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ABSTRACT
Species interactions are a key component of ecosystems but we generally have an
incomplete picture of who-eats-who in a given community. Different techniques have
been devised to predict species interactions using theoretical models or abundances.
Here, we explore the K nearest neighbour approach, with a special emphasis on
recommendation, along with a supervisedmachine learning technique. Recommenders
are algorithms developed for companies like Netflix to predict whether a customer
will like a product given the preferences of similar customers. These machine learning
techniques are well-suited to study binary ecological interactions since they focus on
positive-only data. By removing a prey from a predator, we find that recommenders
can guess the missing prey around 50% of the times on the first try, with up to 881
possibilities. Traits do not improve significantly the results for the K nearest neighbour,
although a simple test with a supervised learning approach (random forests) show
we can predict interactions with high accuracy using only three traits per species.
This result shows that binary interactions can be predicted without regard to the
ecological community given only three variables: body mass and two variables for
the species’ phylogeny. These techniques are complementary, as recommenders can
predict interactions in the absence of traits, using only information about other species’
interactions, while supervised learning algorithms such as random forests base their
predictions on traits only but do not exploit other species’ interactions. Further work
should focus on developing custom similarity measures specialized for ecology to
improve the KNN algorithms and using richer data to capture indirect relationships
between species.

Subjects Bioinformatics, Ecology
Keywords Food web, Ecology, Species interactions

INTRODUCTION
Species form complex networks of interactions and understanding these interactions is a
major goal of ecology (Pimm, 1982). The problem of predicting whether two species will
interact has been approached from various perspectives (Bartomeus et al., 2016; Morales-
Castilla et al., 2015). Williams & Martinez (2000) for instance built a simple theoretical
model capable of generating binary food webs sharing important features with real
food webs (Gravel et al., 2013), while others have worked to predict interactions from
species abundance data (Aderhold et al., 2012; Canard et al., 2014) or exploiting food web
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topology (Cohen, 1978; Staniczenko et al., 2010). Being able to predict with high enough
accuracy whether two species will interact given simply two sets of attributes, or the
preferences of similar species, would be of value to conservation and invasion biology,
allowing us to build food webs with partial information about interactions and help us
understand cascading effects caused by perturbations. However, the problem is made
difficult by the small number of interactions relative to non-interactions and relationships
that involve more than two species (Golubski et al., 2016).

In 2006, Netflix offered a prize to anyone whowould improve their recommender system
by more than 10%. It took three years before a team could claim the prize, and the efforts
greatly helped advancing machine learning methods for recommenders (Murphy, 2012).
Recommender systems try to predict the rating a user would give to an item, recommending
them items they would like based on what similar users like (Aggarwal, 2016). Ecological
interactions can also be described this way: we want to know how much a species would
‘‘like’’ a prey. Interactions are treated as binary variables, two species interact or they do
not, but the same methods could be applied to interaction matrices with preferences. There
are two different ways to see the problem of species interactions. In the positive-only case, a
species has a set of preys, and we want to predict what other preys they might be interested
in. This approach has the benefit of relying only on our most reliable information: positive
(preferably observed) interactions. The other approach is to see binary interactions as a
matrix filled with interactions (1s) and non-interactions (0s). Here, we want to predict the
value of a specific missing entry (is species xi consuming species xj?). For this paper, we
focus on the positive-only approach, which relies on a simple machine learning approach
called the K nearest neighbour.

Statistical machine learning algorithms (Murphy, 2012) have proven to be reliable to
build effective predictive models for complex data (the ‘‘unreasonable effectiveness of
data’’ Halevy, Norvig & Pereira, 2009). The K nearest neighbour (KNN) algorithm is an
effective and simple algorithm for recommendation, in this case finding good preys to
a species with positive-only information. The technique is simple: for a given species,
we find the K most similar species according to some distance measure, and use these
K species to base a prediction. If all the K most similar species prey on species x , there
is a good chance that our species has interest in x . In our case, similarity is simply
computed using traits and known interactions, but more advanced techniques could be
used with a larger set of networks. For example, it is possible to learn similarity measures
instead of using a fixed scheme (Bellet, Habrard & Sebban, 2015). For this study, we use
a data-set from Digel et al. (2014), which contains 909 species, of which 881 are involved
in predator—prey relationships and 871 have at least one prey. The data comes from soil
food webs and includes invertebrates, plants, bacteria, and fungi. In total, the data-set has
34,193 interactions. The data was complemented with information on 25 binary attributes
(traits) for each species, plus their body mass and information on their phylogeny. We also
compare our approach to a supervised learning method, random forests, which is used to
predict interactions with only the species’ traits.

