al., 2014; Towle, Enochs & Langdon, 2015). For example,
large lipid stores can mitigate growth reductions caused by reduced photosynthate transfer
as well as greater energy demands on calcification in response to ocean warming and
acidification (Baumann et al., 2014; Towle, Enochs & Langdon, 2015). Additionally, the size
of a coral’s lipid stores have been shown to significantly influence the onset timing of severe
bleaching and subsequent mortality. Indeed, under high bleaching rates, corals with ‘full’
initial lipid stores have been shown to survive for twice as long as corals with half-depleted
lipid stores (Anthony et al., 2009). Moreover, examining the corals’ lipid class and fatty acid
composition in addition to the total lipid content evidences key metabolic changes elicited
by bleaching, and thus determine a corals’ ability to initially resist bleaching, followed by
the timing and capacity for full recovery (Rodrigues, Grottoli & Pease, 2008).

Therefore, accurate quantification and subsequent identification of coral lipids and
their constituents is of significant importance to their reliability as biomarkers of coral
health and their capacity to predict the timing and severity of major stress events associated
with climate change. However, within the literature, discrepancies exist between sample
preparation techniques prior to lipid analysis, and it is currently unknown whether these
techniques generate analogous results.

The two most common techniques for coral sample preparation prior to lipid analyses
are air-spraying and in toto crushing. The first, air-spraying, is a modified version of
the Water-Pik method described by Johannes & Wiebe (1970). This method involves
completely removing the tissue from the coral skeleton using an airgun connected to a
source of compressed air inside a thick, polyethylene bag (Deschaseaux et al., 2013). The
sprayed tissue is collected in the bag and combined with filtered seawater to form a slurry
that is then homogenised, frozen, and freeze-dried to obtain the tissue alone. This tissue
isolate is then extracted for lipids, excluding the denuded skeleton (Szmant & Gassman,
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1990). Air-spraying presents a flexible option, since the resultant isolates can be used for
further biometrics such as zooxanthellae counting (tissue) (Edmunds & Gates, 2002) and
surface area measurements (skeleton) (Veal et al., 2010). This technique also ensures that
the samples are maximally utilised, since conservative coral sampling is often necessary to
limit environmental impacts on donor reefs and reduce associated collection expenses. As
such, performing lipid analyses on the isolated coral tissue alone remains prevalent in coral
biochemical research (e.g., Seemann et al., 2013; Towle, Enochs & Langdon, 2015; Crandall
et al., 2016; Lim, Bachok & Hii, 2017).

The second method, in toto crushing, utilises the coral as a whole; crushing the intact
skeleton and tissue while frozen within a mortar and pestle, and using the resultant
powder for lipid analyses (Saunders et al., 2005; Deschaseaux et al., 2013). Crushing takes
into consideration the presence of the ‘skeletal organic material’ (SOM) that is integrated
throughout the skeleton. This includes the skeletal organic matrix, which controls skeletal
growth by inducing or inhibiting biomineral crystal nucleation (Allemand et al., 1998;
Farre, Cuif & Dauphin, 2010; Hemond, Kaluziak & Vollmer, 2014), the gastrovascular
system (Parrin et al., 2010), and other organic material such as entrapped tissue and
zooxanthellae (Tambutté et al., 2007). Importantly, SOM in the skeleton has been shown
to differ biochemically from the tissue (Dauphin, Cuif & Massard, 2006; Ramos-Silva et
al., 2014). However, comprehensive quantification and identification of lipids isolated in
the tissue and those retained by the skeleton does not exist. Thus, it is not yet known
whether isolated tissue obtained with the air-spraying technique accurately represents the
lipid quantity and composition of the whole coral. This reduces the reliability of lipids
as a biomarker of several aspects of coral health, including reproductive status, growth,
nutritional integrity, response to environmental change, and overall fitness, potentially
leading to inaccurate diagnoses of coral condition. This, in turn, can lead to inadequate
or inappropriate decisions relating to reef management, jeopardising the success of coral
monitoring, rehabilitation, and aquaculture efforts. Furthermore, discrepancies between
sample preparation techniques limits the ability for direct comparison between studies,
reducing the efficiency of global investigations.

Here, we explore and compare the performance of these two sample preparationmethods
to determine their effectiveness for accurate lipid, lipid class, and fatty acid (FA) analyses
of the coral holobiont. In order to show the applicability of each method for different coral
morphotypes, we tested four common coral genera with three different skeletal and tissue
morphologies: Acropora millepora and Porites cylindrica; representing perforate, branching
species, Montipora crassotuberculata; representing perforate, plate forming species, and
Pocillopora damicornis; representing imperforate, branching species. Where differences
between the two methods were detected, their causes and ramifications are discussed.

MATERIALS AND METHODS
Sample collection
Forty coral nubbins (∼length 5 cm) from each of four species of common scleractinian
genera; Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora
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damicornis, were collected from the Great Barrier Reef, Queensland, Australia between
the 18–19th of April 2015 (three genotypes species−1) (Field collections were approved
by the Great Barrier Reef Marine Park Authority: G12/35236.1). M. crassotuberculata
were collected from Pelorus Island (lat.: 18◦548′S, long.: 146◦504′E). All other species
were collected from Davies Reef from two sites (lat.: 18◦496′S, long.: 147◦376′E and lat.:
18◦499′S, long.: 147◦379′E). Corals were then transferred to the National Sea Simulator
facility at The Australian Institute of Marine Science (AIMS, Townsville, Australia, lat.:
16◦177′S, long.: 145◦271′E).

