Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm (#17008)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes

Editor and deadline

Valeria Souza / 2 May 2017

Files 4 Other file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

Declarations One or more DNA sequences were reported.

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm

Karolina Tomczyk-Żak ¹, Paweł Szczesny ^{1, 2}, Robert Gromadka ³, Urszula Zielenkiewicz ^{Corresp. 1}

Corresponding Author: Urszula Zielenkiewicz Email address: ulazet@ibb.waw.pl

Background: An exceptionally thick biofilm covers walls of ancient gold and arsenic Złoty Stok mine (Poland) in the apparent absence of organic sources of energy. Methods and Results: We have characterized this microbial community using culture-dependent and independent methods. We sequenced amplicons of the 16S rRNA gene obtained using generic primers and additional primers targeted at Archaea and Actinobacteria separately. Also, we have cultured numerous isolates from the biofilm on different media under aerobic and anaerobic conditions. We discovered very high biodiversity, and no single taxonomic group was dominant. The majority of almost 4000 OTUs were classified above genus level indicating presence of novel species. Elemental analysis, performed using SEM-EDS and X-ray, of biofilm samples showed that carbon, sulphur and oxygen were not evenly distributed in the biofilm and that their presence is highly correlated. However, the distribution of arsenic and iron was more flat, and numerous intrusions of elemental silver and platinum were noted, indicating that microorganisms play a key role in releasing these elements from the rock. Conclusions: Altogether, the picture obtained throughout this study shows a very rich, complex and interdependent system of rock biofilm. Its heterogeneity is a likely explanation as to why this oligotrophic environment is capable to of supporting support such a high microbial diversity.

¹ Microbial Biochemistry, Institute of Biochemistry and Biophysics, Warsaw, Poland

² Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland

³ Laboratory of DNA Sequencing and Oligonucleotides Synthesis, Institute of Biochemistry and Biophysics, Warsaw, Poland

1 Taxonomic and chemical assessment of exceptionally abundant rock mine

2	biofilm
3	
4	Karolina Tomczyk-Żak ¹ , Paweł Szczesny ^{1,2} , Robert Gromadka ¹ , Urszula Zielenkiewicz ^{1*}
5	1 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
6	2 University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and
7	Biotechnology, Warszawa, Poland.
8	
9	*Corresponding author: Urszula Zielenkiewicz;
10	Email address: <u>ulazet@ibb.waw.pl</u>
11	
12	Keywords: biodiversity, biofilm, metagenomics, mine
13	
14	Running title: Bacterial and archaeal diversity in rock biofilm
15	
16	
17	
18	
19	

20 Abstract

Background: An exceptionally thick biofilm covers walls of ancient gold and arsenic Złoty
Stok mine (Poland) in the apparent absence of organic sources of energy. Methods and
Results: We have characterized this microbial community using culture-dependent and
independent methods. We sequenced amplicons of the 16S rRNA gene obtained using generic
primers and additional primers targeted at Archaea and Actinobacteria separately. Also, we
have cultured numerous isolates from the biofilm on different media under aerobic and
anaerobic conditions. We discovered very high biodiversity, and no single taxonomic group
was dominant. The majority of almost 4000 OTUs were classified above genus level
indicating presence of novel species. Elemental analysis, performed using SEM-EDS and X-
ray, of biofilm samples showed that carbon, sulphur and oxygen were not evenly distributed
in the biofilm and that their presence is highly correlated. However, the distribution of arsenic
and iron was more flat, and numerous intrusions of elemental silver and platinum were noted,
indicating that microorganisms play a key role in releasing these elements from the rock.
Conclusions: Altogether, the picture obtained throughout this study shows a very rich,
complex and interdependent system of rock biofilm. Its heterogeneity is a likely explanation
as to why this oligotrophic environment is capable to support such a high microbial diversity. of supporting

Introduction

The mutual interactions of microbes with surroundings result in both environmental and
microbial community changes. The significant role of active microorganisms in element
biotransformations and biogeochemical cycling, metal and mineral transformations has been
recognized (Gadd, 2010). The structure of microbial communities in a particular environment
depends on specific physical and chemical conditions: humidity, pH, temperature, salinity
concentration of oxygen, heavy metals and other toxic compounds, and the availability of
electron acceptors and carbon sources.
Sub-aerial biofilms, ubiquitous on the solid surfaces exposed to the atmosphere, form
relatively stable miniature ecosystems that contribute to the weathering of natural rocks and
human constructions (Gorbushina, 2007). Similarly, the diversity and abundance of epi- and
endolithic prokaryotic communities in the deep sea also positively correlates with the extend
of rock alteration (Santelli et al., 2009). However, only sporadic development of the
microorganisms on the rock surfaces in form of abundant biofilms has been documented. In
most cases these were the micro-colonies on prehistorical paintings in caves (Schabereiter-
Gurtner et al., 2002a; Portillo et al., 2008, 2009; Schabereiter-Gurtner et al., 2002b, 2004) or
populations colonizing historical monuments (Gorbushina et al., 2002; Zimmermann et al.
2006). In turn, in caves with acidic pH, a population of biofilms called "snottites" is limited
only to a few microbial species (Macalady et al., 2007).
Contrary to caves, mines are not considered a "natural" environment. An interest in the
biodiversity of mines is associated with the strong negative effects of mining activities on the
environment, particularly on ground and surface waters. Most well-studied mine ecosystems
inhabit both rock surfaces as well as a mining waste such as slag heaps and acidic, metal-rich
waters referred to as "acid mine drainage" (AMD) or "acid rock drainage" (ARD). AMD

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

environments are the result of the accelerated oxidation of exposed minerals after exploitation of metal ores and coal. Usually such environments are rich in sulphur compounds and are generally characterized by high concentrations of metal ions (e.g. aluminium, copper, zinc, manganese, arsenic, and especially iron) and high temperatures, which are the result of strongly exothermic oxidation reactions of these compounds. The amount of organic matter is generally low (<20 mg/l). In the majority of acidic environments the diversity of the microbial population is low, comprising one or a few dominant species (Johnson & Hallberg, 2003; Baker & Banfield, 2003), which are usually chemolithoautotrophic microorganisms that carry out oxidation and reduction reactions of ferrous and sulphur ions, acidophilic heterotrophs and/or facultative heterotrophs. The heterotrophs are indirectly involved in the dissolution of minerals by using organic compounds (e.g. organic acids) produced by autotrophic organisms and detoxify the autotrophic bacteria environment. They represent both the Bacteria and Archaea domains. Few studies have examined cave or mine environments with a neutral or alkaline pH (Pasić et al., 2010; Labrenz & Banfield, 2004; Lin et al., 2006). Their species composition differs from the acidic environments and is generally more diverse. Alkaline pH is a trait of the Złoty Stok gold and arsenic mine geochemistry. The Złoty Stok mine located in Poland has been exploited for gold since the 12th and for arsenic since the 18th century. Mining ceased approximately 60 years ago, but its arsenic deposits are still among the biggest in the country and are the primary source of arsenic contamination of surface and ground water in the area. The microbiology of this particular environment has been investigated in the context of arsenic cycling. It was shown that both types of microbial communities inhabiting the mine, mats and rock biofilm, can contribute to the dissemination of arsenic into mine water. Metagenomic studies revealed high arrA and aioA genes diversity in these communities (Drewniak et al., 2012; Tomczyk et al., 2013). Bacteria isolated from this mine can directly

