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Species interactions are a key component of ecosystems but we generally have an

incomplete picture of who-eats-who in a given community. Different techniques have been

devised to predict species interactions using theoretical models or abundances. Here, we

explore the K nearest neighbour approach, with a special emphasis on recommendation,

along with a supervised machine learning technique. Recommenders are algorithms

developed for companies like Netflix to predict whether a customer will like a product

given the preferences of similar customers. These machine learning techniques are well-

suited to study binary ecological interactions since they focus on positive-only data. By

removing a prey from a predator, we find that recommenders can guess the missing prey

around 50% of the times on the first try, with up to 881 possibilities. Traits do not improve

significantly the results for the K nearest neighbour, although a simple test with a

supervised learning approach (random forests) show we can predict interactions with high

accuracy using only three traits per species. This result shows that binary interactions can

be predicted without regard to the ecological community given only three variables: body

mass and two variables for the species' phylogeny. These techniques are complementary,

as recommenders can predict interactions in the absence of traits, using only information

about other species' interactions, while supervised learning algorithms such as random

forests base their predictions on traits only but do not exploit other species' interactions.

Further work should focus on developing custom similarity measures specialized for

ecology to improve the KNN algorithms and using richer data to capture indirect

relationships between species.
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0 Abstract8

Species interactions are a key component of ecosystems but we generally have an incomplete9

picture of who-eats-whom in a given community. Different techniques have been devised to pre-10

dict species interactions using theoretical models or abundances. Here, we explore the K nearest11

neighbour approach, with a special emphasis on recommendation, along with a supervised ma-12

chine learning technique. Recommenders are algorithms developed for companies like Netflix to13

predict whether a customer will like a product given the preferences of similar customers. These14

machine learning techniques are well-suited to study binary ecological interactions since they15

focus on positive-only data. By removing a prey from a predator, we find that recommenders16

can guess the missing prey around 50% of the times on the first try, with up to 881 possibilities.17

Traits do not improve significantly the results for the K nearest neighbour, although a simple18

test with a supervised learning approach (random forests) show we can predict interactions with19

high accuracy using only three traits per species. This result shows that binary interactions can20

be predicted without regard to the ecological community given only three variables: body mass21

and two variables for the species’ phylogeny. These techniques are complementary, as recom-22

menders can predict interactions in the absence of traits, using only information about other23

species’ interactions, while supervised learning algorithms such as random forests base their24

predictions on traits only but do not exploit other species’ interactions. Further work should25

focus on developing custom similarity measures specialized for ecology to improve the KNN26
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algorithms and using richer data to capture indirect relationships between species.27

1 Introduction28

Species form complex networks of interactions and understanding these interactions is a major29

goal of ecology [29]. The problem of predicting whether two species will interact has been30

approached from various perspectives [3, 25]. Williams and Martinez [35] for instance built a31

simple theoretical model capable of generating binary food webs sharing important features with32

real food webs [17], while others have worked to predict interactions from species abundance data33

[1, 7] or exploiting food web topology [9, 32]. Being able to predict with high enough accuracy34

whether two species will interact given simply two sets of attributes, or the preferences of similar35

species, would be of value to conservation and invasion biology, allowing us to build food webs36

with partial information about interactions and help us understand cascading effects caused37

by perturbations. However, the problem is made difficult by the small number of interactions38

relative to non-interactions and relationships that involve more than two species [16].39

In 2006, Netflix offered a prize to anyone who would improve their recommender system by40

more than 10%. It took three years before a team could claim the prize, and the efforts greatly41

helped advancing machine learning methods for recommenders [27]. Recommender systems42

try to predict the rating a user would give to an item, recommending them items they would43

like based on what similar users like [2]. Ecological interactions can also be described this44

way: we want to know how much a species would “like” a prey. Interactions are treated as45

binary variables, two species interact or they do not, but the same methods could be applied to46

interaction matrices with preferences. There are two different ways to see the problem of species47

interactions. In the positive-only case, a species has a set of preys, and we want to predict48

what other preys they might be interested in. This approach has the benefit of relying only on49

our most reliable information: positive (preferably observed) interactions. The other approach50

is to see binary interactions as a matrix filled with interactions (1s) and non-interactions (0s).51

Here, we want to predict the value of a specific missing entry (is species xi consuming species52

xj?). For this paper, we focus on the positive-only approach, which relies on a simple machine53

learning approach called the K nearest neighbour.54
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Method Input Prediction

Recommender (KNN) Set of traits & preys for each species Recommend new preys
Supervised learning (RF) Traits (binary and real-valued) Interaction (1) or non-interaction (0)

Table 1: Summary of the two methods used. The recommender uses the K nearest neighbour
algorithm with the Tanimoto distance measure. The Tanimoto KNN makes a recommendation,
while supervised learning with random forests (RF) predict either an interaction or a non-
interaction.