Sample preparation
All nubbins were weighed prior to sample preparation. For each species, 20 nubbins were
prepared with the air-spraying method as described by Szmant & Gassman (1990). Tissue
was removed from the coral skeleton using a jet of high-pressure air from a hand gun
(80 psi, ∼1 cm distance to coral). All sprayed tissue was captured in a thick, polyethylene
bag containing 10 ml of ultrafiltered seawater (0.04 µm filtration). Nubbins were sprayed
scrupulously for 10 min, ensuring that all surface tissue was removed, as confirmed visually
by the completely white surface of the denuded skeletons. To further ensure that no surface
tissue remained, the denuded skeletons were triple-rinsed in ultrafiltered seawater, which
was also collected. The tissue slurry was then poured from the plastic bag into a falcon
tube, and the bag was double-rinsed with ultrafiltered seawater that was also collected.
The slurry was then homogenised for 20 s (Ultra-Turrax T10B; IKA Labortechnik, Staufen
im Breisgau, Germany). The isolated tissue and denuded skeletons were then re-weighed
separately in order to quantify their individual proximate parameters, and individual
contribution to the total composition. The denuded skeletons were kept and subjected to
all analyses alongside the isolated tissue and in toto samples. Following this, the sprayed
tissue and denuded skeleton results were recombined ex post facto in order to account for
any discrepancies detected between the air-spraying method (isolated tissue only) and the
in toto crushing method.

Between each sample, all apparatus were thoroughly cleaned with methanol (CH3OH)
and rinsed with seawater. The remaining 20 nubbins from each species were left untreated
and these, along with the tissue slurry and denuded skeletons, were frozen at −20 ◦C. All
samples were then freeze-dried for 96 h (Labconco FreeZone, Kansas City, MO, USA),
removing all moisture from the tissue slurry. Following freeze-drying, both the denuded
and intact skeleton samples were placed inside a stainless steel mortar and pestle (cleaned
with methanol), which was placed inside a manual laboratory hydraulic press (Model C;
Fred S. Carver Inc., Summit, NJ, USA), and pressurised to 70 kN, crushing the corals to a
fine powder.

Proximate analysis
Total lipid and ash
The tissue isolate, denuded skeleton, and intact samples were extracted for total lipid
content according to the method described in Conlan et al. (2014). Dry samples were
soaked overnight in 3 mL of dichloromethane: methanol (CH2Cl2:CH3OH). The following
morning, this mixture was filtered and the solid residue re-suspended and further soaked
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for 10 min with 3 mL of CH2Cl2:CH3OH, followed by a further filtration step. This process
was repeated three times. The combined filtrates (∼9mL) were then combined with 4.5 mL
of KCl (0.44%) in H2O/CH3OH (3:1, v/v), shaken vigorously and settled overnight. The
followingmorning, the bottom layer containing the extracted lipidwas recovered (∼2.5mL)
and the solvent was evaporated under nitrogen. The lipid content was then quantified
gravimetrically on a 4-figure balance (AB 204; Mettler-Toledo, Greifensee, Switzerland).

Total ash was determined by incineration in amuffle furnace (ModelWIT; C& L Fetlow,
Blackburn, Victoria, Australia) at 450 ◦C for 12 h. The ash content was subtracted from
the total composition to obtain ash-free dry weight (AFDW), which excludes the inorganic
component.

Lipid class composition
Lipid class analysis was determined using an Iatroscan MK 6 s thin layer chromatography-
flame ionisation detector (Mitsubishi Chemical Medience, Tokyo, Japan) according
to the method of Conlan et al. (2014). Each sample was spotted in duplicate on silica
gel S5-chromarods (5 µm particle size) with lipid separation following a two-step
elution sequence: (1) elution of phosphatidylethanolamine (PE), phosphatidylserine and
phosphatidylinositol (PS-PI), phosphatidylcholine (PC), and lysophosphatidylchloline
(LPC) was achieved in a CH2Cl2:CH3OH:H2O (50:20:2, by volume) solvent system run to
half height (∼15 min); and (2) after air drying, elution of wax esters (WAX), triacylglycerol
(TAG), free fatty acid (FFA), 1,2-diacylglycerol (1,2DAG), and sterol (ST) was achieved
in a C16H14:(C2H5)2O:CH2O2 (60:15:1.5, by volume) solvent system run to full height
(∼30 min). Since glycolipids commonly elute with monoacylglycerols and pigments, the
term ‘‘acetone mobile polar lipid’’ (AMPL) was used (Parrish, Bodennec & Gentien, 1996).
AMPL was quantified using the 1-monopalmitoyl glycerol standard (Sigma-Aldrich Co.,
USA), which has demonstrated a response that is intermediate between glycoglycerolipids
and pigments (Parrish, Bodennec & Gentien, 1996).

Fatty acid and fatty alcohol composition
Acid catalysed methylation. Following extraction, FA were esterified into methyl esters
using the acid catalysedmethylationmethod (Christie, 2003). 100µLof 23:0 (0.75mgmL−1)
was added as an internal standard (Sigma-Aldrich, Inc., St. Louis, MO, USA) alongside
2mL of freshly prepared CH3COCl: CH3OH (1:10, v/v). Sample vials were then shaken and
placed in an oven at 100 ◦C for 1 h. Once cool, 2 mL of K2CO3 (1 M) and 1.7 mL of C16H14

were added and the sample centrifuged. The C16H14 supernatant was then recovered and
placed in a vial for subsequent gas chromatograph (GC) injection.