Manuscript to be reviewed

and indirectly contribute to the mobilization of arsenic from minerals into the water and sediments (Drewniak et al., 2010; Drewniak et al., 2014). However, the details of the 91 transformation of immobilized arsenic into its soluble form are still to be elucidated. 92

93 94

95

96

97

98

99

100

101

102

103

104

105

106

108

109

110

111

112

113

114

In previous studies the biodiversity of rock biofilm at this particular spot was analysed by clonal analysis. Here we present the results of the biodiversity assessment of the mine biofilm obtained in culture-dependent and -independent manners (using a second generation of sequencing method) and discuss the possible interactions of biofilm microorganisms with the environment. The biofilm, despite being present in nutritionally poor niches, has unexpectedly high diversity and complexity. This is likely explained by spatial heterogeneity shown by SEM-EDS and X-ray analyses.

Materials and methods

Site description and sample collection

The former arsenic and gold mine Złoty Stok (50°26' N, 16°52' E) is located in the Sudety Mountains in southwest Poland. The mine lies within metamorphic rocks of the geological tectonic zone of the western Sudetes composed of mica and mica-quartz schists, amphibolites, leptynites, gneisses, serpentinites and crystalline limestone with characteristic polymetallic

107 mineralisations (Przylibski, 2001).

> the On the rock surface in the deepest section of Gertruda Adit, a natural microbial biofilm is formed (Fig. 1). In the analysed part of the mine, the air is characterized by a stable temperature of 10.4–11.1°C, a reduced concentration of oxygen (17.2%), and levels of arsenic hydride in the range of 1.52–3.23 mg/m³ (Drewniak et al., 2008). Apart from CO₂ and N₂, other gaseous components in the Adit, including simple organic compounds (aliphatic and aromatic hydrocarbons, volatile alcohols, aldehydes and acids), occur in trace amounts. The rock in Gertruda Adit contains a variety of arsenic metal-bearing minerals, including loellingite

(FeAs₂) and arsenopyrite (FeAsS) containing arsenic, and other minerals containing primarily

- iron, lead, zinc and copper, generally in the form of different sulphides.
- In November 2007, samples of biofilm were carefully collected from the walls in the end
- section of Gertruda Adit, 2 km from the entrance. Portions of biofilm of approximately 40 g
- were aseptically cut from the rock directly into sterile 50-ml tubes. These samples were stored
- at 4°C and processed within 24 h of collection. For cultivable bacteria isolation, additional
- biofilm sampling was performed in June 2008.

DNA extraction

122

129

- Total biofilm DNA extraction was performed as described in Tomczyk-Żak (Tomczyk-Żak et
- al., 2013). Three independent biofilm samples (2 g each) were processed and finally pooled
- for all PCR amplifications.
- Bacterial genomic DNA was obtained after enzyme treatment (the mixture of lysozyme,
- lysostaphin and mutanolysin) followed by the use of a commercial isolation kit (Genomic
- 128 Mini A&A Biotechnology).

Amplicons preparation and 454-pyrosequencing

- Separate procedures were carried out to determine the bacterial, actinobacterial and archaeal
- community composition. Fragments of the correspondent 16S rRNA genes were amplified
- from biofilm total DNA using Phusion polymerase (Finnzymes) and appropriate primers that
- were fused to Roche-suitable MID oligonucleotides: for Bacteria16S rDNA universal MB-
- 134 16SrF, M6-16SrR; for Actinobacteria M10- 337F, MB-1159R; for Archaea M8-A21F, MB-
- 135 1204R; and in nested PCR M8-A21F, MB-518R (Table S1, Supplemental Information).
- Amplifications were performed using optimized thermal cycles (Table S2, Supplemental
- 137 Information). PCR products were purified with a NucleoExtract II kit (Macherey-Nagel). The

Peer

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Manuscript to be reviewed

- concentration and quality of the PCR products were assessed with Picogreen staining and a
- 139 ChipDNA Bioanalyzer, and equal amounts were sequenced using a Roche GS FLX Titanium
- sequencer with a standard 454 protocol.
- 141 Sequence data from the GS FLX Titanium run has been deposited at the NCBI Short Read
- 142 Archive (SRA) under project id of SRP093827.

Isolation and identification of bacteria

Bacteria were isolated from the biofilm samples (several dozen, 6 g in total), which were suspended in 0.8% NaCl and homogenized with glass beads (Merck 1kb) by shaking for 60 min at room temperature. After centrifugation (10 min at 8000 rpm) the pellets were resuspended in a small volume of 0.8% NaCl and spread in parallel over several types of solid media: LB (LuriaBertani, Difco), selective AIA (Actinomycete Isolation Lab-Agar, Biocorp), SC (starch casein; g/L: starch 10, casein 0.3, KNO₃ 2, NaCl 2, K₂HPO₄ 2, MgSO₄x7H₂O 0.05, CaCO₃ 0.02, FeSO₄ x7H₂O 0.01, pH 7-7.2), and GYA (glycerol agar; g/L: glycerol 5, yeast extract 2, K₂HPO₄ 0.1, peptone 25), each containing 5% glycerol and supplemented with 50 µg/ml of cycloheximide. The plates were incubated at 14°C or 20°C, in darkness, for up to two weeks. Part of the plates were prepared and incubated under anaerobic conditions (Whitley A35 workstation). Morphologically different isolates were transferred onto respective selective- and LB-agar plates to obtain pure cultures. The individual strains were selected using the multi-temperature single-strand conformation polymorphism (MSSCP) method of genetic profiling by choosing unique MSSCP profiles of their PCR-amplified (Table S1, S2, Supplemental Information) V3 fragments of 16S rDNA, as described in Tomczyk-Żak (Tomczyk-Żak et al., 2012). Briefly, in the applied colony, PCR-technique colonies of cultured biofilm strains were suspended in 100 µl of lysis buffer,

boiled for 5 min and centrifuged. Equal volumes of sterile cold water was added to the

Peer

Manuscript to be reviewed

supernatants, and these were used as templates in PCR for amplification of 160-bp long

fragments of 16S rRNA gene sequences.

of the cells

In the case of difficult-to-lyse strains, the eell's isolated genomic DNA (see above) were used.

