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ABSTRACT
Identification of appropriate reference genes (RGs) is critical to accurate data interpre-
tation in quantitative real-time PCR (qPCR) experiments. In this study, we have utilised
next generation RNA sequencing (RNA-seq) to analyse the transcriptome of a panel
of non-melanoma skin cancer lesions, identifying genes that are consistently expressed
across all samples. Genes encoding ribosomal proteins were amongst the most stable in
this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the
suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a
valuable resource for the normalisation of qPCR data for the analysis of non-melanoma
skin cancer.

Subjects Genomics, Molecular Biology, Dermatology, Oncology, Medical Genetics
Keywords RNA-seq, Reference gene, qPCR, Non-melanoma skin cancer

INTRODUCTION
There is a growing need for identification of biomarkers of non-melanoma skin cancer
(NMSC) for accurate diagnoses of skin lesions, and to predict progression and patient
response to novel treatments. Quantitative real-time PCR (qPCR) is an integral technique
for gene expression analysis in dermatology research, due to its high sensitivity and
specificity. The expression of target genes is calculated relative to reference genes (RGs)
that are stably expressed. An ideal reference should be uniformly expressed in all samples
within the given experiment. Historically, selection of RGs for qPCR studies has been
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arbitrary, with researchers commonly selecting genes such as 18S rRNA, GAPDH, and
Actin without experimental validation while making the assumption that they are stably
expressed across tissues. However, we now know that in many instances these commonly
used RGs exhibit tissue and treatment specific variability (Chari et al., 2010; De Jonge et al.,
2007). A previous preliminary study on a number of cell lines and tumour versus matched
normal tissue samples showed that inappropriate choice of RGs may lead to errors when
interpreting experiments involving quantitation of gene expression (Janssens et al., 2004).

Validation of RGs tailored for individual experimental conditions is therefore a necessity
before commencement of gene expression studies (Bustin et al., 2009). Use of a RG whose
expression is variable or changes as a result of treatment conditions invariably leads to
inaccurate and misleading results. It is therefore strongly recommended in the MIQE
guidelines (minimum information for publication of qPCR experiments) that suitable
RGs be determined for individual experimental conditions (Bustin et al., 2009). Selecting
suitable RGs is not straight forward, and as a result researchers increasingly are turning to
transcriptome profiling data to identify genes that are suitable for their tissue of interest.

Analysis of gene expression patterns in skin lesions by whole transcriptome sequencing
(RNA-seq) is a powerful technique for the analysis of gene expression profiles (Berger et al.,
2010; Jabbari et al., 2012;Wagle et al., 2014). RNA-seq allows accuratemeasurement of gene
expression levels with a large dynamic range of expression and high signal-to-noise ratio.
More importantly, RNA-seq, unlike probe-based assays (such as microarrays), provides an
unbiased view of the transcriptome. As such, RNA-seq is an ideal strategy for identifying
stably expressed genes suitable for use as qPCR RGs. The identification of stably expressed
RGs in NMSC and precancerous lesions is essential to facilitate gene expression studies.

We have utilised next generation transcriptome profiling by RNA-seq to identify a list of
candidate genes that exhibit very low variability across a range of NMSC lesions comprising
intraepidermal carcinoma (IEC), squamous cell carcinoma (SCC) and precancerous
lesions-actinic keratosis (AK). The stability of these candidate genes was validated by
qPCR on a panel of NMSC lesions, including AK, IEC, SCC, basal cell carcinoma (BCC)
and benign seborrheic keratosis (SK). Using geNorm and Normfinder analyses, we have
determined a stable combination of genes as qPCR RGs specific for skin samples. We
demonstrated the importance of accurate RG selection by performing relative quantitation
analysis for several targeted gene expression profiles in non-photodamaged skin, AK
and SCC lesions where normalisation was performed using either new RGs together or
traditional RG GAPDH.