Gas chromatography. FA methyl esters were identified using an Agilent Technologies
7890A GC System (Agilent Technologies; Santa Clara, CA, USA) equipped with a BPX70
capillary column (120 m × 0.25 mm internal diameter, 0.25 µm film thickness, SGE
Analytical Science, Ringwood, VIC, Australia), a flame ionization detector (FID), an
Agilent Technologies 7693 auto sampler, and a splitless injection system. The injection
volume was 1 µ L and the injector and detector temperatures were 300 ◦C and 270 ◦C,
respectively. The temperature program was 60 ◦C held for 2 min, then from 60 ◦C to
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150 ◦C at 20 ◦C min−1, and held at 150 ◦C for 2 min, then from 150 ◦C to 205 ◦C at
1.5 ◦Cmin−1, then from 205 ◦C to 240 ◦C at 5 ◦Cmin−1, and held at 240 ◦C for 24min. The
carrier gas was helium at a constant flow of 1.5 mL min−1. Each FA was identified relative
to known external standards (Sigma-Aldrich, Inc., St. Louis, MO, USA and Nu-Chek
Prep Inc., Elysian, MN, USA), using GC ChemStation (Rev B.04.03; Agilent Technologies;
Santa Clara, CA, USA). The resulting peaks were then corrected by theoretical relative FID
response factors (Ackman, 2002) and quantified relative to the internal standard.

Statistical analysis
Untransformed data were analysed statistically using RStudio (R Studio Team, 2015; R
Development Core Team, 2016). For between-group comparisons (tissue vs skeleton),
a Welch Two-Sample t -test was used, at a 0.05 significance level. Although data were
non-normal and slightly skewed to the right, the t -test was considered robust given the
moderate sample size (n= 20) (Lumley et al., 2002). Principal component analysis (PCA)
was also performed to reduce and group 20 individual FA (expressed as % total FA) to
more concisely explain and visualise overall variation (Kassambara & Mundt, 2016). PCA
ellipses show 95% confidence intervals. Graphs were prepared using the ggplot2 package
(Wickham, 2009).

RESULTS
Proximate composition
Based on dry weight, the intact crushing method showed that the large majority of the
holobiont consisted of ash in all species (∼944–954 mg g dry sample−1), while the organic
fraction constituted only a small portion (∼46.2–66.1 mg g dry sample−1). A. millepora
contained the highest total lipid concentration (9.93 ± 0.64 mg g sample−1), while
P. damicornis recorded the lowest (2.74 ± 0.22 mg g sample−1) (Table 1).

Recombining the sprayed tissue and denuded skeleton results from the air-spraying
method ex post facto revealed significant loss of tissue, and consequently lipid, when
compared to the intact samples, with A. millepora, M. crassotuberculata, and P. damicornis
recording a loss of∼one third, and P. cylindrica∼one quarter of the total lipid. Conversely,
no difference was detected in the ash content between the two samples.

Comparing the two isolates alone showed, unsurprisingly, that the denuded skeleton
accounted for the large majority of the total sample (∼960–989 mg g sample−1)
(Table 1). The majority of the total organic material was retained in the denuded
skeleton, and this was quantitatively similar across all genera (∼33.9–36.6 mg g sample−1)
(Table 1). The relative contribution of the skeleton to the total organic fraction was highest
for P. damicornis (∼83.6%), and lowest for A. millepora (∼63.2%) (Table 1). On the other
hand, the concentrations of organic material in the tissue varied between genera, with
A. millepora recording the highest (21.3 ± 2.20 mg g sample−1) (∼37% of total), and
P. damicornis the lowest (6.72 ± 1.30 mg g sample−1) (∼16% of total).

The relative contribution of total lipid from each isolate was remarkably consistent
between A. millepora, M. crassotuberculata, and P. damicornis (∼42% skeleton, ∼58%
tissue), although the quantitative amounts differed (∼0.76–2.62 mg g sample−1 skeleton,

Conlan et al. (2017), PeerJ, DOI 10.7717/peerj.3645 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.3645


Table 1 Proximate composition of four scleractinian species using air-spraying and in toto crushing sample preparation techniques. Intact,
samples prepared with in toto crushing method; Recombined, combined results of isolated skeleton and tissue prepared with the air-spraying
method; Skeleton, denuded skeleton samples; Tissue, isolated tissue samples.

Crush Air-spray

Species (mg g sample−1) Intact Recombined Skeleton Tissue

Total sample 1,000± 0.00 1,000± 0.00 960± 1.80a 40.1± 1.80a

Ash 944± 2.30 943± 2.20 923± 2.20a 19.8± 2.20a

Organic 66.1± 2.30 57.1± 2.20 36.3± 2.20a 21.3± 2.20a

Lipid 9.93± 0.64* 6.20± 0.61* 2.62± 0.61a 3.58± 0.61a
A. millepora

Lipid (mg g AFDW−1) 178± 10.6* 110± 11.6* 47.5± 11.6a 62.5± 11.6a

Total sample 1,000± 0.00 1,000± 0.00 967± 2.10a 33.3± 2.10a

Ash 947± 2.30 950± 2.50 934± 2.50a 16.2± 2.50a

Organic 53.2± 2.30 50.4± 2.20 33.9± 2.20a 16.1± 2.20a

Lipid 6.42± 0.52* 4.30± 0.50* 1.82± 0.50 2.48± 0.50

M. crassotuberculata

Lipid (mg g AFDW−1) 122± 10.3* 87.7± 9.80* 38.1± 9.80 49.6± 9.80
Total sample 1,000± 0.00 1,000± 0.00 989± 0.80a 11.2± 0.80a