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

164

PCR amplification and sequencing of 16S rRNA genes of cultured biofilm bacteria

To sequence the 16S rRNA genes of cultured bacteria selected by MSSCP, fragments of 16S rDNA were amplified using Paq Polymerase (Stratagene) and the universal primers 27F and 926R (Tables S1, Supplemental Information). Genomic bacterial DNAs (app. 3.7 ng/ul;) were the templates in the optimized thermal cycle reactions (Table S2, Supplemental Information). PCR products were purified with NucleoExtract II kit (Macherey-Nagel) and sequenced using the same primers on an ABI3730/x1 Genetic Analyzer (Applied Biosystem) at the Laboratory of DNA Sequencing and Oligonucleotide Synthesis, IBB, PAS. Sequences were assembled using Phred, Phrap and Consed Linux programs (Ewing et al., 1998; Ewing & Green, 1998). Determined sequences were compared with available nucleotide databases GenBank (NCBI) using **BLAST** (Altschul al., 1997) et (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The sequences were deposited in GenBank with the accession numbers GU213114-GU213156.

Analysis of biodiversity

The reads from pyrosequencing were processed using MOTHUR (Schloss et al., 2009) software according to Schloss Standard Operating Procedure described on MOTHUR's wiki (accessed 07.2014). Sequences were de-noised, filtered based on their quality and aligned using a Silva-compatible database of SSU rRNA genes provided by MOTHUR's authors. Potential chimeras were identified using UChimie (Edgar et al., 2011) algorithm and subsequently removed. Taxonomic assignments were completed with the RDP classifier

Peer.

189

Manuscript to be reviewed

- (Wang et al., 2007). Operational Taxonomic Units (OTUs) were defined at the threshold of (2013)
- 187 3% of identity. Data from Tomczyk-Żak et al., 2013 (added under label: Clones) were
- analysed jointly using the same protocol.

Functional analysis

- 190 Functional capabilities of the biofilm have been assessed with the METAGENassist server
- 191 (Arndt et al., 2012), which maps phenotypes of known microbial species onto genera
- identified during the taxonomic classification of reads. Final OTU sequences were used in this
- 193 step.

194

Scanning Electron Microscopy (SEM)

- 195 Unprocessed samples of the biofilm were examined directly by environmental (ESEM FEI
- 196 QUANTA 200) and field-emission (FESEM –JSM 7401F) scanning electron microscopy.
- 197 The elements C, O, S, As and Fe were detected in unprocessed samples (dried only) of the
- biofilm by SEM (JEOL JSM-6380LA) coupled with an energy dispersive X-ray spectroscope
- 199 (EDS). Analysis was performed for 17 h at an accelerating voltage of 20 kV under low
- 200 vacuum (40 Pa).

The

- Mineral composition of the bedrock was determined on the polished surface by SEM-EDS
- 202 (JEOL JSM-6380LA) at a 10-mm working distance with 100 s of live time. The chemical
- 203 composition of the interface was determined in thin layer embedded in resin by both, X-ray
- 204 SEM-EDS (JEOL JSM-6380LA) and photoelectron spectroscopy (XPS) using Cameca
- SX100 operating with electron beam of 15 keV at 10–40 nA. X-ray transition energy
- 206 measurements were realized using WDS with PAP correction. Analyses were done in the
- Joint Laboratory of Microanalysis of Minerals and Synthetic Substances, Faculty of Geology,
- 208 Warsaw University.

209 Results

Structure of biofilm

Exceptionally thick (up to 3cm) gelatinous biofilm covers several dozen square meters of the by et al rock wall in the Gertruda Adit. It was described in detail in the work of Tomczyk-Żak and coworkers (Tomczyk-Żak et al., 2013), and here we briefly recap its main features.

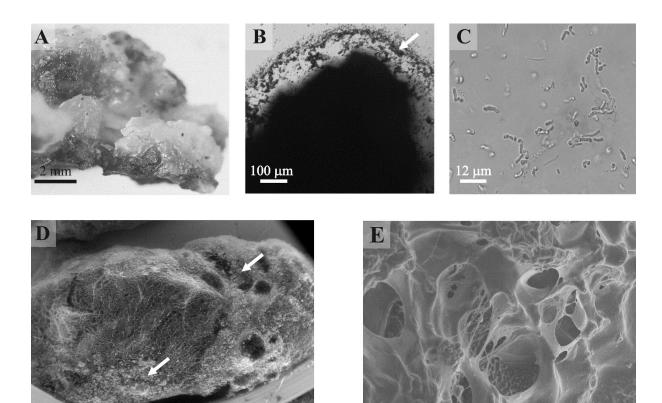


Fig. 1. Rock biofilm from Zloty Stok gold and arsenic mine.

A. Photograph of biofilm in situ; B. Micrograph of unstained biofilm in phase contrast; C. Micrograph of cotton-blue stained biofilm presenting different bacteria, including actinobacteria; D, E. Scanning electron micrographs of an unprocessed rock biofilm sample (D: ESEM magnification 50×; E: FESEM, magnification 5000×). Arrows indicate mineral particles.

Peer

Manuscript to be reviewed

A single, separate group of biofilm occupies 5–10 m². The overall morphological appearance the of biofilm is variable in terms of colour, smoothness, consistency, moisture content, thickness and tubercle dimensions, yet the internal structure revealed by SEM methodology showed in every case the lattice structure of the matrix with vast empty or lower electron density spaces (Fig. 1D,E). This heterogeneous, abundant, hydrated, inorganic matrix encloses both bacteria and small mineral particles. Most of bacteria seem to occupy well-defined areas. Different microscopy techniques uncovered a variety of bacterial shapes. Visualized bacteria represent compact uniform communities as well as morphologically diverse clusters (Fig. 1C). Further analyses were performed on three distinct layers of the sample – the biofilm (layer 0), an interface between biofilm and underlying rock (layer 1), and finally the solid bed under the biofilm (layer 2: see Fig. 2 schematic).

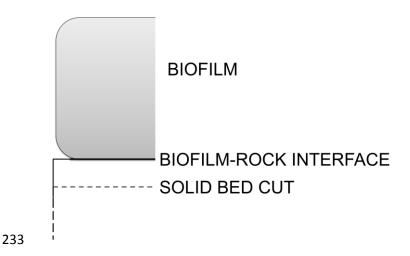


Fig. 2. Diagrammatic cross-section of the rock biofilm test sample.