MATERIALS AND METHODS
Patient samples
Skin lesions and non-photodamaged skin tissue samples were collected from patients at
the Dermatology Department at the Princess Alexandra Hospital. The study was approved
by Metro South Human Research Ethics Committee and The University of Queensland
HumanResearch Ethics Committee (HREC-11-QPAH-236,HREC-11-QPAH-477,HREC-
12-QPAH-217, and HREC-12-QPAH-25). Written, informed consent was obtained from
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all patients prior to participation. Following biopsy, tissues were immersed in RNA later
(Life Technologies, Carlsbad, CA) and stored at −80 ◦C until required. All samples were
sectioned and processed according to routine protocol in the Department of Anatomical
Pathology located in Princess Alexandra Hospital.

RNA isolation and cDNA synthesis
RNA isolation was performed using the Qiagen RNeasy Plus Mini kit (Qiagen GmbH,
Hilden, Germany). Briefly, tissue samples were cut into small pieces, and transferred into
1.5 mL tube containing lysing matrix D (MP Biomedicals, Santa Ana, CA, USA) and
600 uL buffer RLT containing 1% beta-mercaptoethanol and homogenised using a Fast
Prep benchtop homogeniser (MP Biomedicals, Santa Ana, CA, USA). Samples were spun
five times using setting 6.5 for 30 s each, and chilled on ice between spins. Lysate was
removed and transferred to a fresh tube. For unfixed BCC samples embedded in OCT,
20 × 10 µm sections were cut and placed into 600 µL buffer RLT, and homogenised using
a 18.5 gauge blunt needle attached to an RNAse free syringe and resuspended five times.
The remaining RNA extraction steps were performed as above. RNA concentration was
measured using the Qubit fluorometer (Life Technologies, Carlsbad, CA, USA) and RNA
integrity determined using the 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA,
USA) on RNA Pico chips. The minimum acceptable quality for RNA for analysis by qPCR
was RIN >6. Complementary DNA (cDNA) was synthesised from 200 ng total RNA using
the Sensifast cDNA kit (Bioline, London, UK) as per the manufacturer’s instructions.

Library preparation and RNA-seq
RNA-seq libraries of poly (A) RNA from 500 ng total RNA obtained fromAK, IEC and SCC
and SK samples, were generated using the TruSeq unstranded mRNA library prep KIT for
Illumina multiplexed sequencing (Illumina, San Diego, CA, USA). TruSeq strandedmRNA
library preparation kit was used to generate poly (A) RNA libraries for RNA obtained from
normal skin samples (Illumina, San Diego, CA, USA). Libraries were sequenced (100 bp,
paired-end) on the Illumina HiSeq 2500 platform and FASTQ files were analysed.

Bioinformatics pipeline
Sequencing data were checked for sequencing quality by FASTQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Adaptors and poor quality sequences
were then removed using Trim Galore v0.3.7 (∼6% of reads removed) (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). An average of 39.1million trimmed
reads pairs were then aligned using Tophat (V 2.1), using the unstranded protocol, against
the Human Genome (hg19 build) guided with a human transcriptome generated from
the GENCODE Gene annotation version 19 (Table S1) (Harrow et al., 2012; Kim et al.,
2013). Quantification of gene expression based on counting the overlaps of mapped reads
with genes annotated in the GENCODE gene annotation v19 using HTSeq (Version
0.6.1p2) (Anders, Pyl & Huber, 2015; Harrow et al., 2012) (Table S2). Read counts were
then normalised using trimmedmean normalizationmethod (TMM) using bioconductor’s
edgeR package (Robinson, McCarthy & Smyth, 2010; Robinson & Oshlack, 2010). Based on
the Gencode gene model, an expression level of 57,278 genes was counted. Read counts
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for the remaining 57,278 genes were then transformed into Transcripts Per Kilobase
Million (TPM) values as previously described (Wagner, Kin & Lynch, 2012) (Gene length
information found in Table S3).

To ensure that RGs can be detected in any of the samples, genes with any samples
without detectable expression level (counts < 0) were discarded (38,670 genes discarded).