Ash 949± 2.40 951± 1.80 947± 1.80a 3.80± 1.80a

Organic 51.1± 2.30 49.4± 2.20 36.6± 1.80a 12.4± 1.80a

Lipid 3.44± 0.21* 2.5± 0.33* 1.26± 0.33 1.24± 0.33

P. cylindrica

Lipid (mg g AFDW−1) 67.8± 5.20 51.1± 6.50 26.3± 6.50 24.8± 6.50
Total sample 1,000± 0.00 1,000± 0.00 979± 0.80a 21.1± 0.80a

Ash 954± 2.60 959± 1.30 950± 1.30a 8.63± 1.30a

Organic 46.2± 2.30 41.1± 2.20 34.3± 1.30a 6.72± 1.30a

Lipid 2.74± 0.22* 1.8± 0.24* 0.76± 0.24 1.04± 0.24

P. damicornis

Lipid (mg g AFDW−1) 61.3± 4.30* 45.1± 5.00* 19.6± 5.00 25.5± 5.00

Notes.
Values are presented as means± SEM (n= 20).
*indicate significant differences between intact and recombined samples (P < 0.05).
aindicate significant differences between denuded skeletons and isolated tissues (P < 0.05).

and ∼1.04–3.58 mg g sample−1 tissue). Meanwhile, P. cylindrica contained almost equal
amounts of the total lipid concentration in the skeleton and tissue (1.26 ± 0.30 and
1.24 ± 0.30 mg g sample−1, respectively).

Lipid class composition
Intact vs. recombined samples
The lipid class composition of the intact samples showed the storage component of all
species to be dominated by TAG, followed byWAX (Table 2). P. cylindricawas an exception,
exhibiting comparatively low TAG concentrations. This translated to the total storage lipid
for this species (307 ± 23.9 mg g lipid−1), which was low compared to the other species
(∼375–433 mg g lipid−1). For all genera, the polar lipids were dominated by AMPL, PE,
PS-PI, and PC.

Recombining the sprayed tissue and denuded skeleton results from the air-spraying
method ex post facto showed some discrepancies when compared to the intact samples
for all species. In particular, there were significantly higher concentrations of FFA
and lower PE and LPC in the intact samples compared to the recombined for

Conlan et al. (2017), PeerJ, DOI 10.7717/peerj.3645 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.3645


Table 2 Lipid class composition of intact and recombined samples of four scleractinian species prepared using air-spraying and in toto crush-
ing sample preparation techniques. Intact, samples prepared with crushing method; Recombined, combined results of isolated skeleton and tissue
prepared with the air-spraying method.

(mg g lipid−1) A. millepora M. crassotuberculata P. cylindrica P. damicornis

Intact Recombined Intact Recombined Intact Recombined Intact Recombined

WAX 123± 6.70 112± 6.39 85.9± 4.79 104± 22.4 88.1± 2.60 98.1± 5.05 95.6± 2.92 104± 7.20
TAG 194± 32.9 172± 32.3 170± 33.0 143± 29.6 70.7± 5.18 75.2± 8.78 189± 25.9 205± 32.6
FFA 41.8± 3.17* 27.0± 1.99* 21.5± 1.90* 32.9± 2.81* 36.1± 10.6 28.0± 3.05 45.8± 3.04* 30.1± 3.49*

1,2 DAG 74.2± 7.57 82.1± 7.37 97.1± 5.27 83.3± 10.4 112± 2.06 109± 11.4 82.2± 7.95 76.8± 10.2
ST 80.1± 4.38 71.7± 4.09 74.7± 3.89 77± 4.81 79.2± 4.31 86.3± 5.52 71.7± 2.84 80.8± 6.87
AMPL 175± 11.0 184± 10.9 173± 15.6 210± 16.2 171± 6.63 185± 9.82 134± 5.62* 166± 11.4*

PE 84.4± 7.02* 106± 6.41* 118± 10.4 114± 6.25 120± 1.67 133± 9.6 99.0± 3.85 110± 7.96
PSPI 104± 14.8 102± 14.1 115± 18.6 96.7± 17.0 153± 13.4* 104± 18.3* 122± 14.6 109± 13.6
PC 123± 7.49 135± 7.27 133± 8.79 126± 8.07 151± 2.85 142± 13.0 123± 5.97 105± 10.2
LPC nd* 8.97± 4.21* 12.1± 6.52 12.6± 8.58 19.1± 8.75 39.4± 8.52 38.1± 9.51* 14.1± 6.72*∑

STORAGE 433± 32.8 393± 33.9 375± 34.2 363± 33.5 307± 9.76 310± 17.1 412± 29.0 415± 28.3∑
STRUCTURAL 567± 32.8 607± 33.9 625± 34.2 637± 33.5 693± 9.76 690± 17.1 588± 29.0 585± 28.3

Notes.
Values are presented as means± SEM (n= 20).
nd, not detected.
*indicate significant differences between intact and recombined samples within each species (P < 0.05).

A. millepora, significantly lower FFA in the intact samples compared to the recombined for
M. crassotuberculata, significantly higher PSPI in the intact compared to the recombined
for P. cylindrica, and significantly lower AMPL and higher LPC in the intact compared to
the recombined for P. damicornis (P < 0.05).