A summary of the two methods used can be found in Table 1. The approaches are not
directly comparable. For example, the positive-only KNN recommends preys to a species.

Desjardins-Proulx et al. (2017), PeerJ, DOI 10.7717/peerj.3644 2/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.3644


Table 1 Summary of the twomethods used. The recommender uses the K nearest neighbour algorithm
with the Tanimoto distance measure. The Tanimoto KNNmakes a recommendation, while supervised
learning with random forests (RF) predict either an interaction or a non-interaction.

Method Input Prediction

Recommender (KNN) Set of traits & preys for each species Recommend new preys
Supervised learning (RF) Traits (binary and real-valued) Interaction (1) or non-interaction (0)

If we remove a prey from a species, ask the algorithm to recommend a prey, and check
whether the prey will come up as the recommendation, there are up to 881 possibilities.
On the other hand, the random forest predicts either an interaction or a non-interaction,
a 50% chance of success by random. These approaches have different uses. Positive-only
algorithms are interesting because we are rarely certain that two species do not interact.
Also, theKNN approach uses information on what similar species do, while random forests
only rely on traits.

We show the KNN is particularly effective at retrieving missing interactions in the
positive-only case, succeeding 50% of the times at recommending the right species among
881 possibilities. With few traits, the random forests can achieve high accuracy (≈98% for
both interactions and non-interactions) without any information about other species in
the community. Random forests require only three traits to be effective: body mass and
two traits based on the species’ phylogeny. Our results show that, with either three traits
per species or partial knowledge of the interactions, it is possible to reconstruct a food
web accurately. These approaches are complementary, covering both the case where traits
are readily available and when only partial knowledge of the food web is known. Both
techniques can be used to reconstruct a food web with different types of information.

METHOD
Data
The first data-set was obtained from the study of Digel et al. (2014), who documented
the presence and absence of interactions among 881 species from 48 forest soil food
webs, details of which are provided in the original publication. A total of 34,193 unique
interactions were observed across the 48 food webs, and a total of 215,418 absence of
interactions. In order to improve representation of interactions involving low trophic
levels species that were not identified at the species level in the first data-set, we compiled a
second data-set from a review of the literature.We selected all articles involving interactions
of terrestrial invertebrate species for a total of 126 studies, across these, a total of 1,439
interactions were recorded between 648 species. Only 88 absences of interactions were
found. We selected traits based on to their potential role in consumption interactions
(Table 2). For each species or taxa, these traits were documented based on a literature
review or from visual assessment of pictures. In addition to these traits, we included two
proxies for hard-to-measure traits: feeding guild and taxonomy. The traits were chosen for
their potential relevance for species interactions and their availability, see (Laigle et al., in
press) for greater details on the data-set.
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Table 2 The traits used. All traits are binary except for body mass, Ph0, and Ph1. We use taxonomy as a
proxy of latent traits followingMouquet et al. (2012). To do so, we used the R package ape to obtain tax-
onomic distances between the species, perform classical multidimensional scaling (or principal coordi-
nates analysis) (Cox & Cox, 2001) on taxonomic distances, and use the scores of each species on the first
two axes (Ph0 and Ph1) as taxonomy-based traits. These three real-valued variables are scaled to be in the
[0,1) range. For the Tanimoto similarity index, these three continuous variables have to be converted to
binary features. For each, we create four binary features of equal size (n= 881/4).

