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Objective:  The trabecular meshwork (TM) is the primary substrate of outflow resistance in

glaucomatous eyes. Repopulating diseased TM with fresh, functional TM cells might represent a novel

therapeutic breakthrough. Various decellularized TM scaffolds were developed by ablating existing cells

with suicide gene therapy or saponin, but always with incomplete cell removal or dissolve the

extracellular matrix. We hypothesized that a chemical-free, freeze-thaw method would be able to

produce a fully decellularized TM scaffold for cell transplantation.

Materials and Methods: We obtained 24 porcine eyes from a local abattoir, dissected and mounted

them in an anterior segment perfusion and pressure transduction system within two hours of sacrifice.

After they stabilized for 72 hours, eight eyes each were assigned to freeze-thaw (F) ablation (-80°C×2),

to 0.02% saponin (S) treatment, or the control group (C), respectively. The trabecular meshwork was

transduced with an eGFP expressing feline immunodeficiency viral (FIV) vector and tracked via

fluorescent microscopy to confirm ablation. Following treatment, the eyes were perfused with standard

tissue culture medium for 180 hours. We assessed histological changes by hematoxylin and eosin

staining. TM cell viability was evaluated with a calcein AM/propidium iodide (PI) assay. We measured IOP

and modeled it with a linear mixed effects model using a B-spline function of time with 5 degrees of

freedom.

Results: F and S experienced a similar IOP reduction by 30% from baseline (P=0.64). IOP reduction of

about 30% occurred in F within 24 hours and in S within 48 hours. Live visualization of eGFP

demonstrated that F conferred a complete ablation of all TM cells and only a partial ablation in S.

Histological analysis confirmed that no TM cells survived in F while the extracellular matrix remained. The

viability assay showed very low PI and no calcein staining in F in contrast to numerous PI-labeled dead

TM cells and calcein-labeled viable TM cells in S.

Conclusion: We developed a rapid TM ablation method that uses cyclic freezing that is free of biological

or chemical agents and able to produce a decellularized TM scaffold with preserved TM extracellular

matrix in an organotypic perfusion culture.
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Abstract 

Objective: The trabecular meshwork (TM) is the primary substrate of outflow resistance in 

glaucomatous eyes. Repopulating diseased TM with fresh, functional TM cells might represent a 

novel therapeutic breakthrough. Various decellularized TM scaffolds were developed by ablating 

existing cells with suicide gene therapy or saponin, but always with incomplete cell removal or 

dissolve the extracellular matrix. We hypothesized that a chemical-free, freeze-thaw method 

would be able to produce a fully decellularized TM scaffold for cell transplantation. 

Materials and Methods: We obtained 24 porcine eyes from a local abattoir, dissected and 

mounted them in an anterior segment perfusion and pressure transduction system within two 

hours of sacrifice. After they stabilized for 72 hours, eight eyes each were assigned to freeze-

thaw (F) ablation (-80°C×2), to 0.02% saponin (S) treatment, or the control group (C), 

respectively. The trabecular meshwork was transduced with an eGFP expressing feline 

immunodeficiency viral (FIV) vector and tracked via fluorescent microscopy to confirm ablation. 

Following treatment, the eyes were perfused with standard tissue culture medium for 180 

hours. We assessed histological changes by hematoxylin and eosin staining. TM cell viability was 

evaluated with a calcein AM/propidium iodide (PI) assay. We measured IOP and modeled it with 

a linear mixed effects model using a B-spline function of time with 5 degrees of freedom.

Results: F and S experienced a similar IOP reduction by 30% from baseline (P=0.64). IOP 

reduction of about 30% occurred in F within 24 hours and in S within 48 hours. Live visualization 

of eGFP demonstrated that F conferred a complete ablation of all TM cells and only a partial 

ablation in S. Histological analysis confirmed that no TM cells survived in F while the 

extracellular matrix remained. The viability assay showed very low PI and no calcein staining in F 

in contrast to numerous PI-labeled dead TM cells and calcein-labeled viable TM cells in S. 

Conclusion: We developed a rapid TM ablation method that uses cyclic freezing that is free of 

biological or chemical agents and able to produce a decellularized TM scaffold with preserved 

TM extracellular matrix in an organotypic perfusion culture. 