Tissue vs. skeleton—relative contribution
A. millepora, M. crassotuberculta, and P. damicornis contained significantly higher
proportions of ST in the tissue (P < 0.05) (Fig. 1). These species also contained higher
levels of AMPL and all individual phospholipids in the tissue, however, the former
was only significant for A. millepora and M. crassotuberculata, and the latter only for
A. millepora (P < 0.05). Meanwhile, P. cylindrica contained significantly higher amounts
of ST in the skeleton compared to the tissue (P < 0.05). For all genera, the majority of
WAX and TAG occurred in the skeleton, and the latter was significant for A. millepora and
P. damicornis (P < 0.05).

Fatty acid and fatty alcohol composition
Intact vs. recombined samples
The total FA concentration was highest in A. millepora and P. cylindrica (33.4 ± 9.42 and
34.9± 8.52% lipid, respectively) (Table 3), followed byM. crassotuberculata (30.0± 9.78%
lipid), while P. damicornis contained the lowest (25.8 ± 10.3% lipid). All genera were
dominated by SFA (∼50% FA), followed by PUFA (∼20–30% FA), and MUFA (∼11–15%
FA). The dominant SFA was 16:0 for all species (∼25–38% FA), while 18:1n-9 was the
majorMUFA for all species exceptM. crassotuberculata, which contained similar amounts of
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Figure 1 Lipid class composition of denuded skeleton and isolated tissue of four scleractinian species
prepared with the air-spraying method—relative contribution (% total) Values are presented as
means± SEM (n = 20). * denote significant differences between stacked bars within each species (tissue
vs skeleton) (P < 0.05).

20:1n-11. The dominant PUFA were species-specific, being 20:5n-3 (EPA) for A. millepora,
22:4n-6 forM. crassotuberculata and P. cylindrica, and 22:6n-3 (DHA) for P. damicornis.

Due to the quantitative loss in total lipid content, recombining the sprayed tissue
and denuded skeleton results from the air-spraying method ex post facto showed
correspondingly lower amounts of all individual FA compared to the intact samples. The
total FA concentration (% lipid) was significantly higher in the intact samples compared
to the recombined for all species except P. damicornis (P < 0.05). Furthermore, all species
contained significantly higher proportions of PUFA in the intact samples compared to the
recombined (% FA). On the other hand, all species contained higher proportions of SFA
in the recombined samples compared to the intact, and this was statistically significant
for A. millepora and P. cylindrica (P < 0.05). The individual FA, EPA and DHA exhibited
higher concentrations in the intact samples compared to the recombined, and the former
was statistically significant for all species except M. crassotuberculata, while the latter was
significant for A. millepora and P. cylindrica (P < 0.05).

Tissue vs. skeleton—relative contribution
The total FA (% total) proportion was greatest in the skeleton for all genera (∼56–64%),
and was significant compared to the tissue for P. cylindrica and P. damicornis (P < 0.05)
(Fig. 2). Generally, the major FA groups were dispersed uniformly between the skeleton
and tissue. However, for A. millepora, there were significantly higher proportions of PUFA
in the tissue (∼55%), while P. cylindrica contained a higher proportion of PUFA in the
skeleton (∼56%) (P < 0.05).
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Table 3 Fatty acid and fatty alcohol composition of intact and recombined samples of four scleractinian species prepared using air-spraying
and in toto crushing sample preparation techniques. Intact, samples prepared with crushing method; Recombined, combined results of isolated
skeleton and tissue prepared with the air-spraying method

(% fatty acids) A. millepora M. crassotuberculata P. cylindrica P. damicornis

Intact Recombined Intact Recombined Intact Recombined Intact Recombined

16 Ac 0.42± 0.03 0.47± 0.03 0.21± 0.03 0.18± 0.03 0.19± 0.03 0.18± 0.04 0.38± 0.02 0.40± 0.04
DMA 18:0 1.53± 0.16 1.20± 0.14 0.20± 0.02 0.23± 0.04 2.67± 0.21 2.88± 0.24 2.00± 0.19 2.26± 0.36
16:OH 5.68± 0.80 6.06± 1.04 2.23± 0.53 2.02± 0.67 0.88± 0.35 0.38± 0.18 2.77± 0.38 2.83± 0.58∑

Fatty Alcohol 7.77± 0.62 8.07± 0.88 2.65± 0.53 2.57± 0.64 3.79± 0.42 4.22± 0.31 5.63± 0.37 6.02± 0.48
14:0 3.55± 0.20 3.72± 0.18 3.38± 0.22 3.71± 0.30 1.97± 0.26 2.17± 0.37 3.19± 0.18 3.60± 0.19
16:0 29.9± 1.78 33.7± 1.38 34.2± 2.70 37.8± 2.77 24.2± 0.78* 27.3± 1.10* 32.2± 0.83 31.7± 1.88
18:0 11.6± 0.53 12.4± 0.76 8.92± 0.34 9.65± 0.29 10.5± 0.69 12.2± 0.46 13.8± 0.47* 16.2± 0.53*∑

SFA 48.5± 1.24* 53.5± 0.75* 51.9± 2.42 56.4± 2.22 42.4± 1.35* 47.9± 1.42* 52.7± 0.94 55.8± 1.43
18:1n-9 3.92± 0.32 4.70± 0.24 3.06± 0.16* 5.26± 0.51* 5.98± 0.21* 7.60± 0.24* 5.98± 0.32* 7.08± 0.38*