Features Abbr. Description n

AboveGroud AG Whether the species live above the ground. 538
Annelida An For species of the annelida phylum. 34
Arthropoda Ar For species of the arthropoda phylum. 813
Bacteria Bc For species of the bacteria domain. 1
BelowGround BG For species living below the ground. 464
Carnivore Ca For species eating other animals. 481
Crawls Cr Whether the species crawls. 184
Cyanobacteria Cy Member of the cyanobacteria phylum. 1
Detritivore De For species eating detribus. 355
Detritus Ds Whether the species can be classifying as a detritus. 2
Fungivore Fg For species eating fungi. 111
Fungi Fu Member of the fungi kingdom. 2
HasShell HS Whether the species has a shell. 274
Herbivore He For species eating plants. 130
Immobile Im For immobile species. 85
IsHard IH Whether the species has a though exterior (but not a shell). 418
Jumps Ju Whether the species can jump. 30
LongLegs LL For species with long legs. 59
Mollusca Mo Member of the mollusca phylum. 45
Nematoda Ne Member of the nematoda phylum. 5
Plantae Pl Member of the plant kinggom. 3
Protozoa Pr Member of the protozoa kingdom. 3
ShortLegs SL For species with short legs. 538
UsePoison UP Whether the species uses poison. 177
WebBuilder WB Whether the species builds webs. 89
Body mass M Natural logarithm of the body mass in grams 881
Ph0 Ph0 Coordinate on the first axis of a PCA of phylogenetic

distances
881

Ph1 Ph1 Coordinate on the second axis of a PCA of phylogenetic
distances

881

K -nearest neighbour
Our recommender uses the K -nearest neighbour (KNN) algorithm (Murphy, 2012). The
KNN algorithm is an instance-based method, it does not build a general internal model
of the data but instead bases predictions on the K nearest (i.e., most similar) entries given
some distance metrics. In the case of recommendation, each species is described by a set
of traits and a set of preys, and the algorithm will recommend new preys to the species
based on the preys of its K nearest neighbours. For example, if K = 3, we take the set of
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Table 3 Fictional example to illustrate recommendations withK nearest neighbour using the Tani-
moto distance measure modified to include species traits. We are trying to recommend a prey to species
0 given that the three most similar species are species 6, 28, and 70. For example, the distance from species
0 to species 70 would be wt0.5+ (1−wt )2/4. To find recommendations, the set of preys found in the K =
3 most similar entries is computed, in this case {812= 2,70= 2,72= 1}, leading to the list of recommen-
dations [812,70,72]. Because they are found most often in the K most similar species, candidates 812 and
70 will be suggested before 72. To test this approach, we remove a prey from a species and check whether
the algorithm recommend the missing prey. Especially with low K , it’s possible that no recommendations
can be found, for example if the most similar species has the exact same preys.

Species ID Traits Preys Most similar Recommendations

0 {Ar,Ca} {6,42,47} {6,28,70} [812,70,72]
6 {Ar,Ca} {42,47,70,72}
28 {Ar,Ca} {42,47,70,812}
70 {Ca} {42,47,812}
. . . . . . . . .

preys of the three most similar species to decide which prey to recommend. If species A is
found twice and B once in the set of preys of the most similar species, we will recommend
A first (assuming, of course, that the species does not already have this prey). See Table 3
for a complete example of recommendation. In the ‘‘Netflix’’ problem, this is equivalent
to recommending new TV series/movies to a user by searching for the users with the most
similar taste and using what they liked as recommendation. It is also possible to tackle the
reverse problem: Amazon uses item-based recommendations, in which case we are looking
for similar items instead of similar users to base our recommendations (Aggarwal, 2016).

Choosing the right value for K is tricky. Low values give high importance to the most
similar entries, while high values provide a larger set of examples. Fortunately, the most
computationally intensive task is to compute the distances between all pairs, a step that is
independent of K . As a consequence, once the distances are computed, we can quickly run
the algorithm with different values of K .