Pyrosequencing

DNA extracted from the biofilm was processed as described in the Methods. Then, segments of ribosomal 16S rRNA genes were amplified in three independent reactions using sets of primers targeted at Archaea, Actinobacteria and an universal set (Table S1, Supplemental

Peer.

Manuscript to be reviewed

Information). With a similar amount of sequenced DNA, we obtained an unequal number of reads from each sample (see Table 1). The archaeal sample seemed to be sequenced most deeply as it had a high number of reads and the lowest number of OTUs. This is reflected in the highest value of Good's coverage estimator and the rarefaction curve approaching norizontal line (Fig. S1, Supplemental Information). The other two samples appear to be under-sequenced, as the Good's coverage value for them is only around 0.2. In the case of the actinobacterial sample, this is mainly the issue of the low number of good quality reads, since the value of inverted Simpson parameter suggests that we have captured the majority of biodiversity in that sample. As for the universal primers the issue seems to lies in the extremely high diversity revealed. The inverted Simpson parameters is two orders of magnitude larger than in the other two cases, therefore it is very likely that further sequencing would provide additional biodiversity.

Table 1. Basic statistics of three sequenced samples obtained using the MOTHUR software. OTUs were defined at the threshold of 0.03.

Primer set	Number of unique reads	Good's coverage	Number of OTUs	Inverted Simpson
Archaeal	14157	0.87	2574	164.8
Actinobacterial	327	0.21	269	100.6
Universal	29427	0.20	25019	22150.3

Taxonomic assignments

There is some overlap between taxonomic coverage of the samples (Fig. 3), but overall primers targeted at specific taxonomic groups had a relatively narrow and correct focus.

Archaeal species could be identified only by the primers targeted specifically at this

262

263

264

265

266

267

268

269

majority

260 taxonomic group. The most-of assignments of actinobacterial primers were from that phylum.

This is in agreement with studies analysing the impact of PCR amplification on the proportion species?

of rare biosphere in sequencing of microbial communities (Gonzalez et al., 2012).

An overview of taxonomic assignments across all samples is shown in Fig.3. The tree represents all the genera identified by their taxonomic assignments, but for clarity of mapping (the outer layer of the bars) has been shown only for the genera that had at least 10 reads per primer set. Detailed breakdowns of taxonomic assignments of reads and OTUs are available in Supplemental Information (Table S3 and S4, respectively).

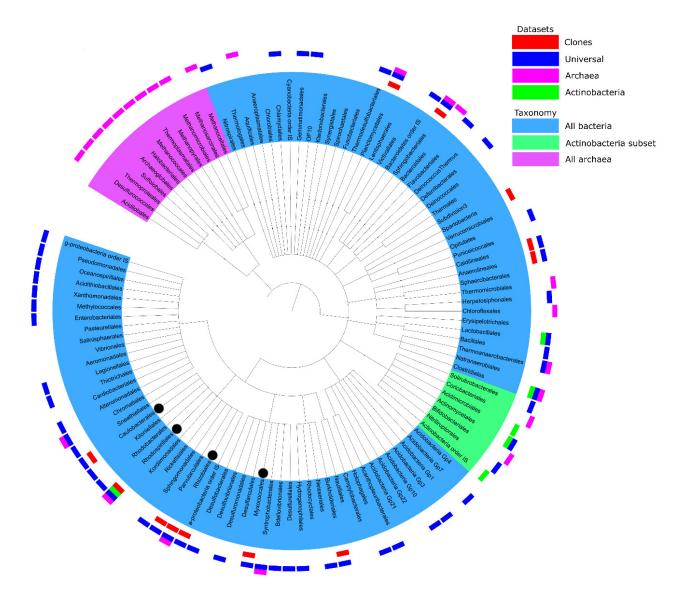


Fig. 3. Summary of taxonomic classification obtained from pyrosequencing of three

samples based on classification of 16S rRNA reads with the RDP classifier. Clades with more than 10 reads found in each primer set were marked with outer bars in blue, pink and green for universal, archaeal and actinobacterial primers respectively. For a comparison, (2013) clones from Tomczyk-Żak et al, 2013 were added as the red bars. Branches of more than 1% of total reads were marked with black dot.

The analysed sequences were classified into twenty four phyla (partially depicted in Fig. 3):

275

276

Crenarchaeota, Euryarcheota, Acidobacteria, Actinobacteria, Aguificae, Bacteroidetes, 277 Chlamydiae, Chlorobi, Chloroflexi, Deferribacteres, Deinococcus-Thermus, Firmicutes, 278 Fusobacteria, Gemmatimonadetes, Lentisphaerae, Nitrospira, Planctomycetes, Proteobacteria, 279 Spirochaetes, Synergistetes, Tenericutes, Thermodesulfobacteria, Thermotogae 280 281 Verrucomicrobia. Many archeal sequences were assigned to several known methanogenic phyla, such as Methanomicrobia, Methanococci or Methanopyri. Methanomicrobia were also 282 found in the bottom mat from this mine by Drewniak lab (unpublished data, available at 283 MGRAST id mgm4554870.3). The most highly represented phyla in the Bacteria domain 284 were Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes and Acidobacteria 285 (Table S3). The structure of the biofilm community was dominated by bacteria belonging to 286 α-Proteobacteria, especially to Rhizobiales (almost 8% of all reads were assigned to that 287 288 clade). Microorganisms representing the Hyphomicrobiaceae, Beijerinckiacea, Rhodospirillales and Methylobacteriaceae were the most abundant groups of α-Proteobacteria 289 290 in the biofilm population. The rest of the Proteobacteria sequences were assigned to δ -Proteobacteria, γ-Proteobacteria, and β-Proteobacteria (listed in order of abundance). The 291 292 Actinobacteria phylum was represented mainly by sequences from the Actinomycetales and Solirubrobacterales orders, while Bacteroidetes was represented by the Sphingobacteriales 293 order and Flavobacteria class. 294

Peer

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Manuscript to be reviewed

Assuming that the PCR with different primers introduced a heavy bias in the assessed structure of the communities of all three samples (Xu et al., 2011), we did not attempt to statistically assess relative abundances between Archaea, Actinobacteria and other taxonomic groups.