Statistical machine learning algorithms [27] have proven to be reliable to build effective55

predictive models for complex data (the “unreasonable effectiveness of data” [19]). The K56

nearest neighbour (KNN) algorithm is an effective and simple algorithm for recommendation,57

in this case finding good preys to a species with positive-only information. The technique is58

simple: for a given species, we find the K most similar species according to some distance59

measure, and use these K species to base a prediction. If all the K most similar species prey60

on species x, there is a good chance that our species has interest in x. In our case, similarity is61

simply computed using traits and known interactions, but more advanced techniques could be62

used with a larger set of networks. For example, it is possible to learn similarity measures instead63

of using a fixed scheme [4]. For this study, we use a data-set from Digel et al. [12], which contains64

909 species, of which 881 are involved in predator-prey relationships and 871 have at least one65

prey. The data comes from soil food webs and includes invertebrates, plants, bacteria, and fungi.66

In total, the data-set has 34 193 interactions. The data was complemented with information67

on 25 binary attributes (traits) for each species, plus their body mass and information on their68

phylogeny. We also compare our approach to a supervised learning method, random forests,69

which is used to predict interactions with only the species’ traits.70

A summary of the two methods used can be found in table 1. The approaches are not71

directly comparable. For example, the positive-only KNN recommends preys to a species. If we72

remove a prey from a species, ask the algorithm to recommend a prey, and check whether the73

prey will come up as the recommendation, there are up to 881 possibilities. On the other hand,74

the random forest predicts either an interaction or a non-interaction, a 50% chance of success by75

random. These approaches have different uses. Positive-only algorithms are interesting because76

we are rarely certain that two species do not interact. Also, the KNN approach uses information77

on what similar species do, while random forests only rely on traits.78
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We show the KNN is particularly effective at retrieving missing interactions in the positive-79

only case, succeeding 50% of the times at recommending the right species among 881 possibilities.80

With few traits, the random forests can achieve high accuracy (≈ 98% for both interactions and81

non-interactions) without any information about other species in the community. Random82

forests require only three traits to be effective: body mass and two traits based on the species’83

phylogeny. Our results show that, with either three traits per species or partial knowledge84

of the interactions, it is possible to reconstruct a food web accurately. These approaches are85

complementary, covering both the case where traits are readily available and when only partial86

knowledge of the food web is known. Both techniques can be used to reconstruct a food web87

with different types of information.88

2 Method89

2.1 Data90

The first data-set was obtained from the study of Digel et al. [12], who documented the presence91

and absence of interactions among 881 species from 48 forest soil food webs, details of which92

are provided in the original publication. 34 193 unique interactions were observed across the 4893

food webs, and a total of 215 418 absence of interactions. In order to improve representation of94

interactions involving low trophic levels species that were not identified at the species level in95

the first data-set, we compiled a second data-set from a review of the literature. We selected96

all articles involving interactions of terrestrial invertebrate species for a total of 126 studies,97

across these, a total of 1 439 interactions were recorded between 648 species. Only 88 absences98

of interactions were found. We selected traits based on to their potential role in consumption99

interactions (table 2). For each species or taxa, these traits were documented based on a100

literature review or from visual assessment of pictures. In addition to these traits, we included101

two proxies for hard-to-measure traits: feeding guild and taxonomy. The traits were chosen for102

their potential relevance for species interactions and their availability, see [22] for greater details103

on the data-set.104
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Features Abbr. Description n