Different distance measures can be used. We will use the Tanimoto coefficient for
recommendations. The Tanimoto (or Jaccard) similarity measure is defined as the size of
the intersection of two sets divided by their union, or:

tanimoto(x,y)=

∣∣x∩y∣∣∣∣x∪y∣∣ , (1)

Since it is a similarity measure in the [0,1] range, we can transform it into a distance
function with 1− tanimoto(x,y). The distance function uses two types of information:
the set of traits of the species (see Table 2) and their set of preys. We define the distance
function with traits as:

tanimotod(x,y,wt )=wt (1− tanimoto(xt ,yt ))+ (1−wt )(1− tanimoto(xi,yi)), (2)

where wt is the weight given to traits, xt and yt are the sets of traits for species x and y ,
and xi, yi are their sets of preys. Thus, when wt = 0, only interactions are used to compute
the distance, and when wt = 1, only traits are used. See Table 3 for an example.
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The data is the set of preys and binary traits for each species (Table 2). To test the
approach, we randomly remove an interaction for each species and ask the algorithm to
recommend up to 10 preys for the species with the missing interaction. Interactions are
removed one-at-a-time and similarity is computed before the interaction is removed. The
code for computing similarities after the interaction is removed is available in the code
repository, but it has little effect on the results while making the program much slower
to run since the similarity matrix must be computed for each trial. We count how many
recommendations are required to retrieve the missing interactions and compute the top1,
top5, and top10 success rates, which are defined as the probabilities to retrieve the missing
interaction with 1, 5, or 10 recommendations. We repeat this process 10 times for each
species with at least 2 preys, totally 7,200 attempts. We test all odd values of K from 1 to
19, and wt = {0,0.2,0.4,0.6,0.8,1}. We also divided species in groups according to the
number of preys they have to see if it is easier to find the missing interaction for species
with fewer preys.

Supervised learning
We also do a simple test with random forests to see if it is possible to predict interactions in
this data-set using only the traits (Breiman, 2001). In this case, the random forests perform
supervised learning: we are trying to predict y (interaction) from the vector of traits x by
first learning a model on the training set, and testing the learned model on a testing set.
We keep 5% of the data for testing. We perform grid search to find the optimal parameters
for the random forests.

For our predictions, we count the number of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn). The score for predicting interactions (Scorey),
non-interactions (Score¬y) and the accuracy are defined as

Scorey =
tp

tp+ fp
, (3)

Score¬y =
tn

tn+ fn
, (4)

Accuracy =
Scorey34193+Score¬y741968

8812
, (5)

with 34,193 and 74,1968 being the number of observed interactions and non-interactions
in the 881 by 881matrix.We then use the True Skill Statistics (TSS) tomeasure how accurate
the random forest is, defined a

TSS=
(tp× tn)− (fp× fn)
(tp+ fn)(fp+ tn)

. (6)

The TSS ranges from −1 to 1.

Code and data
Since several machine learning algorithms depends on computing distances (or similarities)
for all pairs, many data structures have been designed to compute them efficiently from
kd-trees discovered more than thirty years ago (Friedman, Bentley & Finkel, 1977) to
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ball trees, metric skip lists, navigating nets (Izbicki & Shelton, 2015), and cover trees
(Beygelzimer, Kakade & Langford, 2006; Izbicki & Shelton, 2015). We use an exact but
naive approach that works well with small data-sets. Since distance(x,y)= 0 if x = y and
distance(x,y)= distance(y,x), our C++ implementation stores the distances in a lower
triangular matrix without the diagonal, yielding n(n−1)/2 distances to compute. A linear
scan is then used to find the most similar species. Computing the distance matrix and
testing the predictions 7,000 times for a set of parameters takes less than a second. We
used Scikit for random forests (Pedregosa et al., 2011). The C++11 code for the KNN
algorithm, Python scripts for random forests, and all data-sets used are available at https:
//github.com/PhDP/EcoInter (also stored on Zenodo with a DOI:Desjardins-Proulx, 2016).