Phenotypic analysis of taxonomic groups

On the basis of taxonomic assignment, we performed an analysis of the phenotypic potential of the biofilm summarized in Supplemental Information (Fig. S2). It revealed that almost all identified genera for which phenotypic information was available represent aerobic species, while the majority of them are autotrophic. There is a substantial number of free-living species. The main group of biofilm microorganisms were determined to be connected with the nitrogen cycle: ammonia oxidizers able to carry out the first step of nitrification, and nitrite reducers, engaged in partial de-nitrification. Among them Planctomycetes are, most probably, responsible for transformation of mineral nitrogen in this environment. Diazotrophs assimilating atmospheric nitrogen were also frequently found. Other identified microorganisms were sulphur metabolizing: sulphate reducers, sulphur oxidizers, and metabolized other S-compounds. This finding was to be expected due to the large presence of sulphur minerals such as pyrite (FeS₂), chalcopyrite (CuFeS₂), arsenopyrite (FeAsS) and dimethyl disulphide (C₂H₆S₂). What was surprising was the lack of identified microorganisms capable of the reduction/oxidation of iron. Their presence was expected due to the high concentration of iron-containing minerals and the identification of such microorganisms in clonal analysis (Tomczyk-Żak et al., 2013). A detailed analysis of the list of identified taxa indicated that a vast number of organisms can potentially be involved in iron redox transformations (e.g. bacterial genera: Acidiphilium, Ferrithrix, Acidimicrobium, Anaeromyxobacter, Geothrix, Shewanella and archeal genera: Ferroglobus, Geoglobus). It is

to note, that among the cultivated strains, Paenibacillus and Stenotrophomonas represent

320 genera able to reduce and oxidize iron, respectively.

alsp

321

322

323

324

325

326

327

328

329

331

332

333

334

335

336

337

338

339

340

It is noteworthy that, according to Metagenassist analysis, the biofilm exhibits a wide range of

metabolic capabilities, including, among others, dehalogenation, degradation of aromatic

hydrocarbons or chitin as well as metabolism of pollutants and other toxic compounds. It is

suspected two classes of bacteria abundant in the analysed sample, Rhizobia and

Actinobacteria, already known for the presence of species capable of dealing with complex

compounds, are responsible for that result.

Some taxonomic branches might contain bacterial species capable of arsenic mobilization

(e.g. the genera Bosea, Microbacterium, Clostridium and Leptospirillum); however, with such

a high level of ambiguity originating from assigning functional capabilities to these genera, no

firm conclusions on arsenic mobilization can be made.

Cultured bacteria

A total of 52 different bacterial strains from Złoty Stok biofilm were isolated using different media, and they were subsequently cultured. Their partial 16S rRNA genes were amplified and sequenced. Taxonomic assignment was completed using the same approach as with reads from pyrosequencing, i.e. MOTHUR implementation of RDP classifier. Results presented in Fig. 4 show 38 genera belonging to 4 phyla: Actinobacteria, Proteobacteria, Firmicutes and CFB (the last two groups are represented by few genera). Bacteria that could not be assigned to the genus level (but classified to the family level) may represent species not yet identified. Interestingly, strains of all four recognized taxonomic groups were isolated on all used media

with the exception of the CFB group, representatives of which were not isolated on LB.

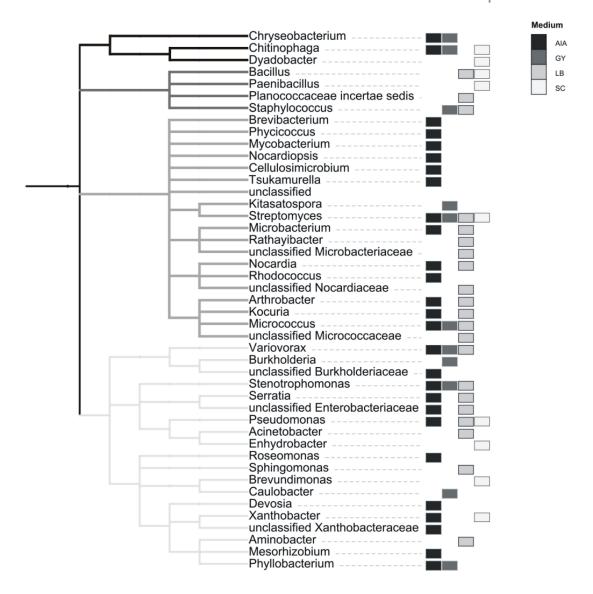
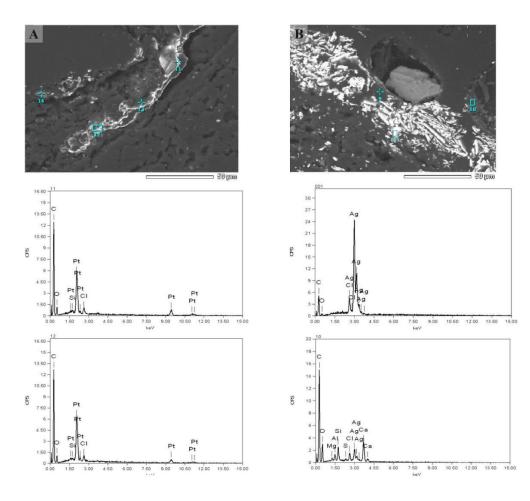


Fig. 4. Taxonomic classification of cultivated strains from rock biofilm based on classification of 16S rRNA genes with the RDP classifier.


Clades of phyla are highlighted in gray. Different cultivation media are marked with gray rectangles.

Among 38 cultivable genera, 25 were also identified in a metagenomic approach. Results have an obvious "culturability" bias: sequenced genes correspond to bacteria that did not have overly unusual requirements for growth with Actinobacteria as the predominant group. However, a comparison of phenotypic potential between different groups (as assessed by

Metagenassist, see Fig. S2) indicates that the conditions used were not overly selective. Ratios of genera with specific phenotypic traits (such as the ability to use different energy sources, oxygen requirements, metabolic capability or biotic relationship) are similar between the cultured bacteria and the samples derived using Actinobacteria-specific and generic primers.

Elemental analysis

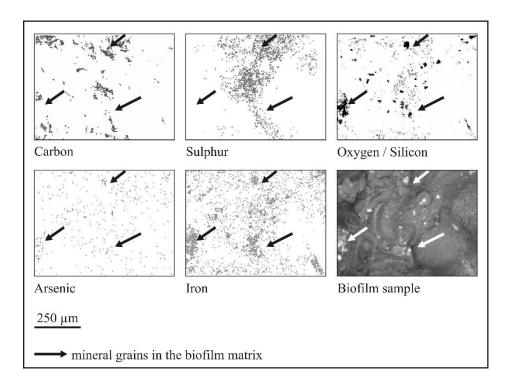

The analysis of solid bedrock under the biofilm was performed using SEM-EDS. Previous geological studies of the Złoty Stok territory (Wierzchołowski, 1976; Przylibski, 2001; Muszer, 2011) indicated that we should expect minerals such as plagioclase, quartz, micas (biotite, muscovite), apatite, monazite, K-feldsparts and ore minerals (pyrite, pyrrothite, chalcopyrite, sphalerite, loellingite, arsenopyrite). In the particular area analysed, we have found majority of these minerals (Fig. S3, Supplemental Information), except for most of the ore minerals (only pyrite was found) and arsenic minerals.