20:1n-11 3.85± 0.31 3.26± 0.22 3.85± 0.50 3.79± 0.43 4.19± 0.39* 2.97± 0.20* 1.99± 0.11 1.75± 0.12∑
MUFA 12.6± 0.18 12.5± 0.24 11.0± 0.38* 14.6± 1.00* 14.3± 1.13 13.6± 0.58 15.6± 0.45 16.6± 0.79

20:5n-3 11.1± 0.93* 8.31± 0.64* 4.25± 0.47 3.11± 0.35 8.96± 0.22* 7.03± 0.33* 3.83± 0.28* 2.57± 0.31*

22:6n-3 3.75± 0.08* 3.12± 0.08* 2.49± 0.17 2.07± 0.14 7.50± 0.33* 5.71± 0.35* 7.12± 0.16 6.34± 0.44
18:3n-6 3.55± 0.19 3.50± 0.19 4.21± 0.19 3.69± 0.24 1.58± 0.14 1.53± 0.12 1.32± 0.04 1.28± 0.09
20:4n-6 4.53± 0.52 3.60± 0.41 7.26± 0.57* 4.68± 0.47* 7.43± 0.40 6.91± 0.57 4.38± 0.42* 2.28± 0.32*

22:4n-6 3.16± 0.36 2.62± 0.31 9.83± 1.21 7.00± 1.14 7.45± 0.31 7.01± 0.53 3.20± 0.31 2.97± 0.40∑
PUFA 31.2± 1.86* 26.0± 1.38* 34.4± 2.60* 26.5± 2.21* 39.5± 0.88* 34.3± 1.52* 26± 0.97* 21.5± 0.82*∑
n-3 PUFA 17.6± 1.14* 13.7± 0.76* 8.53± 0.81 6.59± 0.65 19.6± 0.65* 14.8± 0.63* 12.6± 0.35* 10.3± 0.51*∑
n-6 PUFA 13.4± 0.71 12.2± 0.61 25.4± 1.79* 19.5± 1.63* 19.5± 0.98 19.5± 1.29 13.3± 0.71* 11.1± 0.59*

Totala (% lipid) 34.9± 2.84* 26.1± 2.21* 30.0± 3.36* 18.7± 2.06* 33.4± 3.14* 16.4± 0.78* 25.8± 3.10 29.2± 2.16

Notes.
Values are presented as means± SEM (n= 20).
16 Ac, Hexadecyl acetate; DMA 18:0, 1,1-dimethoxyoctadecane; 16:OH, 1-hexadecanol.
*indicate significant differences between intact and recombined samples within each species (P < 0.05).
aTotal value also includes the minor fatty acids: 8:0, 10:0, 12:0, 15:0, 17:0, 20:0, 21:0, 22:0, 24:0, 14:1n-5, 15:1n-5, 16:1n-7, 17:1n-7, 18:1n-7, 18:1n-7trans, 18:1n-9trans, 20:1n-9,
22:1n-9, 24:1n-9, 16:2n-4, 16:3n-4, 18:3n-4, 18:3n-3, 18:4n-3, 20:4n-3, 22:3n-3, 22:5n-3, 24:6n-3, 18:2n-6, 18:2n-6trans, 20:2n-6, 20:3n-6, 22:2n-6, 22:5n-6.

Principal components
Both groups were separated fairly well along the first two principal components, which
described a large proportion of the data (A. millepora: 76.4%,M. crassotuberculata: 54.0%,
P. damicornis: 64.0%, P. cylindrica: 60.1%) (Fig. 3). For all species, 16:0 was a major
contributor to the separation of the skeleton from the tissue, being largely retained by the
skeleton (Fig. 4). The fatty alcohol, 16:OH, along with 21:0, 20: 1n−11, and EPA, were
more strongly associated with the tissue for all species. The major contributor to the second
principal component was DHA for A. millepora, P. cylindrica, and P. damicornis.

DISCUSSION
The present study evaluated the comparative efficacy of two sample preparation methods
of scleractinian corals for accurate lipid and FA analysis. Lipids and their constituent classes
and FA play important roles in coral energy storage, cell membrane structure, and overall
fitness (Bergé & Barnathan, 2005; Farre, Cuif & Dauphin, 2010). As such, lipid analysis is
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Figure 2 Fatty acid composition of denuded skeleton and isolated tissue of four scleractinian species
prepared with the air-spraying method—relative contribution (% total) Values are presented as
means± SEM (n = 20). * denote significant differences between stacked bars within each species (tissue
vs skeleton) (P < 0.05).

Figure 3 Score plot of principal component analysis of fatty acid and fatty alcohol profiles (based on
% fatty acids) of denuded skeleton and isolated tissue of four scleractinian species prepared with the
air-spraying method (ellipses show 95% confidence intervals).
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Figure 4 Principal component analysis loading plot of fatty acid and fatty alcohol profiles of denuded
skeleton and isolated tissue of four scleractinian species prepared with the air-spraying method (%
fatty acids). Colour gradient shows percentage contribution to overall variance. Fatty alcohol abbrevia-
tions: 16 Ac, Hexadecyl acetate; DMA, 18:0, 1,1-dimethoxyoctadecane; 16:OH, 1-hexadecanol.

an important and prevalent aspect of coral biology, and the use of accurate and ubiquitous
methodology in coral biochemistry ensures that subsequent actions in coral monitoring,
rehabilitation, and aquaculture efforts are appropriate and well-informed.