AboveGroud AG Whether the species live above the ground. 538
Annelida An For species of the annelida phylum. 34
Arthropoda Ar For species of the arthropoda phylum. 813
Bacteria Bc For species of the bacteria domain. 1
BelowGround BG For species living below the ground. 464
Carnivore Ca For species eating other animals. 481
Crawls Cr Whether the species crawls. 184
Cyanobacteria Cy Member of the cyanobacteria phylum. 1
Detritivore De For species eating detribus. 355
Detritus Ds Whether the species can be classifying as a detritus. 2
Fungivore Fg For species eating fungi. 111
Fungi Fu Member of the fungi kingdom. 2
HasShell HS Whether the species has a shell. 274
Herbivore He For species eating plants. 130
Immobile Im For immobile species. 85
IsHard IH Whether the species has a though exterior (but not a shell). 418
Jumps Ju Whether the species can jump. 30
LongLegs LL For species with long legs. 59
Mollusca Mo Member of the mollusca phylum. 45
Nematoda Ne Member of the nematoda phylum. 5
Plantae Pl Member of the plant kinggom. 3
Protozoa Pr Member of the protozoa kingdom. 3
ShortLegs SL For species with short legs. 538
UsePoison UP Whether the species uses poison. 177
WebBuilder WB Whether the species builds webs. 89
Body mass M Natural logarithm of the body mass in grams 881
Ph0 Ph0 Coordinate on the first axis of a PCA of phylogenetic distances 881
Ph1 Ph1 Coordinate on the second axis of a PCA of phylogenetic distances 881

Table 2: The traits used. All traits are binary except for body mass, Ph0, and Ph1. We use
taxonomy as a proxy of latent traits following [26]. To do so, we used the R package ape to
obtain taxonomic distances between the species, perform classical multidimensional scaling (or
principal coordinates analysis) [10] on taxonomic distances, and use the scores of each species
on the first two axes (Ph0 and Ph1) as taxonomy-based traits. These three real-valued variables
are scaled to be in the [0, 1) range. For the Tanimoto similarity index, these three continuous
variables have to be converted to binary features. For each, we create four binary features of
equal size (n = 881/4).
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2.2 K-nearest neighbour105

Our recommender uses the K-nearest neighbour (KNN) algorithm [27]. The KNN algorithm106

is an instance-based method, it does not build a general internal model of the data but instead107

bases predictions on the K nearest (i.e. most similar) entries given some distance metrics. In108

the case of recommendation, each species is described by a set of traits and a set of preys, and109

the algorithm will recommend new preys to the species based on the preys of its K nearest110

neighbours. For example, if K = 3, we take the set of preys of the three most similar species111

to decide which prey to recommend. If species A is found twice and B once in the set of preys112

of the most similar species, we will recommend A first (assuming, of course, that the species113

does not already have this prey). See table 3 for a complete example of recommendation. In114

the “Netflix” problem, this is equivalent to recommending new TV series/movies to a user by115

searching for the users with the most similar taste and using what they liked as recommendation.116

It is also possible to tackle the reverse problem: Amazon uses item-based recommendations, in117

which case we are looking for similar items instead of similar users to base our recommendations118

[2].119

Choosing the right value for K is tricky. Low values give high importance to the most similar120

entries, while high values provide a larger set of examples. Fortunately, the most computationally121

intensive task is to compute the distances between all pairs, a step that is independent of K. As122

a consequence, once the distances are computed, we can quickly run the algorithm with different123

values of K.124

Different distance measures can be used. We will use the Tanimoto coefficient for recommen-125

dations. The Tanimoto (or Jaccard) similarity measure is defined as the size of the intersection126

of two sets divided by their union, or:127

tanimoto(x,y) =
|x ∩ y|

|x ∪ y|
, (1)

Since it is a similarity measure in the [0, 1] range, we can transform it into a distance function128

with 1− tanimoto(x,y). The distance function uses two types of information: the set of traits129

of the species (see table 2) and their set of preys. We define the distance function with traits130
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as:131

tanimotod(x,y, wt) = wt(1− tanimoto(xt,yt)) + (1− wt)(1− tanimoto(xi,yi)), (2)

where wt is the weight given to traits, xt and yt are the sets of traits for species x and y,132

and xi, yi are their sets of preys. Thus, when wt = 0, only interactions are used to compute the133

distance, and when wt = 1, only traits are used. See table 3 for an example.134

The data is the set of preys and binary traits for each species (Table 2). To test the approach,135

we randomly remove an interaction for each species and ask the algorithm to recommend up to136