Fig. 5 SEM-EDS analysis of the interface between rock and biofilm.

Individual peak numbers from bottom spectrum panels correspond to spot numbers visible in the upper panels. Two columns represent two main metals: A – platinum, B – silver. Irregular diffused (non-crystal) metal intrusions are seen clearly on panel A.

The interface between rock and biofilm was analysed using both, SEM-EDS and X-ray techniques. The summary of quantitative analysis is present in Fig. S3 C (Supplemental Information). In essence, the qualitative picture revealed by this analysis did not differ much compared to solid bed. The presence of many secondary minerals (e.g. zircon, rutile, monazite, xenotime) and sulphide ore minerals (pyrrothite, chalcopyrite, sphalerite) was detected. However, we repeatedly observed interesting structures of the intrusions of pure noble metals (silver and platinum) in elemental form (Fig. 5). They did not look like typical crystal intrusions, raising a question of their biogenic origin. Arsenic intrusions were not observed.

Manuscript to be reviewed

Fig. 6. Mapping of elements in the rock biofilm sample. SEM-EDS elemental maps

showing C, S, O, As and Fe distribution in the biofilm sample.

In the oxygen/silicon panel oxygen is presented by gray colour and silicon by black colour.

Arrows indicate large mineral intrusions.

382

383

384

385

386

387

388

389

390

391

380

381

Elemental analysis of the biofilm layer was performed using the SEM-EDS mapping technique (see Methods). Distribution of several elements, such as carbon, sulphur, oxygen (together with silicon), arsenic and iron, were analysed on the biofilm surface (Fig. 6). Some elements, such as carbon, sulphur and oxygen/silicon were distributed unevenly, and their location was highly correlated. Arsenic and iron were distributed more evenly, with a tendency to concentrate in mineral particles. Notably, arsenic was nearly absent in areas of high carbon concentration, while the concentration of iron increased in the areas where carbon and sulphur were present. As stated above, the biofilm contains numerous mineral intrusions of different sizes in its volume (shown in Fig. 1).

392

393

394

395

396

397

398

399

400

Discussion

In this study we analysed the exceptionally abundant biofilm developing in extremely

oligotrophic environment on the walls of Gertruda Adit of the Złoty Stok mine. Both

elemental analysis and biodiversity assessment revealed unexpected diversity and complexity.

Presented work sheds new light on several areas.

Rich ecosystem of oligotrophs

The microflora of this ancient gold mine probably represents indigenous microorganisms

from the ore and fracture water, plus others that were brought in with spruce wood beams and

other timbers, and also by the mine workers of fifty years ago and earlier. However, the present environmental conditions (especially the high arsenic concentration) are more favourable for indigenous microorganisms. These conditions have led to a level of bacterial diversity that is comparable with that of partially reclaimed tailings rather than drilled rock cores or newly formed or opened caves.

We have assessed biodiversity using pyrosequencing of fragments of the 16S rRNA gene, which were amplified using primers targeted at Archaea and Actinobacteria, and using universal primers. As a result, a large number of additional taxonomic groups has been revealed, substantially enriching the assessment obtained using universal primers only. This alone is not surprising, as the bias coming from the choice of primers has been a topic of intensive studies over the last few years. The high biodiversity was reflected in experiments with cultured bacteria: major taxonomic groups revealed by pyrosequencing were later identified within cultured bacteria. In total we have found almost 4000 OTUs using restrictive approach to obtained data. The majority of organisms are from Proteobacteria, Actinobacteria and the archaeal genera of methanogenic capabilities. However, there is very likely a long tail of species capable of perusing complex biofilm structure for growth, which could be revealed by deeper sequencing.

Independently, we cultured 52 microbial species and sequenced their near full-length 16S rRNA genes. As expected, there was an overlap in the biodiversity assessment between the culture-dependent and culture-independent analyses. However, there is a significant difference between our results based on pyrosequencing and the results from clone library sequencing which was expected (Tomczyk-Żak et al., 2013). This supports the hypothesis on the long-tail of microbial diversity present in this habitat.

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

More than half of the revealed community organisms possess small genomes 1-2 Mb in size, suggesting their specialized rather than versatile metabolism (Giovannoni et al., 2005). Hence, the mutual interactions between biofilm organisms seem to be very complex. We could not reliably identify known examples of syntrophic interactions between pairs of bacterial species. However, functional analysis (which was based on the relatively small number of well-studied species) showed many potential energy sources, further supporting the hypothesis that many complementary functional interactions occur between species inhabiting the biofilm. Based on metagenomic analysis, we can distinguish 3 types of functional interactions between biofilm microorganisms and the environment shown schematically in Fig. 7. Some reactions were confirmed by analysis in the previous work (Tomczyk-Żak et al., 2013). The major sources of energy seem to be nitrogen compounds, which reflects release of nitrogen and nitrous oxide. These are likely supplemented by sulphur compounds, given that sulphur is an abundant element in minerals present in the habitat. Another interesting capability is methano/methylotrophism, as it complements the methanogenic activity of bacteria present in bottom sediments of this mine (Drewniak et al., 2012). Obviously, the majority of microorganisms will be capable of perusing iron ions, as the energy sources, given the high concentration of iron-containing minerals, but this process is missing in the results of MetagenAssist analysis, most likely due to limitations of available phenotypic databases. Numerous members of genera showing such capabilities have been detected in clonal analysis (Tomczyk-Żak et al., 2013). As mentioned above, among cultivated strains, two were able to utilize Fe ions.

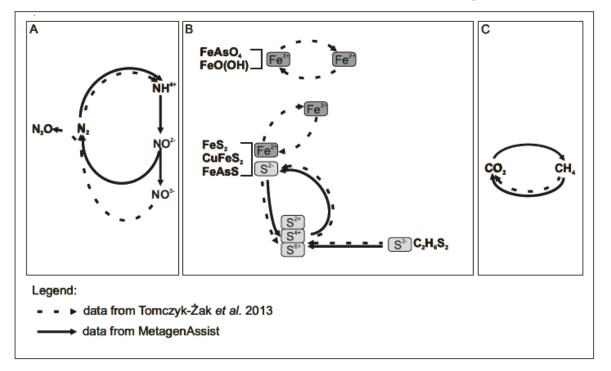


Fig. 7. Model showing participation of rock biofilm microorganisms in the transformation of chemical compounds in the Zloty Stok mine.