Keywords: Trabecular meshwork, decellularization, ablation, intraocular pressure, pig eyes, 

freeze-thaw, glaucoma

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

PeerJ reviewing PDF | (2017:01:15999:0:1:NEW 6 Feb 2017)

Manuscript to be reviewed



Introduction

The trabecular meshwork (TM) is the primary substrate of outflow resistance in normal 

and glaucomatous eyes. Recent studies suggested not only low TM cellularity (Alvarado, Murphy

& Juster, 1984; Baleriola et al., 2008), but also TM cytoskeleton and phagocytosis changes in 

primary open angle glaucoma (Clark et al., 1995; Fatma et al., 2009; Izzotti et al., 2010; Saccà, 

Pulliero & Izzotti, 2015; Peters et al., 2015; Micera et al., 2016). Repopulating diseased TM with 

fresh, functional TM cells has been shown to restore homeostasis of normal outflow and thus 

might represent a novel therapeutic breakthrough (Du et al., 2013; Abu-Hassan et al., 2015; Yun 

et al., 2016; Zhu et al., 2016).

For TM cell transplantation studies, preserving the structure and the extracellular matrix 

are desirable to provide a natural transplantation environment. Eliminating or reducing the 

number of host TM cells are also useful. In a recent study, an ex vivo 3D bioengineered TM 

scaffold repopulated by human primary TM cells was developed, but without the distinct layers 

of juxtacanalicular, corneoscleral and uveal TM (Torrejon et al., 2016). Transgenic  (Tg-MYOC 

Y437H (Zhu et al., 2016)) and laser photocoagulation mouse models (Yun et al., 2014) have also 

been used or proposed for TM transplantation, respectively.  However, the anatomy of the 

rodent outflow tract has only a limited number of TM cell layers (three to four) compared to that

of humans (ko & Tan, 2013). Porcine eyes share many features that are similar to human eyes, 

including size, structure, intraocular pressure (IOP), the outflow pattern (Sanchez et al., 2011; 

Loewen et al., 2016b,a) and a large trabecular meshwork that guards the angular aqueous 

plexus (Tripathi, 1971) with Schlemm’s canal-like segments (Suárez & Vecino, 2006). The 

presence of biochemical glaucoma markers in the pig (Suárez & Vecino, 2006), genomic 

similarities to humans that rival that of mice (“Pairwise Alignment Human vs Pig Blast Results”; 

Groenen et al., 2012; Flicek et al., 2014) and microphysiological properties such as giant vacuole 

formation Schlemm’s canal endothelium (McMenamin & Steptoe, 1991) suggests pig eyes as 

glaucoma research models (Ruiz-Ederra et al., 2005). 

Abu-Hassan et al. used saponin as an elegant way to induce a glaucoma-like dysfunction 

and cell loss in the TM of pig eyes (Abu-Hassan et al., 2015) with a 36% ± 9% cell count 

reduction at 10 minutes. Saponins are a mixed group of plant derived, steroid and terpenoid 

glycosides that are used as detergents. The impact on remaining host and transplanted donor 

TM cells as well as on the ECM is not known. To address these concerns, we developed a 

chemical-free, freeze-thaw method to produce a decellularized TM scaffold. Together with our 

anterior segment perfusion system (Loewen et al., 2016b), this scaffold model can be used for 

cell transplantation, allowing real-time TM visualization and IOP measurement. 
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Materials and Methods

Study Design

Pig eyes were obtained from a local abattoir and prepared for culture within 2 hours of 

death. Twenty-four eyes were assigned to three groups with eight eyes in each to serve as 

controls, undergo free-thaw cycles or be infused with saponin. This number was chosen based 

on past power calculations and the maximum number that could be perfused simultaneously 

thereby minimizing the variability with same group experiments with our setup (Loewen et al., 

2016b,a). Anterior segment perfusion cultures were allowed to stabilize for 72 hours before 

subject to freeze-thaw cycles or saponin supplemented media, respectively. The intraocular 

pressure (IOP) was recorded continuously by a pressure transducer system (Physiological 

Pressure Transducer, SP844; MEMSCAP, Skoppum, Norway) (Loewen et al., 2016b,a). Eyes 

cultures were continued for another 180 hours. Two additional eyes per ablation method group 

were transduced with eGFP expressing feline immunodeficiency viral vectors and subjected to 

the same ablation methods as used in the experimental groups. Expression of eGFP was 

monitored and compared. Two eyes per group were randomly selected for viability assays and 

histological analysis. 