10 preys for the species with the missing interaction. Interactions are removed one-at-a-time and137

similarity is computed before the interaction is removed. The code for computing similarities138

after the interaction is removed is available in the code repository, but it has little effect on139

the results while making the program much slower to run since the similarity matrix must be140

computed for each trial. We count how many recommendations are required to retrieve the141

missing interactions and compute the top1, top5, and top10 success rates, which are defined142

as the probabilities to retrieve the missing interaction with 1, 5, or 10 recommendations. We143

repeat this process 10 times for each species with at least 2 preys, totally 7200 attempts. We144

test all odd values of K from 1 to 19, and wt = {0, 0.2, 0.4, 0.6, 0.8, 1}. We also divided species145

in groups according to the number of preys they have to see if it is easier to find the missing146

interaction for species with fewer preys.147

2.3 Supervised learning148

We also do a simple test with random forests to see if it is possible to predict interactions in this149

data-set using only the traits [6]. In this case, the random forests perform supervised learning:150

we are trying to predict y (interaction) from the vector of traits x by first learning a model on151

the training set, and testing the learned model on a testing set. We keep 5% of the data for152

testing. We perform grid search to find the optimal parameters for the random forests.153

For our predictions, we count the number of true positives (tp), true negatives (tn), false154

positives (fp) and false negatives (fn). The score for predicting interactions (Scorey), non-155
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Species ID Traits Preys Most similar Recommendations

0 {Ar,Ca} {6, 42, 47} {6, 28, 70} [812, 70, 72]
6 {Ar,Ca} {42, 47, 70, 72}
28 {Ar,Ca} {42, 47, 70, 812}
70 {Ca} {42, 47, 812}
. . . . . . . . .

Table 3: Fictional example to illustrate recommendations with K nearest neighbour using the
Tanimoto distance measure modified to include species traits. We are trying to recommend a
prey to species 0 given that the three most similar species are species 6, 28, and 70. For example,
the distance from species 0 to species 70 would be wt0.5+(1−wt)2/4. To find recommendations,
the set of preys found in the K = 3 most similar entries is computed, in this case {812 = 2, 70 =
2, 72 = 1}, leading to the list of recommendations [812, 70, 72]. Because they are found most
often in the K most similar species, candidates 812 and 70 will be suggested before 72. To test
this approach, we remove a prey from a species and check whether the algorithm recommend
the missing prey. Especially with low K, it’s possible that no recommendations can be found,
for example if the most similar species has the exact same preys.

interactions (Score
¬y) and the accuracy are defined as156

Scorey =
tp

tp+ fp
, (3)

Score
¬y =

tn

tn+ fn
, (4)

Accuracy =
Scorey34193 + Score

¬y741968

8812
, (5)

with 34193 and 741968 being the number of observed interactions and non-interactions in157

the 881 by 881 matrix. We then use the True Skill Statistics (TSS) to measure how accurate158

the random forest is, defined a159

TSS =
(tp× tn)− (fp× fn)

(tp+ fn)(fp+ tn)
. (6)

The TSS ranges from -1 to 1.160

2.4 Code and Data161

Since several machine learning algorithms depends on computing distances (or similarities) for all162

pairs, many data structures have been designed to compute them efficiently from kd-trees discov-163

ered more than thirty years ago [14] to ball trees, metric skip lists, navigating nets [23], and cover164
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trees [5, 23]. We use an exact but naive approach that works well with small data-sets. Since165

distance(x, y) = 0 if x = y and distance(x, y) = distance(y, x), our C++ implementation stores166

the distances in a lower triangular matrix without the diagonal, yielding n(n−1)/2 distances to167

compute. A linear scan is then used to find the most similar species. Computing the distance168

matrix and testing the predictions 7000 times for a set of parameters takes less than a second.169

We used Scikit for random forests [28]. The C++11 code for the KNN algorithm, Python scripts170

for random forests, and all data-sets used are available at https://github.com/PhDP/EcoInter171