RESULTS
Recommendation
While matrix imputation has a 50% change of success by random, the Tanimoto KNN
needs to pick the right prey among up to 881 possibilities. Yet, it succeeds on its first
recommendation around 50% of the times. When the first recommendation fails, the next
nine recommendations only retrieve the right species around 15% of the times so the top5
and top10 success rates are fairly close to the top1 success rate (see Fig. 1). The Tanimoto
measure is particularly effective for species with fewer preys, achieving more than 80%
success rate for species with 10 or fewer preys (Fig. 2).

The highest first-try success rates (the probability to pick the missing interaction on the
first recommendation) are found with K = 7 and no weights to traits, and with K = 17
and a small weight of 0.2 to traits (Fig. 3). Overall, the value of K had little effect on
predictive ability.

Supervised learning
Random forests predict correctly 99.55% of the non-interactions and 96.81% of the
interactions, for a TSS of 0.96. Much of this accuracy is due to the three real-valued traits
(body mass, Ph0, Ph1). Without them, too many entries have the same feature vector x ,
making it impossible for the algorithm to classify them correctly. Removing the binary
traits has little effect on the model. With only body mass, Ph0, Ph1, the TSS of the random
forests is 0.94.

DISCUSSION
We applied different machine learning techniques to the problem of predicting binary
species interactions. Recommendation is arguably a better fit for binary species interactions,
since it is essentially the same problem commercial recommenders such as Netflix face:
given that a user like item i, what is the best way to select other items the user would like?
In this case, users are species, and the items are their preys, but the problem is the same.
In both cases, we can have solid positive evidence (observed or implied interactions), but
rarely have proofs of non-interactions. The approach yields strong results, with a top1
success rate above 50% in a food web with up to 881 possibilities. The approach could be
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Figure 1 Finding the missing interaction withKNN/Tanimoto approach. After removing a prey from
a predator, we ask the KNN algorithms with Tanimoto measure to make 10 recommendations (from
best to worst). The figure shows how many recommendations are required to retrieve the missing inter-
action. Most retrieved interactions are found with the first attempt. This data was generated with K = 7
and wt = 0.

used, for example, to reconstruct entire food webs using global database of interactions
(Poelen, Simons & Mungall, 2014). The method’s effectiveness rely on nestedness: how
much species cluster around the same set of preys in a food web (Guimaraes & Guimaraes,
2006). Thus, it should be less effective in food webs with more unique predators.

The KNN algorithm falls into the realm of unsupervised learning, where the goal is
to find patterns in data (Murphy, 2012). The other class of machine learning algorithms,
supervised learning, have the clearer goal of predicting a value y from a vector of features
x . For example, in supervised learning, we would try to predict an interaction y from the
vector of traits x , while a unsupervised approach can fill entries from an incomplete matrix
regardless of what the entry is (interaction or trait). With a larger set of food webs, it may be
possible to use an unsupervised algorithm, for example a neural network, to train a model
for matrix imputation. Instead of recommending new preys, imputation would simply fill
missing entries from a matrix (interaction or non-interactions).

Our random forests achieve a TSS of 0.96 using the binary traits, body mass, and the
coordinates of the multidimensional scaling. This is consistent with previous research that
has shown that ecological networks have relatively few dimensions (Eklof et al., 2013). A
random forest can build effective predictive models by creating complex rules based on
the traits, while the KNN algorithm relies on a simplistic distance metrics. However, the
KNN approach has some advantages over supervised learning, namely the capacity to
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Figure 2 Success on first guess with Tanimoto similarity as a function of the number of prey. The
KNN algorithm with Tanimoto similarity is more effective at predicting missing preys when the number
of preys is small. This is probably in good part because there are more information available to the algo-
rithm, since 473 species have 10 or fewer preys, 295 have between 10 and 100, 103 species have more than
100 preys.