Statistical analysis for identification of RGs from RNA-seq
The mean TPM value of a gene is calculated by taking the average of the gene expression
across all samples. The CoV was measured by taking the standard deviation of expression
value (TPM) for a given gene divided by its mean. The ratio of the maximum to
minimum (MFC) was calculated using the largest TPM value divided by the smallest
TPM value. A product score (MFC-CoV) was calculated based on the multiplication
of CoV and MFC value for each gene. Biological Coefficient of Variance (BCV) was
obtained by calculating the square root of the tag wise dispersion measured using
edgeR bioconductor package (Robinson, McCarthy & Smyth, 2010) normalized counts per
million. To facilitate exploration of the statistical analysis, data visualisation of the analysis
can be found on http://skinref-dev.dingerlab.org/ and the raw data on ArrayExpress
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5678/).

qPCR
The primers for qPCR reactions were designed using NCBI Primer BLAST
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (refer to Table 1). Primers were
designed to span intron boundaries to avoid amplification of genomic DNA and to amplify
all isoforms known to each gene based on the NCBI Reference Sequence Database (RefSeq).
Primers were synthesized by Sigma-Aldrich (Castle Hill, Australia). qPCR reactions were
performed in triplicate using 1 µL diluted cDNA template in a 10 µL total volume.
Reactions were performed in 384-well plate format on the ABI Viia7 Real-Time PCR
system (Life Technologies, Carlsbad, CA, USA) using Sensifast SYBR Lo-rox mastermix
(Bioline, London, UK). A 2-step cycling protocol was performed, comprising an initial
95-degree polymerase activation for 2 min, followed by 40 cycles of 95 degrees for 5 s, then
60 degrees for 20 s. The comparative Ct (11Ct) method was used for data normalisation.

Measurement of novel RG stability
The RG stability was calculated using the geNORM algorithm (Andersen, Jensen &
Ørntoft, 2004), which is integrated with qbase+ software (Biogazelle, Gent, Belgium)
and Normfinder software (Vandesompele et al., 2002) (available as an add-in for Microsoft
Word at http://moma.dk/normfinder-software).

Statistical analysis of qPCR data
Statistical tests used have been described in each figure legend. Data analysis was performed
using GraphPad Prism version 5.04 for Windows (GraphPad Software, Inc., La Jolla, CA,
USA).
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Table 1 Reference gene qPCR primers designed using NCBI Primer BLAST.

Gene Accession number Forward primer Reverse primer Amplicon
size (bp)

RPL9 NM_000661.4 CTGCGTCTACTGCGAGAATGA CACGATAACTGTGCGTCCCT 98
RPL38 NM_000999.3 GCCATGCCTCGGAAAATTG CCAGGGTGTAAAGGTATCTGC 139
RPL11 NM_000975.3 AGAAGGGTCTAAAGGTGCGG AGTCCAGGCCGTAGATACCA 138
RPL23 NM_000978.3 TCCAGCAGTGGTCATTCGAC GCAGAACCTTTCATCTCGCC 117
EEF1B2 NM_001959.3 AGTATTTGAAGCCGTGTCCAG ACATCGGCAGGACCATATTTG 144
RPS27A NM_002954.5 ACCACTCCCAAGAAGAATAAGC ACTTGCCATAAACACCCCAG 147
RPL7A NM_000972.2 GGCATTGGACAGGACATCCA AGGCACTTTCAGCCGCTTAT 114
RPS13 NM_001017.2 TCCCCACTTGGTTGAAGTTGA AGGAGTAAGGCCCTTCTTGG 77
EEF1A1 NM_001402.5 GAAAGCTGAGCGTGAACGTG AGTCAGCCTGAGATGTCCCT 143
RPLP0 NM_001002.3 ATCAACGGGTACAAACGAGTC CAGATGGATCAGCCAAGAAGG 97
GAPDH NM_002046.5 CCCACTCCTCCACCTTTGAC TTCCTCTTGTGCTCTTGCTG 180
HPRT1 NM_000194.2 TGCTGAGGATTTGGAAAGGG ACAGAGGGCTACAATGTGATG 115
ACTB NM_001101.3 ACCTTCTACAATGAGCTGCG CCTGGATAGCAACGTACATGG 148