(also stored on zenodo with a DOI: [11]).172

3 Results173

3.1 Recommendation174

While matrix imputation has a 50% change of success by random, the Tanimoto KNN needs to175

pick the right prey among up to 881 possibilities. Yet, it succeeds on its first recommendation176

around 50% of the times. When the first recommendation fails, the next 9 recommendations177

only retrieve the right species around 15% of the times so the top5 and top10 success rates are178

fairly close to the top1 success rate (see figure 1). The Tanimoto measure is particularly effective179

for species with fewer preys, achieving more than 80% success rate for species with 10 or fewer180

preys (Figure 2).181

The highest first-try success rates (the probability to pick the missing interaction on the first182

recommendation) are found with K = 7 and no weights to traits, and with K = 17 and a small183

weight of 0.2 to traits (Table 4). Overall, the value of K had little effect on predictive ability.184

3.2 Supervised learning185

Random forests predict correctly 99.55% of the non-interactions and 96.81% of the interactions,186

for a TSS of 0.96. Much of this accuracy is due to the three real-valued traits (body mass, Ph0,187

Ph1). Without them, too many entries have the same feature vector x, making it impossible188

for the algorithm to classify them correctly. Removing the binary traits has little effect on the189

model. With only body mass, Ph0, Ph1, the TSS of the random forests is 0.94.190
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Figure 1: Finding the missing interaction with KNN/Tanimoto approach. After removing a
prey from a predator, we ask the KNN algorithms with Tanimoto measure to make 10 recom-
mendations (from best to worst). The figure shows how many recommendations are required to
retrieve the missing interaction. Most retrieved interactions are found with the first attempt.
This data was generated with K = 7 and wt = 0.
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Figure 2: Success on first guess with Tanimoto similarity as a function of the number of prey.
The KNN algorithm with Tanimoto similarity is more effective at predicting missing preys when
the number of preys is small. This is probably in good part because there are more information
available to the algorithm, since 473 species have 10 or fewer preys, 295 have between 10 and
100, 103 species have more than 100 preys.
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41.4 41 40.8 40.5 40.3 22.4

48.8 48.8 49.2 48.5 48.3 32.6

54 52.7 52.5 51.1 50.4 39.3

55.5 55.4 53.4 52 50.8 40.3

54.8 54.8 53.8 55.4 51.4 40.3

54.9 54.2 54.3 54.9 50.1 40.2

53.1 53.7 54.6 53.7 50.6 40.1

53.8 56.2 56.4 53.5 50 40.5

53.8 56.5 55.1 53.4 49.9 40.8

53.2 55.7 55.5 54.5 49.8 41.3

30

40

50

value

0.0 0.2 0.4 0.6 1.00.8

w

5

1

3

7

9

11

13

15

17

19

K

Table 4: Top1 success rates for the KNN/Tanimoto algorithm with various K and weights to
traits. When wt = 0.0, the algorithm will only use interactions to compute similarity between
species. When wt = 1, the algorithm will only consider the species’ traits (see table 2). The
value is the probability to retrieve the correct missing interaction with the first recommendation.
For each entry, n = 871 (the number of species minus 10, the number of species with no preys).
The best result is achieved with K = 17 and w = 0.2, although the results for most values of
K and w = [0.0, 0.2] are all fairly close. The success rate increases with K when only traits are
considered (w = 1).
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4 Discussion191

We applied different machine learning techniques to the problem of predicting binary species192

interactions. Recommendation is arguably a better fit for binary species interactions, since it193

is essentially the same problem commercial recommenders such as Netflix face: given that a194

user like item i, what is the best way to select other items the user would like? In this case,195

users are species, and the items are their preys, but the problem is the same. In both cases,196

we can have solid positive evidence (observed or implied interactions), but rarely have proofs of197

non-interactions. The approach yields strong results, with a top1 success rate above 50% in a198

food web with up to 881 possibilities. The approach could be used, for example, to reconstruct199

entire food webs using global database of interactions [30]. The method’s effectiveness rely on200

nestedness: how much species cluster around the same set of preys in a food web [18]. Thus, it201

should be less effective in food webs with more unique predators.202

The KNN algorithm falls into the realm of unsupervised learning, where the goal is to find203

patterns in data [27]. The other class of machine learning algorithms, supervised learning,204

have the clearer goal of predicting a value y from a vector of features x. For example, in205

supervised learning, we would try to predict an interaction y from the vector of traits x, while a206

unsupervised approach can fill entries from an incomplete matrix regardless of what the entry is207