Data from this study overlaps data from our previous report. Undetected transformations are implied by literature data. Chemical transformation: A. nitrogen; B. iron and sulphur; C. methane.

has been

The presence of bacterial species in the Złoty Stok mine that are highly resistant to arsenic is known for a few years (Drewniak et al., 2008). The key genes involved in such a process, i.e. arsenite oxidase or arsenate reductase, were detected in other studies by PCR amplification (Tomczyk-Żak et al., 2013). However we were unable to culture a bacterial species that uses arsenic as an energy source. Also, so far, there has been no clear answer as to which species from the rock biofilm is capable of arsenic mobilization, although Drewniak and co-workers identified and cultured such a species in the bottom mat of the mine (Drewniak et al., 2010, 2012; 2014).

Peer

Manuscript to be reviewed

Given that arsenic has an even distribution in the biofilm, it is plausible that most of the biofilm inhabitants do not use arsenic compounds as energy sources. While some studies, on the basis of PCR amplification of arsenite oxidase or arsenate reductase genes, suggest that these features are this-enzymatic feature is much more common than thought before (Oremland & Stolz, 2003), we do not think this is what happens in the biofilm. Given the toxicity of arsenic, most of the

species prefer to use other sources of energy over inorganic arsenic.

Mobilization of other elements

Precious metals such as gold, silver and platinum typically exist in the rocks as part of iron ore. In the Zloty Stok mountain area, polymetallic mineralisations have been noted (Przylibski, 2001). Metal inclusions, if present, have the characteristic shapes of grains of several types. Precious metals are present in the interface between the solid bed and the biofilm; however, the shape of intrusions is strikingly unusual for all elements analysed. It is tempting to suggest that these grains are of biogenic origin. Bacteria, perusing iron compounds from an ore, also capture the precious metals. As these elements are not utilized in any way, they might be deposited in an amorphous form. Also, the co-occurrence of methanotrophs and methanogenes can substantially influence the metal and metalloids et al mobilization. Choi and co-workers (Choi et al., 2006) showed that methanotrophy may play a role in either the solubilization or immobilization of many metals *in situ*. Several organisms, e.g. *Streptomyces*, *Desulfovibrio* and *Variovorax* from among the genera described as able to recover precious metals, have been detected in the studied biofilm. Bacterially induced mineralization processes become well recognized and led to the use of microorganisms for recovery of precious metals, especially gold, silver and platinum (Das, 2010).

Conclusions

Gause's

Limited resources in the environment should limit biodiversity according to the Gauss law.

Peer.

Manuscript to be reviewed

Competing for scarce sources of energy leads typically to extinction of the weaker species.

However, certain habitats support high biodiversity despite limited resources, and this situation is called "the paradox of the plankton", as plankton was the first example of this kind of environment. The rock biofilm present in the Złoty Stok mine is another example of such a paradox. While the environment is extremely oligotrophic and has no light sources, the observed community exhibits extremely high richness and complexity. This cannot be explained by large spatiotemporal dynamics of the population, as the bacteria in the biofilm are mostly immobilized. However, given the spatial difference in concentration of arsenic and other metals across the analysed layers, it is plausible that there is a gradient of inorganic compounds including trace elements within the biofilm structure, which support the heterogeneity of the community. Additional support might come from the water; organic carbon from the water residing on the biofilm is below 160 mg/L. Chemical analysis indicated the that the water samples from Gertruda Adit are likely to be of atmospheric origin. While there is no visible dripping water on the spot, the moisture of the walls most likely has an external origin. Therefore, the outermost layers of the biofilm have access to additional organic compounds at low concentrations.

In conclusion we extended our previous investigations of microbial biofilm composition using both culture dependent and culture independent methods. Furthermore, we correlated microbial community structure to mineral and elemental composition of both, biofilm and rock, and proposed potential biogeochemical transformation pathways.

The special features of this community are its abundance and very high diversity. As expected, amplicons pyrosequencing with specific primers uncovered the presence of archaeal

_	_	m/l
U	e	ľU

Manuscript to be reviewed

507	species and abundant actinobacterial population which had escaped from previous clonal
508	analysis.
509	In this report the ecological "paradox of plankton" is postulated as the explanation of both, the
510	extremely high microbial diversity and the abundance of the mine rock biofilm developing in
511	oligotrophic environment. Presented model of the most prominent minerals' cycling energy
512	of the most prominent minerals flow/in the absence of evident influx of organic matter explains the relationship between
513	geochemical processes and the activity of microorganisms in this peculiar anthropogenic
514	environment.
515	
516	
517	Acknowledgements
518	We gratefully acknowledge prof. K. Błaszczyk for his critical reading of the manuscript.
	Who funded this work?
519	
520	Conflict of interest
521	The authors declare no conflict of interest.
522	References:
523 524 525	Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. <i>Nucleic Acids Res.</i> 25: 3389–3402.
526 527 528	Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz J. A, Wishart DS. 2012. METAGENassist: a comprehensive web server for comparative metagenomics. <i>Nucleic Acids Research</i> , 40 (Web Server issue), W88–W95. http://doi.org/10.1093/nar/gks497
529 530	Baker BJ & Banfield JF. 2003. Microbial communities in acid mine drainage. <i>FEMS Microbiol. Ecol.</i> 44: 139–152.

Manuscript to be reviewed

531	Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW, DiSpirito AA. 2006. Spectral and
532	thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II),
533	Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus
534	trichosporium OB3b. <i>J. Inorg. Biochem.</i> 100: 2150 – 2161.
535	doi.org/10.1016/j.jinorgbio.2006.08.017
	<u>doi.org/10.1010/j.jinlorgbio.2000.08.017</u>
536	
537	Das N. 2010. Recovery of precious metals through biosorption — A review. <i>Hydrometallurgy</i>
538	103: 180–189.
539	Drewniak L, Maryan N, Lewandowski W, Kaczanowski S & Sklodowska A. 2012. The
540	contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.
541	Environ. Pollut. 162: 190–201.
542	Drewniak L, Matlakowska R, Rewerski B & Sklodowska A. 2010. Arsenic release from gold
543	mine rocks mediated by the activity of indigenous bacteria. <i>Hydrometallurgy</i> 104:
544	437–442.
545	Drewniak L, Rajpert L, Mantur A & Sklodowska A. 2014. Dissolution of arsenic minerals
546	mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential
547	for arsenic mobilization. <i>BioMed Research International</i> . DOI: 10.1155/2014/841892
548	101 disense incomización. Diorica research incimamonan. Don 10.1135/201 (10.110/2
549	Drewniak L, Styczek A, Majder-Lopatka M & Skłodowska A. 2008. Bacteria, hypertolerant
	· · · · · · · · · · · · · · · · · · ·
550	to arsenic in the rocks of an ancient gold mine, and their potential role in
551	dissemination of arsenic pollution. <i>Environ. Pollut.</i> 156: 1069–1074.
552	Edgar RC, Haas BJ, Clemente JC, Quince C & Knight R. 2011. UCHIME improves
553	sensitivity and speed of chimera detection. <i>Bioinforma. Oxf. Engl.</i> 27: 2194–2200.
554	Ewing B & Green P. 1998. Base-calling of automated sequencer traces using phred. II. Error
	probabilities. <i>Genome Res.</i> 8: 186194.
555	probabilities. Genome Res. 8. 180194.
556	Ewing B, Hillier L, Wendl MC & Green P. 1998. Base-calling of automated sequencer traces
557	using phred. I. Accuracy assessment. <i>Genome Res.</i> 8: 175–185.
	· ·
558	Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation.
559	Microbiology 156: 609–643.
560	Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Mathur EJ. 2005. Genome
561	streamlining in a cosmopolitan oceanic bacterium. <i>Science</i> 309: 1242–1245.
562	DOI:10.1126/science.1114057
563	D G1. 10.1120/Selellec.111 1037
	Congolog IM Doutillo MC Doldo Forma D & Mino A 2012 Amplification by DCD outificially
564	Gonzalez JM, Portillo MC, Belda-Ferre P & Mira A. 2012. Amplification by PCR artificially
565 566	reduces the proportion of the rare biosphere in microbial communities. <i>PLoS ONE</i> 7: e29973.
	Gorbushina AA. 2007. Life on the rocks. <i>Environ. Microbiol.</i> 9: 1613–1631.
567	Gordushina AA. 2007. Life on the focks. Environ. Micropiol. 9: 1013–1031.
568	Gorbushina AA, Lyalikova NN, Vlasov DY & Khizhnyak TV. 2002. Microbial communities
569	on the monuments of Moscow and St. Petersburg: biodiversity and trophic relations.
570	<i>Microbiology</i> 71: 350–356.