RESULTS
Identification of novel candidate RGs
To identify RG specific for NMSC and precancerous lesions, we first performed gene
expression profiling using RNA-seq on 13 AK, seven IEC, five SCC lesions and four
non-photo damaged skin samples. As previously described, a RG should show similar
expression across samples, expressed at detectable levels and not display any exceptional
expression in any of the samples (De Jonge et al., 2007; Eisenberg & Levanon, 2013). As with
previous studies on identification of housekeeping genes, to identify genes that fall within
these criteria, wemeasured themean expression, CoV and theMFC for each gene within the
dataset (De Jonge et al., 2007; Eisenberg & Levanon, 2013) (Table S4). The CoV measures
variability within samples and the MFC is the ratio of the maximum and minimum TPM
values for a given gene.

Ideally, a RG candidate should have a low CoV and MFC value and is expressed
at detectable levels. As such, we generated a score based on the product of CoV and
MFC value for each gene (MFC-CoV). We then obtained an initial list of 4643 gene
candidates with a MFC-CoV that falls below the lower quartile value of MFC-CoV
≤1.63084, (Table S7). KEGG Pathway enrichment analysis on this initial gene list using
geneSCF (Subhash & Kanduri, 2016) revealed thatmost of these stably expressed genes were
involved in maintaining critical cellular activities including the citrate cycle, proteasome,
RNA polymerase, protein export, RNA transport and Ribosome activities (B.H FDR Value
< 1.8e–30) (Huang da, Sherman & Lempicki, 2009) (Fig. 1C and Tables S5–S6).

To identify RGs specific for NMSC and precancerous lesions, we shortlisted 10 candidate
genes from the enriched pathways involved in critical cellular activity for further validation
with qPCR. In addition, we selected candidates with functions well described in literature.
For instance, we chose the RPLP0 gene, whose function is not only well known for different
cell and tissue types but also shown to be a suitable RG for research in the differentiation
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Figure 1 RNA-seq analysis of genes and candidate reference genes. (A) Scatterplot comparing Coef-
ficient of variation (CoV) values against mean expression values (log2) transformed and represented in
Transcript per kilobases million (TPM) for genes detected using the RNA-seq of patient derived skin sam-
ples. Each gene is represented by a single dot. Genes selected for validation to (continued on next page. . . )

Hoang et al. (2017), PeerJ, DOI 10.7717/peerj.3631 6/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.3631


Figure 1 (. . .continued)
function as reference genes in non-melanoma skin cancers (NMSC) and precancerous lesions are shown
in Black. Reference genes commonly used in the literature, ACTB (Red), GAPDH (Blue) and HPRT1
(Green), are also highlighted for comparisons. (B) Comparison of maximum fold change score in gene ex-
pression of candidate reference genes and traditional reference genes. (C) Results of KEGG pathway en-
richment analysis conducted with a list of 3,714 genes found with product score between each gene’s MFC
and CoV score below the lower quantile. Enrichment percentage is defined as the percentage of genes in
the pathway that are overlaps with genes in our list. (D) Boxplot showing expression value from RNASeq
experiment of 29 skin lesions of selected reference genes candidate (blue) with commonly used house-
keeping genes ACTB, GAPHD and HPRT1 (red).

Table 2 RNA-seq scoring of selected candidate reference genes and commonly used reference genes.
RNA-seq scoring of selected candidate reference genes and commonly used reference genes, ranked on
CoV (coefficient of variation) score, mean, mean expression value, MFC, maximum fold change calcu-
lated using transcript per million values. Candidates are ranked from the smallest to largest CoV values.