(interaction or trait). With a larger set of food webs, it may be possible to use an unsupervised208

algorithm, for example a neural network, to train a model for matrix imputation. Instead of209

recommending new preys, imputation would simply fill missing entries from a matrix (interaction210

or non-interactions).211

Our random forests achieve a TSS of 0.96 using the binary traits, body mass, and the co-212

ordinates of the multidimensional scaling. This is consistent with previous research that has213

shown that ecological networks have relatively few dimensions [13]. A random forest can build214

effective predictive models by creating complex rules based on the traits, while the KNN algo-215

rithm relies on a simplistic distance metrics. However, the KNN approach has some advantages216

over supervised learning, namely the capacity to recommend preys using only the information217

from the other species’ interactions. The solution to improve the KNN approach in ecology is218

likely to learn distance metrics [4] instead of using a fixed formula. This would allow complex219
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rules while maintaining the KNN’s ability to exploit partial food web structures. Learning dis-220

tance metrics is a promising avenue to improve our results. Much efforts on the Netflix prize221

focused on improving similarity measures [33, 21], and custom similarity metrics can be used to222

improve unsupervised classification algorithms [4] by exploiting complex domain-specific rules.223

Maybe species with many preys, apex predators, or specialists behave differently enough to224

need different similarity measures. Learning distance metrics from data is a common way to225

improve methods based on a nearest neighbour search [37, 4], allowing the measure itself to226

be optimized. We only used the K nearest neighbour algorithm for unsupervised learning, but227

several other algorithms can be used to solve the “Netflix problem”. For example: techniques228

based on linear programming, such as recent exact methods for matrix completion based on229

convex optimization [8] or low-rank matrix factorization. The latter method reduces a matrix230

to a multiplication between two smaller matrices, which can be used both to predict missing231

entries and to compress large matrices into small, more manageable matrices [34]. Given enough232

data, deep learning methods such as deep Boltzmann machines could also be used [38]. Deep233

learning revolutionized machine learning with neural networks made of layers capable of learn-234

ing increasingly detailed representations of complex data [20]. Many of the most spectacular235

successes of machine learning use deep learning [24]. However, learning several neural layers to236

form a deep networks would require larger data-sets.237

The low sensitivity to K in recommendations is interesting and makes the approach easier238

to use. This is caused by the fact that, as K grows, the set of species includes more and more239

unrelated species with widely different set of preys. If we increase K from k to k + δ for a240

recommendation, the species in δ range are not only less similar, but they are less likely to share241

preys among themselves. Since recommendations are based on how many times a prey is found242

in the K nearest species, the species in the δ range are unlikely to have as much weight as the243

first k species. Our KNN recommender is particularly easy to parametrize since it is neither244

sensible to the weight given to traits nor to the choice of K.245

Our results have two limitations. It is possible that our food web was exceptionally simple,246

and that a food web with distinct structural properties would behave differently, especially if247

it has lower nestedness. The success of the KNN algorithms depends on local structure: how248

much can we learn from similar species. If each species has a unique set of preys, the KNN will249
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struggle more. Also, a deeper issue is that real food webs are not binary structures. Species,250

populations, and individuals have different densities, prey more strongly on some resources than251

others, and have preferences. In a binary matrix, we can predict if two species will interact252

while completely ignoring the rest of the network, but real food webs involve complex indirect253

relationships [36]. It is unclear how much we can learn about ecosystems and species interactions254

from binary matrices, and our results show that binary interactions can be predicted without255

direct knowledge of the community, since we are able to effectively predict if two species interact256

given only three traits. Species interactions are better represented with a weighted hypergraph257

[15], which is well-suited to model relations with an arbitrary number of participants. The258

hyperedge would allow for complex indirect relationships to be included. Understanding these259

hypergraphs is outside the scope of the KNN algorithm but could be understood with modern260

techniques such as Markov logic [31].261

Recommendation (KNN algorithm with Tanimoto distance) and supervised learning (ran-262

dom forests) are complementary techniques. Supervised learning is more useful when we have263

traits and no information about interactions, but it is useless without the traits. On the other264

hand, the recommender performs well without traits but requires at least partial information265

about interactions, although it might be possible to use the interactions from different food webs.266

We suggest more research could be done on developing better distance metrics for ecological267

interactions or learning these metrics from data.268
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