Preparation of Porcine Anterior Segments and Perfusion System

After removing extraocular tissues, freshly enucleated porcine eyes from a local abattoir 

(Thoma Meat Market, Saxonburg, PA) were placed into a 5% povidone-iodine solution 

(NC9771653, Fisher Scientific, Waltham, MA) for 3 minutes and rinsed three times with 

phosphate-buffered saline (PBS). Eyes were hemisected 7 mm posterior and parallel to the 

limbus and the lens, ciliary body, and iris were carefully removed. Anterior segments were again 

washed with PBS three times and mounted in anterior segment perfusion dishes. Media 

(phenol-free DMEM (SH30284, HyClone, GE Healthcare, Uk)) supplemented with 1% fetal bovine

serum, and 1% antibiotic-antimycotic (15240062, Thermo Fisher Scientific, Waltham, MA) was 

continuously pumped into the anterior chambers at a constant infusion rate of 3 microliters per 

minute. After calibration, the IOP was recorded in 2-minute intervals. 

Trabecular Ablation by Freeze-Thaw cycles or 0.02% Saponin

After 72 hours of allowing eyes to stabilize, eyes were subjected to freeze-thaw cycles or 

0.02% saponin, respectively. For the freeze-thaw ablation, anterior segments were exposed to 

-80°C for 2 hours, then thawed at room temperature for 1 hour. After two cycles of freeze-thaw, 

anterior segments were reconnected to the perfusion system. For the saponin ablation, the 

conventional perfusion media was replaced with 0.02% saponin supplemented media for 15 

minutes, then exchanged for the normal perfusion medium in 37 °C incubator as described 

before (Abu-Hassan et al., 2015). 
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Anterior Segment Transduction and TM Visualization

Feline immunodeficiency viral vectors expressing eGFP were generated by transient 

cotransfection of envelope plasmid pMD.G, packaging plasmid pFP93, and gene-transfer plasmid

encoding eGFP and neomycin resistance GINSIN (Saenz et al., 2007; Oatts et al., 2013; Zhang et 

al., 2014) using a polyethylenimine method (Loewen et al., 2016b). The vector-rich supernatant 

from transfected 293T cells were harvested two, four and six days after transfection and 

concentrated by ultracentrifugation. 107 transducing units (TU) of GINSIN were injected into the 

anterior chambers. eGFP expression was followed through the bottom of the culture dish using a

dissecting microscope equipped for epifluorescence (SZX16, Olympus, Tokyo, Japan). 

TM Viability Analysis and Histology

TM cell viability was assessed by calcein acetoxymethyl (calcein-AM) and propidium 

iodide (PI) co-labelling (Gonzalez, Hamm-Alvarez & Tan, 2013). After 180 hours, the anterior 

segments were collected and washed with PBS three times. The limbus with the TM was 

dissected and incubated with calcein-AM (0.3 µM, C1430, Thermo Fisher, Waltham, MA) and PI 

(1 µg/ml, P1304MP, Thermo Fisher, Waltham, MA) for 30 min at 37°C. After three additional PBS 

washes, the TM was flat-mounted and imaged under an upright laser scanning confocal 

microscope at 400-fold magnification (BX61, Olympus, Tokyo, Japan). Images were captured at 

three distinct TM depths corresponding to the three meshwork layers, the innermost, 

uveoscleral, corneoscleral and cribriform TM closest to Schlemm’s canal. TM samples obtained 

from at least two separate quadrants per eye were dissected and fixed with 4% 

paraformaldehyde in PBS for 24 hours. After rinsing them three times in PBS, they were 

embedded in paraffin, sectioned at 6-micron thickness and stained with hematoxylin and eosin. 