Gene Symbol CoV Mean MFC

RPS13 0.25929018 471.6328 2.9453
RPL7A 0.270464492 1052.6613 3.0589
EEF1B2 0.289246663 569.7829 2.9703
RPS27A 0.292810337 625.2571 3.2915
RPLP0 0.300470977 166.6758 3.0214
RPL38 0.307936407 1336.0407 2.7401
EEF1A1 0.312400695 2809.6306 3.5469
RPL11 0.325188306 926.3678 3.8090
RPL9 0.336714133 489.1896 3.9220
GAPDH 0.352954726 865.5278 4.2344
RPL23 0.372401947 241.0372 3.9124
HPRT1 0.3960 35.4396 11.0423
ACTB 0.4260 2005.6012 10.9588

of human epidermal keratinocytes (Bar, Bar & Lehmann, 2009). Finally, to distinguish
mRNA from genomic DNA, we selected multi-exonic genes as candidates to aid design of
primers across intron boundaries.

To determine the performance of our gene candidates, we compared the CoV, MFC and
mean expression value of our 10 RG candidates with three commonly used RGs in qPCR
analysis of skin—ACTB, GAPDH and HPRT1 (Table 2) (De Kok et al., 2005). With the
exception of RPL23, our candidate RGs had a lower CoV-MFC compared to the traditional
RGs ACTB, HPRT1 and GAPDH (Table 2 and Figs. 1A and 1B). RPL23 had a lower MFC
but a higher CoV than GAPDH. We also calculated the BCV and found that our candidate
genes fall below the mean (BCV is similar to that of the traditional house keeping genes
(Fig. S1B and Table S2).

Data visualisation of TPM, CoV and MFC metrics of the calculated genes in this
study have been made available online (http://skinref-dev.dingerlab.org/) as a resource to
facilitate other investigators in the community to explore the datasets and identify their
candidate RG of interest (Fig. S2).
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qPCR validation of new RGs
To validate and extend our findings from the RNA-seq analysis, we conducted qPCR on
our 10 candidate RGs in addition to the three commonly used skin RGs ACTB, GAPDH,
and HPRT1 on samples derived from a diversity of skin conditions within the spectrum
of NMSC (SCC and precursors and BCC) (refer to Table 1 for list of gene primers). A
total of 24 samples were tested and they include AK (4), SCC (3), SK (3), BCC (4), IEC
(5), and non-photodamaged skin (5). The use of independent samples across a variety of
NMSC skin lesions also minimises any patient specific expression biases of our RGs. This
was important as some of the lesions used in RNA-seq was derived from the same patient
and readings of MFC, CoV and BCV among our samples could exhibit patient-specific
biases. Results from the qPCR were analysed using geNorm (Andersen, Jensen & Ørntoft,
2004) within Qbase+ software (Biogazelle) and Normfinder to determine the consistency
of expression values among the samples for each candidate RG (Vandesompele et al., 2002).

Statistically, geNorm conduct pairwise variation (V) analysis to identify genes with the
least variance between samples and is denoted as ‘stability’ (M ) values. In general, lowerM
values indicate lower variance in expression value among samples and genes withM values
≤0.5 are associated with homogeneous samples. Remarkably, all of our 10 RG candidates
had M values ≤0.5 with RPLP0, RPL7A, RPL23, RPS27A and RPL38 ranked in the top
five genes for geNorm M value/Stability value. In addition, to eliminate errors related
to the usage of a single housekeeping gene, it is common practice to use two or more
housekeeping genes. By calculating the normalization factor based on the geometric mean
of multiple control genes, we identified that we need only two of our RG candidates for
accurate normalization (geNorm V , V 2/3= 0.084). V values of <0.15 indicate acceptable
stability of the RG combination, indicating no further need for additional RGs. Amongst
our RG candidates, the pair of genes with optimal normalization factor was RPL38 and
RPS27A, which demonstrated the lowestM values (0.257 and 0.265 respectively) (Fig. 2A).

In addition, Normfinder analysis was performed for the same dataset. Normfinder
analysis performs estimation of both intra- and intergroup expression variation for each
subgroup of samples (lesion types), with output given as a Stability Value. The most
stable candidate was RPL7A, and the best combination of genes was RPL7A and RPLP0
(Fig. 2B). Overall trends between geNorm and Normfinder analyses were similar. In both
formats, the traditional RGs ACTB, GAPDH and HPRT1 were ranked as having the most
variability in gene expression across the groups (increased stability values), and the genes
RPLP0, RPL7A, RPL23, RPS27A and RPL38 ranked in the top five genes for geNorm M
value/Stability value.