Johnson DB & Hallberg KB. 2003. The microbiology of acidic mine waters. *Res. Microbiol.*

572	154: 466–473.
573 574 575	Labrenz M & Banfield JF. 2004. Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. <i>Microb. Ecol.</i> 47: 205–217.
576 577 578	Lin L-H, Pei-Ling W, Rumble D, Lippmann-Pipke J, Boice E, Onstott TC. 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. <i>Science</i> 314: 479–482 DOI: 10.1126/science.1127376
579 580	Macalady JL, Jones DS & Lyon EH. 2007. Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. <i>Environ. Microbiol.</i> 9: 1402–1414.
581 582	Muszer A. 2011. Gold at Złoty Stok – history, exploitation, characteristic and perspectives Gold in Poland. <i>AM Monogr.</i> 2: 45–61.
583	Oremland RS & Stolz JF. 2003. The ecology of arsenic. Science 300: 939–944.
584 585	Pasić L, Kovce B, Sket B & Herzog-Velikonja B. 2010. Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. <i>FEMS Microbiol. Ecol.</i> 71: 50–60.
586 587 588	Portillo MC, Gonzalez JM & Saiz-Jimenez C. 2008. Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. <i>J. Appl. Microbiol.</i> 104: 681–691.
589 590 591	Portillo MC, Saiz-Jimenez C & Gonzalez JM. 2009. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain. <i>Res. Microbiol.</i> 160: 41–47.
592 593 594	Przylibski TA. 2001. Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland). <i>J. Environ. Radioact.</i> 57: 87–103.
595 596 597	Santelli CM, Edgcomb VP, Bach W & Edwards KJ. 2009. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. <i>Environ. Microbiol.</i> 11: 86–98.
598 599 600	Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W & Rölleke S. 2002a. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. <i>FEMS Microbiol. Lett.</i> 211: 7–11.
601 602 603 604	Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W & Rölleke S. 2002b. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environ. Microbiol. 4: 392–400.
605 606 607	Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W & Rölleke S. 2004. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonin and La Garma). <i>FEMS Microbiol. Ecol.</i> 47: 235–247.

P	0	0	r.	ı
	\smile	~	ı١	J

Manuscript to be reviewed

608 609 610	supported software for describing and comparing microbial communities. <i>Appl. Environ. Microbiol.</i> 75: 7537–7541.
611 612 613	Tomczyk-Żak K, Kaczanowski S, Drewniak Ł, Dmoch Ł, Sklodowska A & Zielenkiewicz U. 2013. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. <i>Sci. Total Environ.</i> 461: 330–340.
614 615	Tomczyk-Żak K, Kaczanowski S, Górecka M & Zielenkiewicz U. 2012. Novel application of the MSSCP method in biodiversity studies. <i>J. Basic Microbiol.</i> 52: 104–109.
616 617 618	Wang Q, Garrity GM, Tiedje JM & Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. <i>Appl. Environ. Microbiol.</i> 73: 5261–5267.
619 620	Wierzchołowski B. 1976. Granitoids of the Kłodzko-Złoty Stok massif and their contact influence on the country rocks (petrographic characteristics). <i>Geol. Sudet.</i> 11: 7–147.
621 622 623	Xu L, Ravnskov S, Larsen J & Nicolaisen M. 2011. Influence of DNA extraction and PCR amplification on studies of soil fungal communities based on amplicon sequencing. <i>Can. J. Microbiol.</i> 57: 1062–1066.
624 625 626	Zimmermann J, Gonzalez JM & Saiz-Jimenez C. 2006. Epilithic biofilms in Saint Callixtus Catacombs (Rome) harbour a broad spectrum of Acidobacteria. <i>Antonie Van Leeuwenhoek</i> 89: 203–208.
627	
628	
629	
630	Supplemental Information
631	Fig. S1. Rarefaction curves for 16S rRNA sequences obtained with different primer sets:
632	A- Actinobacteria, B- Archaea, C- universal.
633	Curves were calculated at 2% evolutionary distance.
634	Fig. S2. Metagenassist phenotype mapping of taxonomic classification based on 16S rRNA
635	reads. The graphs show: energy sources, oxygen requirements, metabolism and biotic
636	relationships.

- Fig. S3. SEM-EDS images of: A. solid bed cut; B. biofilm-rock interface; C. minerals present
- in the rock-biofilm interface in the order of frequency.
- Table S1. PCR primers used in this study.
- Table S2. Protocols of PCR amplification of 16S rRNA.
- Table S3. Taxonomic distribution of sequencing reads obtained with archeal (Arch),
- actinobacterial (Act) and universal (Generic) primers. Length of colored data stripes is
- proportional to sequence's number. (Clones) refers to data obtained from Tomczyk-Żak et al.,
- 644 2013.
- Table S4. Taxonomic distribution of OTU for 16S rRNA gene sequences obtained with
- archeal (Arch), actinobacterial (Act) and universal (Generic) primers. Length of colored data
- stripes is proportional to OTU's number. (Clones) refers to data obtained from Tomczyk-Żak
- 648 et al., 2013.