Statistics

Data were presented as the mean ± standard error and analyzed by PASW 18.0 (SPSS Inc.,

Chicago, IL, USA). One-way ANOVA was performed for the comparison of IOP and TM cellularity 

among the different groups. Statistical difference was considered significant if p<0.05. A linear 

mixed effects model was fitted to the fold change response in R (Core Team, 2016). The response

was modeled as a B-spline function of time with 5 degrees of freedom (Berk; Hu et al., 1998).

Results

Gross morphology and histology

Two eyes per group were discarded due to leaks while the baseline was established. In eyes that 

were successfully cultured, the gross morphology of the anterior chamber remained well 

preserved after two freeze-thaw cycles, with light opacification of the cornea as the most 

notable change (Fig. 1). Histology from within 24 hours after exposure to freeze-thaw (F) or 
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saponin (S) indicated that F preserved the microarchitecture better (Fig. 2 A and B) than S (Fig. 2

C). Blue stained nucleoli could still be observed, but disappeared later consistent with the 

viability assay results described below. There was less extracellular matrix material present in S 

than in C and F.

Monitoring of TM ablation

Ablation control eyes were transduced with 1 × 107 eGFP FIV vectors before F and S. 24 hours 

after transduction, the TM cells began to express eGFP, reaching a peak intensity at 48 hours, as 

reported previously (Loewen et al., 2016b; Dang et al., 2016b). There were discontinuous areas 

of transduced TM (Fig. 3 top) and transduction along corneal stretch folds as well as sclera. Two 

cycles of -80°C completely abolished eGFP expression. Two cycles were necessary because pilot 

eyes with only one cycle still showed some eGFP positive cells. In contrast, after 0.02% saponin 

perfusion, eGFP fluorescence appeared quenched, and only a small portion of transduced cells 

was ablated 24 hours after exposure (Fig. 3 bottom). 

Trabecular meshwork viability assay

After two weeks of perfusion, most cells in all three TM layers from the negative control group 

were labeled by Calcein-AM (Fig. 4a-Fig. 4c), while only occasional cells were stained with PI 

(Fig. 4b and Fig. 4c). In contrast, no Calcein-AM staining and very few PI-stained cells were found

in the freeze-thaw group (Fig. 4d-Fig. 4f). Different from the above two groups, most of the TM 

cells in S were labeled by PI, with few cells in the uveal and corneoscleral TM demonstrating a 

light calcein-AM staining (Fig. 4g-Fig. 4h). 

Intraocular pressure

A stable baseline was established for all anterior segments for 72 hours before F, or S. IOP varied 

insignificantly by 10.3±7.5 % throughout the end of the study (Ps>0.05 compared to the 

baseline) (Fig. 5). However, pressure decreased dramatically after either freeze-thaw or saponin 

(baseline freeze-thaw 14.75±2.24 mmHg, saponin 14.37± 1.14 mmHg, P=0.288). At 12 hours, F 

dropped to 70% ±7.1% and S to 79.2±8.1% of baseline, respectively. F remained significantly 

lower than C for 96 hours (p= 0.02), but eye experienced a larger IOP variability onward resulting

in reduced significance. In contrast, S had a significantly lower IOP throughout the study until the

experimental endpoint at 180 hours. We applied a linear mixed effects model that used a B-

spline function of time with 5 degrees of freedom (Berk) (Fig. 6). The results reflect the averages 

shown in Fig. 5 and confirm the three non-linear behaviors with distinctly different patterns. F 

had an intercept, representative of the initial IOP drop, that was -0.378 fold less (p<0.001) than 

C and a standard error of 0.088 with 15 degrees of freedom and a t-value of -4.3. F was not 

significantly different from S in the B-spline function model (p=0.142). S had an intercept that 

was 0.242 fold less than C (p=0.013) with a standard error of 0.086 and 15 degrees of freedom. 
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Discussion

In this study, we developed a method to decellularize the trabecular meshwork in 

anterior segment perfusion cultures quickly and reliably. This was achieved with two cycles of 

freezing at -80°C and thawing at room temperature. Doing so avoids the use of chemical agents 

that might dissolve the extracellular matrix or have other, not yet discovered effects. We 

compared this method to saponin-mediated disruption. Each method has distinct properties and

advantages:

Freeze-thaw cycles, applied here to group F, have been used extensively before to ablate 

tissues in human diseases (Erinjeri & Clark, 2010; Baust et al., 2014; Chu & Dupuy, 2014) 

including cyclocryodestruction in glaucoma (Benson & Nelson, 1990). It has also been used in 

research (Baust et al., 2014; Chan & Ooi, 2016; Liu et al., 2016) and in food production (“Fish and

Fishery Products Hazards and Controls Guidance”; Gill, 2006; Craig, 2012). The mechanisms of 

cryoablation in medicine include direct cell injury, vascular injury, ischemia, apoptosis, and 

immunomodulation (Chu & Dupuy, 2014): cell injury during freezing causes dehydration from 

the so-called solution effect that causes the earlier freezing extracellular compartment to extract

solutes, an osmotic gradient and cell shrinkage (Lovelock, 1953) that can be enhanced by ice 

crystal formation within the cell, damaging organelles and the cell membrane. During thawing, 

the intracellular compartment shifts to hypertonia, attracting fluid that causes the cell to burst. 

Mechanisms not at work in our model presented here are direct cold-induced coagulative 

necrosis that is the result of sublethal temperatures that activate apoptosis (Baust & Gage, 

2005) and direct, cold-induced coagulative necrosis from vascular injury as a result of stasis, 

thrombosis, and ischemia. An interesting clinical effect is an intense immunogenicity after 

cryoablation that is different from heat coagulation as immunogenic epitopes are preserved 

(Jansen et al., 2010). 

Saponin, used in experimental group S, can be used to destroy cells through lysis. At 

lower concentrations, it has been used to reduce the viability of cells (Abu-Hassan et al., 2015). 

It is an enormously large class of chemical compounds that exists in a range of plant species 

(Saponaria) which can produce soap-like foam when shaken in aqueous solution and has been 

used in as detergents (Coombes, 2012). These substances are amphiphilic (both hydro- and 

lipophilic) glycosides in which sugar is bound to a functional three-terpene group via a glycosidic 

bond. Saraponins are a significant subset of saponins that are steroidal while aglycone 

derivatives have pharmacologic characteristics of alkaloids. Historically, saponins have also been 

used in fishing as a fish poison (Campbell, 1999). In research and treatment, their ability to form 

complexes with cholesterol to create pores in cell membrane bilayers to induce lysis or enhance 

penetration of macromolecules has been used (Holmes et al., 2015). These properties may have 

wide-ranging and difficult to identify effects in cell transplantation models. Each purchased 

batch may have a different composition of compounds which may make it necessary to 
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characterize features and concentrations for various lots and could reduce the reproducibility of 

experiments. 

The macroscopic appearance had only relatively minor changes in F and S and included a 

mild opacification of the cornea. The microscopic architecture was best preserved in F, but less 

so in S, which can be expected based on the properties of these two different methods 

described above. Especially the change of permeability of cell membranes by saponin can cause 

worsened edema by allowing fluids to enter the extracellular space more quickly compared to 

freeze-thaw that is more likely to results in dehydration. Compared to the cells themselves, 

many blue nuclei persisted in early histology because they are less permeable and contain less 

fluid compared to the cytoplasm. These observations were reflected in the ablation of 

transduced, eGFP expressing cells. Freeze-thaw caused nearly complete loss of fluorescence 

after the first cycle and disappeared entirely when cells were disrupted after the second cycle. 

Saponin appears to have caused leakage of eGFP proteins where diminished fluorescence was 

observed, but only a few cells were fully lysed. 

The viability cell confirms our findings from the histological analysis and eGFP ablation. 

Freeze-thaw caused the disappearance of almost all cells secondary to the above mechanism of 

cell dehydration and subsequent burst. In our experiments, saponin appears to have caused a 

sublethal injury to many cells, especially in the uveal and corneoscleral TM. Abu-Hassan et al. 

have optimized a protocol to induce such sublethal damage from saponin to mimic and treat 

glaucoma in an ex vivo model (Abu-Hassan et al., 2015). This also matches the slower decline 

seen in a model of inducible cytoablation mediated by an HSVtk suicide vector (Zhang et al., 

2014). 