To demonstrate the significance of our findings in NMSC research, we investigated
the difference in expression of keratin 17 (KRT17) in AK between normalization using
our candidate RGs and normalization with GAPHD (Fig. 3). When using GAPDH as
calibrator, there was an approximate 2-fold increase in levels of KTR17 when comparing
non-photodamaged skin to AK (Fig. 3A) or approximate 3-fold increase in SCC (Fig. 3B).
However, this fold change was significantly higher at approximately 7-fold for AK and
approximately 12-fold for SCCwhen using the combination of RPL32 andRPS27A or either
one of them as RG (P < 0.05). There was no statistical difference between data normalised
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Figure 2 Comparison of expression stability using GeNorm and Normfinder. (A) Average expression
stability of reference targets (geNorm). geNormM value, an indicator of gene expression stability, was
determined using the geNorm algorithm. Decreasing values correlate with smaller variations in gene
expression levels across lesion groups AK, SCC, SK, BCC, IEC, and healthy skin. (B) Average expression
stability of reference targets (Normfinder). Stability values were determined for each gene using the
Normfinder algorithm. Decreasing values correlate with smaller variations in gene expression levels across
lesion groups AK, SCC, SK, BCC, IEC, and healthy skin.
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Figure 3 KRT17 levels in precancerous and lesional NMSC. Comparison of relative quantitation analy-
sis of KRT17 levels in AK (A) and SCC (B) lesions using either RPS7A/RPLP0 or GAPDH as the reference
gene relative to non-photodamaged skin. Data are presented as mean± SEM, n= 3, ∗ indicates P < 0.05;
one-way ANOVA and Turkey post-test.

with RPLP0, RPS7A or both of the two candidate genes. This result demonstrates that use
of a RG, which is not stably expressed, can lead to inaccurate data, particularly in instances
where the relative fold change is subtle.

DISCUSSION
The selection of appropriate RGs is of critical importance for accurate quantification of
gene expression levels using qPCR. Our results concur with previous studies reporting
that RNA-seq is an effective method for the identification of stably expressed transcripts
for applications in qPCR. Through qPCR validation we demonstrate that transcriptome
analysis by RNA-seq is a reliable strategy for identification of genes with low variability.
To the best of our knowledge, this is the first study to identify suitable RGs for use in
studies of pre-cancerous lesions and NMSC. Our data demonstrate that the RG candidates
selected for validation are stably expressed in these lesions, showing strong stability in gene
expression between different types of skin cancer lesions and non-photo-damaged skin.
Results suggest that our RNA-seq dataset is a valuable resource to assemble a shortlist of
candidates for validation by qPCR prior to commencement of gene expression studies in
NMSC and sun-damaged skin. Our RNA-seq data identified many RPL and RPS genes,
which encode structural proteins associated with ribosome biosynthesis, as highly stable.
This finding is in agreement with previous studies demonstrating RPL genes as some of the
least variable across a wide range of cell and tissue types. In a meta-analysis of over 13,000
human gene arrays, 13 of the top 15 genes identified were ribosomal structural proteins
(De Jonge et al., 2007). The need for stability in this group of genes is logical given that
ribosome biogenesis is a tightly regulated process that is critical for fundamental cellular
functions including cell growth and division.