Recombining the sprayed tissue and denuded skeleton ex post facto and comparing
with the intact samples revealed significant tissue and hence lipid loss across all samples
prepared with the air-spraying technique (Table 1). This loss likely occurred during the
additional steps required by this method, increasing the risk of tissue loss through residue
on apparatus, including the airgun nozzle, polyethylene bag, and homogeniser shaft,
despite thorough rinsing. Additionally, the increased handling time increases the risk of
lipid oxidation through excessive air exposure, potentially altering the lipid profile. Lipid
oxidation is also a major drawback of some alternative, rarefied methods of coral lipid
extraction. For example, the process of decalcifying the coral skeleton with an acetic acid
solution (e.g., Yamashiro et al., 1999;Rodríguez-Troncoso et al., 2011) is likely to elicit major
alteration of the lipid profile, since acetic acid has been shown to cause significant lipid
oxidation and fatty acid hydrolysis (Sajiki, Takahashi & Takahashi, 1995). Additionally,
the gravimetric calculation method of soaking the oven-dried coral in toto in an organic
solvent and re-weighing the re-dried skeleton to quantify total lipids (e.g., Ward, 1995;
Pisapia, Anderson & Pratchett, 2014) involves excessive sample handling and exposure to
heat - greatly increasing the risk of lipid degradation and rendering this technique unusable
for qualitative analyses. In contrast, the in toto crushing method used in the present study
requires far less sample handling and laboratory equipment, preserving the integrity of the
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lipid profile. Moreover, intact skeletons are only processed once freeze-dried and re-frozen,
minimising the risk of oxidation and making residue easy to recover.

In addition to lipid loss, the results conclusively demonstrate that the large majority
of the coral’s total organic fraction is retained in the skeleton for all genera, including
almost half the total lipid concentration (Table 1). This is despite scrupulously air-spraying
the skeletons for ten minutes until they were uniformly white, and triple-rinsing the
sprayed skeletons in seawater in an attempt to completely denude the skeletons of organic
material. As such, excluding the denuded skeleton and analysing the isolated tissue alone
for proximate composition incurs a significant underestimation of the total organic
content and subsequent lipid concentration of the coral holobiont. Moreover, since lipid
only constituted 2.5–8.7% of the total organic material (Table 1), the majority of the
organic material recorded in both the skeleton and tissue went unclassified. This remaining
portion likely consists of protein, amino acids, and carbohydrates, which are prevalent
in a coral’s organic fraction (Dauphin & Cuif, 1997; Allemand et al., 1998). Clearly, the
total concentration of these compounds would also be severely underestimated using the
air-spraying method. However, these represent critical nutrients in coral life functions
since protein fuels tissue growth and calcification, while carbohydrates represent a quickly-
mobilised energy source that sustain coral metabolism (Oku et al., 2002; Ramos-Silva et al.,
2014). As such, this method can be deemed inappropriate not only for lipid analyses, but
all proximate analyses.

The relative partitioning of structural complexity is different among the four
morphotypes investigated. In particular, the genera, Acropora, Montipora, and Porites
grow perforate skeletons with a relatively simple external structure, yet great internal
complexity (Dauphin, Cuif & Massard, 2006; Farre, Cuif & Dauphin, 2010; Work & Aeby,
2010; Yost et al., 2013). The internal complexity of perforate corals is largely comprised of
the intricate gastrovascular system, which penetrates deep into the skeleton and forms a
three-dimensional environment for the dispersion of symbionts and organic matter (Hii,
Soo & Liew, 2008; Veal et al., 2010; Work & Aeby, 2010; Davy, Allemand &Weis, 2012). In
some cases, pockets of skeletal tissue are completely confined by the skeleton, and this
internal tissue network cannot realistically be evacuated through the use of air-spraying.

On the other hand, the Pocillopora genus is known to produce imperforate skeletons,
possessing only a thin layer of external tissue (Yost et al., 2013). Therefore, the persistence
of >80% of the total organic material in the P. damicornis skeleton, including 42% of
the total lipids, was surprising. However, this is likely attributable to two factors: Firstly,
branching imperforate corals such as P. damicornis exhibit high levels of external structural
complexity, including immersed corallites (Veron, 2000), compared to perforate genera
(Yost et al., 2013). This external structural complexity impedes the ability of air-spraying
to completely denude the skeleton, despite the rigorous and standardised application of
the method.

Residual surface tissue has previously been demonstrated using the Water-Pik method
(see Johannes & Wiebe, 1970) in both perforate (Bachok, Mfilinge & Tsuchiya, 2006) and
imperforate (Brahmi et al., 2012) coral skeletons. Additionally, the Water-Pik method
does not entirely remove thick, fibrous mesoglea, including zooxanthellae, in several
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coral genera, including Montipora, Pocillopora, and Porites (Johannes & Wiebe, 1970).
Presumably, this also applies to the air-spraying method, as both rely on pressurised water
or air driving tissue from the skeleton. Yet the lipid content has been shown to be highest
in the mesoglea and zooxanthellae, as well as the lower half of polyps, which contain
the gastrodermis (Al-Sofyani, 1994). This is supported by coral tissue histology, which
shows high amounts of lipid droplets in the gastrodermal layer of P. damicornis, with the
epidermal layer containing far less (Luo et al., 2009; Kopp et al., 2015).