This pattern of cell death matches the IOP reduction of groups F and S. F experienced a 

more immediate drop compared to S as could be expected by a complete breakdown of the 

outflow regulation by the TM. In comparison, the slower downslope seen after saponin 

exposure likely reflects the more gradual cell function decline with eventual cell death. The 

eventual IOP was lower in S which may represent the loss not only of cells but also of 

extracellular matrix which could persist in eyes in F to a variable extent and time. Our use of a B-

spline function of time provides for the first time function modeling for a biological system of 

effects in an eye culture model that play out over a period of time rather than the common 

comparison of single time points which assumes that observations from one time point to the 

other are largely unrelated (Hu et al., 1998). Handling longitudinal data this way allows for an 

extension of the standard linear mixed-effects models that can around for a broad range of non-

linear behaviors. They are robust to small sample sizes, as well as too noisy observations and 

missing data. 

Consistent with our clinical (Dang et al., 2016c,a) and laboratory findings (Zhang et al., 

2014), TM ablation resulted in the reduction of IOP. A (20.80 ± 8.05)% IOP reduction was 

achieved at 12 hours after saponin treatment, while a greater (30.00 ± 7.13)% IOP reduction was
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achieved in the freeze-thaw group. The freeze-thaw cycle removed all the meshwork cells, 

including corneoscleral and cribriform meshwork cells which account for at least 50% of 

trabecular outflow resistance, whereas most of these cells were preserved after saponin 

ablation. It is possible that the IOP reduction seen after cyclocryodestruction is partially due to 

an improvement of conventional outflow, not just of reduced aqueous humor production or 

uveoscleral outflow enhancement from inflammation.

Limitations of this study are that cytoablation via freeze-thaw may liberate other, 

undesirable factors from non-trabecular cells that also die. The argument against a profound 

impact of those is that the macroscopic and microscopic structures were surprisingly stable for 

the entire time of 10 days. We only describe an ablation method here but not a repopulation of 

the trabecular meshwork by cell transplantation. 

In conclusion, we developed a fast, inexpensive and reliable method that results in 

complete ablation of TM cells while the architecture including trabecular beams was well-

preserved. 
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Figures

Figure 1

Figure 1: Freeze-thaw treatment of anterior segment cultures. Eyes were exposed to two cycles

of freezing at -80°C followed by thawing at room temperature. The macroscopic appearance 

remained mostly unchanged. 
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Figure 2

Figure 2. Histology of the angle of perfused anterior chambers. A) Control eyes had a similar 

appearance to free-thaw treated eyes (B) in early histology slides. C) Saponin treated eyes. Blue 

nuclei can be seen in all sections at 24 hours. 
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Figure 3

Figure 3: Confirmation of cytoablation. Fluorescence of eGFP expressing, FIV GINSIN transduced

cells vanished completely after two freeze-thaw cycles (top). In contrast, eGFP can still be seen 

in many transduced cells but at a reduced intensity in saponin-treated eyes (bottom). Red 

arrowheads point to transduced trabecular meshwork that is ablated completely after freeze-

thaw but only diminished in saponin eyes. White asterisks indicate landmarks that can easily be 

recognized before and after treatment. 
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Figure 4

Figure 4. Assessment of TM cell viability by calcein AM/PI co-labelling. Viable trabecular 

meshwork (TM) cells exposed to calcein AM showed bright green fluorescence, while dead TM 

cells allowed PI to enter cell membrane and label the cell nuclear with red fluorescence . In the 

control group, most TM cells were still viable after perfusion for two weeks (a-c). In contrast, 

cells, including many nuclei, were destroyed by freeze-thaw. No Calcein AM and only a few PI-

labeled TM cells were found (Figure 5d- Figure 5f). Different from the other two groups, a few 

TM cells were still alive in the uveal TM and corneoscleral TM (g-h), but most of them were 

labeled as dead cells by PI. 
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Figure 5

Figure 5. IOP Reduction after TM decellularization. Freeze-thaw (F) resulted in a more rapid IOP 

reduction than saponin (S) (averages ± SEM). There were no differences at any single time 

between F and S. Differences between controls and S were not significant onward from 96 

hours.
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Figure 6

Figure 6: The B-spline function of time with 5 degrees of freedom. The B-spline consensus 

function (left) matched the average IOP changes but allowed to better highlight the response 

patterns despite a considerable data scatter in the individual curves (right; B-splines shown as 

blue lines). 
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