We evaluated the stability of ten RGs in various NMSC samples. Results showed small
differences in the recommended RG combinations between geNorm and Normfinder
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analysis outputs, but the overall stability of our candidate RGs was shown to be consistent
in both analyses (Fig. 2). This effect is likely due to the way these algorithms are designed,
each utilising a different method to determine the most stable gene combinations. In the
case of geNorm, the algorithm uses pairwise correlation to determine stability, using the
assumption that genes showing similar expression patterns are likely to also reflect mRNA
(cDNA) levels. BestKeeper is another commonly used normalisation algorithm that is
based on pairwise correlation (Pfaffl et al., 2004). A limitation of this type of normalisation
process is that genes, which demonstrate co-ordinate regulation, are likely to be ranked
highly, even if they are not truly stable. Normfinder is an alternative algorithm, which
uses a mathematical model-based approach, which allows estimation of both intra- and
intergroup expression variation to calculate a stability value. Due to this variability, it is
a wise strategy to use more than one algorithm to confirm the most appropriate RGs.
In our case, there is a very small variation between the highest-ranking candidates for
both analytical methods. In general, any of these top ranked genes RPL38, RPL23, RPS27A,
RPL7A and RPLP0 are suitable RGs for use in NMSC and precancerous lesions. By contrast,
GAPDH or ACTB, which are widely used as RGs are not suitable in this type of cancer
as their expression is significantly different in non-photodamaged skin and the different
type of NMSC. This finding is similar to the results of a recent study that recommended
not using GAPDH for normalization purposes when analysing RNA expression in human
keratinocytes (Beer et al., 2015).

To observe the impact of RG stability on relative quantitation analysis, we analysed
the levels of keratin KTR17 in non-photodamaged skin, SCC, and AK lesions using either
GAPDHor ourmost stable combination as determined byNormfinder analysis, RPS7A and
RPLP0. KRT17 together with KRT16 and KRT6 are involved in keratinocyte differentiation
and skin cancer (Hameetman et al., 2013). It was previously reported that intermediate
filament keratins in SCC lesions compared to non-photodamaged skin were upregulated
(Hameetman et al., 2013; Hudson et al., 2010). In this study, we found that using different
calibrators significantly altered the comparison result. The upregulation of KRT17 in
AK and SCC lesions was even more pronounced with our candidate RGs. These results
demonstrate that the latter set of genes can give better power in distinguishing KRT17
expression between healthy and AK or healthy and SCC.

However, it should be noted that despite the high stability of our candidate RGs across
a range of different skin lesions, these lesions were not exposed to any treatments such as
topically applied medications, which could potentially affect their expression. A literature
search should be performed prior to the commencement of the study to eliminate RGs
that will potentially be affected by treatment conditions. As it is unlikely that any gene is
stable across all possible experimental conditions, validation should be performed for each
treatment, and in general, two or more RGs should be used to reduce the impact of any
variability. For our subset of validated RGs, many are genes encoding ribosomal structural
proteins. Caution should be used if considering these RGs where treatment conditions
have been demonstrated to result in nucleolar stress (Nosrati, Kapoor & Kumar, 2015). In
this instance, selection and validation of genes with a different functional classification,
such as EEF1A1 or EEF1B2, or derived from our initial long list of stable genes would be a
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logical strategy. Furthermore, while our RG candidates from RNA-seq has been validated
to outperform traditional RGs, there were several limitations in our RNA-seq analysis. Due
to the mix of stranded and unstranded RNA-seq samples used, to allow fair comparison
across the samples, strand specific expression of these genes was not taken into account.
Expression quantification of these RGs was conducted on a gene level, which may differ at
the isoform level. Regardless, using qPCR we independently validated our RG candidates.

CONCLUSIONS
In this study, we utilized whole transcriptome RNA-seq to analyze healthy skin,
precancerous and lesional NMSC for the purpose of identifying RGs, which are consistently
expressed across all samples. To identify genes that fall within these criteria, we measured
the mean expression, CoV and the MFC for each gene within the dataset. This resulted
in the identification of 100 highly stable genes. To further refine the genes specific for
precancerous and NMSC lesions, we then shortlisted 10 candidate genes for further
validation with qPCR. These 10 candidate genes were selected based on cut-off values
set lower or higher than both the mean and median values of the transcriptome. We
determined that the genes RPL38, RPL23, RPS27A, RPL7A and RPLP0, which encode
structural proteins associated with ribosome biosynthesis are the most suitable RGs for use
in NMSC and precancerous lesions.
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