Secondly, persistent organic material in the denuded skeleton likely includes the organic
matrix, for which lipids have been shown to play a significant role in forming (Marin &
Luquet, 2008; Adamiano et al., 2014). Changes in production rates of the organic matrix
has been attributed to growth and skeletal deposition (Stolarski, 2003). Furthermore,
dynamic changes in lipid compositions of the host gastrodermis are known to reflect the
endosymbiotic status (Luo et al., 2009). Since these represent significant processes in coral
biology, inclusion of the skeletal component in lipid analyses is imperative in order to gain
an accurate insight into a coral’s physiological and biochemical condition.

The persistent lipid in the denuded skeletons also differed in chemical nature from the
sprayed tissue. Storage lipids (WAX, TAG, FFA, and 1,2-DAG) are generally associated
with energy supply, while structural lipids (AMPL, PE, PS-PI, and PC) are important for
the membrane lipid bilayer, and cell membrane stability (Lee, Hagen & Kattner, 2006).
Generally, the storage lipids were found in higher concentrations in the skeleton, while the
structural lipids predominated in the tissue for all species except P. cylindrica (Fig. 1). The
prevalence of storage lipids in the skeleton may be ascribable to a higher proportion of
host tissue, including the gastrodermis, persisting deeper into the skeleton, as up to 90%
of storage lipid has been found to reside in the host tissue rather than the zooxanthellae,
largely in the form of WAX and TAG (Imbs, Yakovleva & Pham, 2010; Chen et al., 2015).
Underestimation of storage lipids in corals has ramifications for biological studies, as WAX
and TAG are considered to be the most important lipid species with respect to energetic
status, which describes the amount of available energy compared to the energy required
(Anthony et al., 2009; Imbs, 2013). In particular, concentrations of storage lipids are known
to alter in response to coral metabolic requirements (Oku et al., 2002), reproduction (Arai
et al., 1993), and zooxanthellae activity (Oku et al., 2002), which are key processes in coral
biology and ecology.

Structural differences extended to the FA composition, which showed marked variation
between the denuded skeleton and sprayed tissue, likely reflecting the larger proportion
of host tissue in the denuded skeleton and zooxanthellae in the sprayed tissue, as well as
functional specialisation of internal and external tissues (Imbs, Yakovleva & Pham, 2010;
Chen et al., 2015). While zooxanthellae densities were not quantified in this work, high
zooxanthellae contents have been previously recorded in isolated tissue using theWater-Pik
method (Edmunds & Gates, 2002). Moreover, although zooxanthellae have been shown
to reside within the gastrovascular system (Domart-Coulon et al., 2006), this is largely in
the upper portion to gain access to light (Goldberg, 2002), and may thus be more readily
removed through air-spraying.
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Higher total FA concentrations were evident in the skeleton for all species (although
this was only statistically significant for P. cylindrica and P. damicornis), which is reflective
of the different lipid class compositions between the two isolates; the skeleton contained
higher levels of TAG, which contains three esterified FA, while the sprayed tissue was richer
in phospholipids, ST, and AMPL, which possess two or less esterified FA (Lee, Hagen &
Kattner, 2006).

Despite a relatively uniform distribution of the major FA classes, SFA, MUFA, and
PUFA, between the skeleton and tissue, the individual FA differed substantially between
the two isolates. This was illustrated in the separation achieved by PCA between the
denuded skeleton and sprayed tissue, and correlates with the findings of Chen et al. (2015);
that FA moieties of each lipid species differ between host and symbiont tissues.

For example, the FA 14:0, 16:0, and 20:0 contributed largely to the separation of the
skeleton from the tissue for most species (Fig. 4), and these generally predominate in
host tissues compared to zooxanthellae (Treignier et al., 2008). This is also consistent
with the higher abundance of WAX and TAG in the skeleton, since SFA, particularly
16:0, are generally the major FA moieties of these classes in cnidarians (Yamashiro et
al., 1999). Furthermore, n-6 PUFA were present in higher proportions in the denuded
skeleton compared to the sprayed tissue for M. crassotuberculata, P. cylindrica, and
P. damicornis (Fig. 2), and these have previously been shown to predominate in coral
host tissue (Treignier et al., 2008).

The lipid and FA profile of the sprayed tissue may also be specialised to cope with
external changes and threats, such as environmental conditions and disease. For instance,
16:OH, 21:0, 20:1n-11, and EPA generally showed stronger associations with the tissue for
most species. The fatty alcohol, 16:OH, is recognised as an inhibitor of bacterial fouling in
some coral species (Dobretsov et al., 2015), while EPA provides immune function (Bergé &
Barnathan, 2005), as well as photo-protection from ultraviolet radiation (Pilkington et al.,
2011). Furthermore, higher levels of phospholipids in the tissue compared to the skeleton for
A. millepora, M. crassotuberculata, and P. damicornis may reflect the necessity of the outer
tissues to cope with seasonal fluctuations in temperature, since regulation of phospholipid
composition is suggested to reflect thermal tolerance in corals (Revel et al., 2016).

These results clearly demonstrate compartmentalisation of lipid classes and FA in the
internal and external tissues of the coral holobiont. As such, this study conclusively
demonstrates the inadequacy of the air-spraying technique to provide accurate
identification and subsequent quantification of the total lipid and FA profile of corals,
and this extends to all proximate analyses. Use of the intact crushing method for coral
biochemical analyses is therefore recommended, since it is robust against tissue loss and
accounts for the entire chemical composition of the holobiont.

Should studies require additional biometrics rendered impossible by the in toto crushing
method, such as zooxanthellae densities and surface area, the use of separate, replicate
samples to accommodate these analyses is recommended.
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