recommend preys using only the information from the other species’ interactions. The
solution to improve the KNN approach in ecology is likely to learn distance metrics (Bellet,
Habrard & Sebban, 2015) instead of using a fixed formula. This would allow complex
rules while maintaining the KNN’s ability to exploit partial food web structures. Learning
distance metrics is a promising avenue to improve our results. Much efforts on the Netflix
prize focused on improving similarity measures (Toscher & Jahrer, 2008; Hong & Tsamis,
2006), and custom similarity metrics can be used to improve unsupervised classification
algorithms (Bellet, Habrard & Sebban, 2015) by exploiting complex domain-specific rules.
Maybe species with many preys, apex predators, or specialists behave differently enough to
need different similarity measures. Learning distance metrics from data is a common way
to improve methods based on a nearest neighbour search (Xing et al., 2003; Bellet, Habrard
& Sebban, 2015), allowing the measure itself to be optimized. We only used the K nearest
neighbour algorithm for unsupervised learning, but several other algorithms can be used
to solve the ‘‘Netflix problem’’. For example: techniques based on linear programming,
such as recent exact methods for matrix completion based on convex optimization (Candès
& Recht, 2009) or low-rank matrix factorization. The latter method reduces a matrix
to a multiplication between two smaller matrices, which can be used both to predict
missing entries and to compress large matrices into small, more manageable matrices
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Figure 3 Top1 success rates for theKNN/Tanimoto algorithmwith variousK and weights to traits.
When wt = 0.0, the algorithm will only use interactions to compute similarity between species. When wt =

1, the algorithm will only consider the species’ traits (see Table 2). The value is the probability to retrieve
the correct missing interaction with the first recommendation. For each entry, n = 871 (the number of
species minus 10, the number of species with no preys). The best result is achieved with K = 17 and w =
0.2, although the results for most values of K and w = [0.0,0.2] are all fairly close. The success rate in-
creases with K when only traits are considered (w = 1).

(Vanderbei, 2013). Given enough data, deep learning methods such as deep Boltzmann
machines could also be used (Zhang, 2011). Deep learning revolutionized machine
learning with neural networks made of layers capable of learning increasingly detailed
representations of complex data (Hinton, Osindero & Teh, 2006). Many of the most
spectacular successes of machine learning use deep learning (Mnih et al., 2013). However,
learning several neural layers to form a deep networks would require larger data-sets.

The low sensitivity to K in recommendations is interesting and makes the approach
easier to use. This is caused by the fact that, as K grows, the set of species includes more
and more unrelated species with widely different set of preys. If we increase K from k to
k+δ for a recommendation, the species in δ range are not only less similar, but they are less
likely to share preys among themselves. Since recommendations are based on how many
times a prey is found in the K nearest species, the species in the δ range are unlikely to
have as much weight as the first k species. Our KNN recommender is particularly easy to
parametrize since it is neither sensible to the weight given to traits nor to the choice of K .
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Our results have two limitations. It is possible that our food web was exceptionally
simple, and that a food web with distinct structural properties would behave differently,
especially if it has lower nestedness. The success of the KNN algorithms depends on local
structure: how much can we learn from similar species. If each species has a unique set
of preys, the KNN will struggle more. Also, a deeper issue is that real food webs are not
binary structures. Species, populations, and individuals have different densities, prey more
strongly on some resources than others, and have preferences. In a binary matrix, we can
predict if two species will interact while completely ignoring the rest of the network, but
real food webs involve complex indirect relationships (Wootton, 1994). It is unclear how
much we can learn about ecosystems and species interactions from binary matrices, and
our results show that binary interactions can be predicted without direct knowledge of the
community, since we are able to effectively predict if two species interact given only three
traits. Species interactions are better represented with a weighted hypergraph (Gao et al.,
2012), which is well-suited tomodel relations with an arbitrary number of participants. The
hyperedge would allow for complex indirect relationships to be included. Understanding
these hypergraphs is outside the scope of the KNN algorithm but could be understood
with modern techniques such as Markov logic (Richardson & Domingos, 2006).

Recommendation (KNN algorithm with Tanimoto distance) and supervised learning
(random forests) are complementary techniques. Supervised learning is more useful when
we have traits and no information about interactions, but it is useless without the traits.
On the other hand, the recommender performs well without traits but requires at least
partial information about interactions, although it might be possible to use the interactions
from different food webs. We suggest more research could be done on developing better
distance metrics for ecological interactions or learning these metrics from data.
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