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Correlated evolution of sternal keel length and ilium length in birds
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The interplay between the pectoral module (the pectoral girdle and limbs) and the pelvic module

(the pelvic girdle and limbs) plays a key role in shaping avian evolution, but prior empirical

studies on trait covariation between the two modules are limited. Here we empirically test

whether (size-corrected) sternal keel length and ilium length are correlated during avian

evolution using phylogenetic comparative methods. Our analyses on extant birds and Mesozoic

birds both recover a significantly positive correlation. The results also provide new evidence

regarding the integration between the pelvic and pectoral modules. The correlated evolution of

sternal keel length and ilium length may serve as a mechanism to cope with the effect on

performance caused by the tradeoff in muscle mass between pectoral and pelvic modules, via

changing moment arms of muscles that function in flight and in terrestrial locomotion.

Introduction

Although the pectoral module (the pectoral girdle and limbs) and the pelvic module (the pelvic

girdle and limbs) of birds are specialized for different functions, they are likely to be linked

during evolution (Allen et al. 2013; Gatesy & Dial 1996; Heers & Dial 2015). This linkage

could be a result of developmental and functional constraints (Allen et al. 2013; Young et al.

2005)_as the pectoral and pelvic limbs share a broad range of development pathways, though -

they acquire distinct identity in adult in tetrapods (Young et al. 2005). Restricted by overall

resources_availability, pectoral and pelvic modules are negatively correlated in skeletal mass
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Dececchi & Larsson 2013; Hutchinson & Allen 2009). But functional specialization could

also weaken the integration between pectoral and pelvic limbs, as suggested by morphometric

analyses of avian and mammalian limbs (Bell et al. 2011; Schmidt & Fischer 2009; Young et
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al. 2005). This conflict between drivers of limb evolution, pecessitates empirical studies to .~ { eleted:
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Along the theropod to avian lineage leading to the origin of crown birds, a series of

morphological changes jn the pectoral and pelvic girdles have previously been fidentified. These
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(O'Connor et al. 2015; Zheng et al. 2014; Zheng et al. 2012), the elongation of the coracoid

(Zheng et al. 2014), the origin of an acrocoracoid process and the triosseal canal (Baier et al.

2007; Longrich 2009), the reorientation of the glenoid fossa from laterally directed to

dorsolaterally directed (Jenkins 1993), and the transformation of the furcula from boomerang-

shaped to U-shaped (Nesbitt et al. 2009; Zhou & Zhang 2002). While In the pelvic girdle we
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(Hutchinson 2001). Of these changes two major derived features that characterize derived pirds
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pattern of similar first appearances of these two key features could result from the correlated

evolution between the sternal keel and the ilium, since pectoral and pelvic modules are

suggested to be integrated in evolution (Allen et al. 2013; Heers & Dial 2015). Here we compile

morphometric data on extant birds and Mesozoic birds to empirically test this hypothesis based

on sternal keel length and ilium length...
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Material and Methods

Data collection on extant birds

We sampled 224 skeleton specimens with body mass data of 137 volant bird species from 45

families of 19 orders. All the specimens are housed in the collection of Beijing Museum of

Natural History (Supporting Information Table S1). Sternal keel length and ilium length were

taken with a digital caliper (£ 0.01 mm) (Fig. 1). When multiple specimens were measured for

a species, the mean values of those specimens were used. These variables were logl0-

transformed before subsequent analyses.

Phylogenetic comparative methods

All analyses were carried out in R 3.3.3 (R Core Team).

Phylogeny and size-correction

We used 1000 time-calibrated phylogenetic trees for the 137 species included in our study from

birdtree.org (Jetz et al. 2012). Phylogenetic size-correction of log10-transformed ilium length

and keel length was conducted using the function phyl.resid in the “phytools” (Revell 2012).
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Evolutionary rate matrix

Under the assumption of Brownian motion model, the variance of a trait at a given time
interval is equal to the length of the time interval times the Brownian motion rate parameter,
6. The multivariate Brownian motion is governed by the evolutionary rate matrix, which
contains the evolutionary variances or rates (c°) for individual characters on its diagonals and
the evolutionary covariances on its off-diagonals (Revell & Collar 2009; Revell & Harmon
2008). The Pearson correlation coefficient (r) can be calculated based on these values. This
analysis was implemented using the function evol.vcev in the “phytools” (Revell 2012). The
Pearson correlation coefficients from iterations across the 1000 trees were averaged, weighted
by their Akaike weights based on AICc (Burnham & Anderson 2002). As the Pearson
correlation coefficient does not follow a normal distribution, Fisher transformation was used

during the process.

Mesozoic birds

To determine whether keel length and ilium length are correlated during early evolution of birds,
we sampled 10 Mesozoic avian species housed in the collection of Institute of Vertebrate
Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China. Sternal
keel length, ilium length and femur length were measured (Supporting Information Table S1).
They were log10-transformed before subsequent analyses. Calibration dates for these taxa were

adapted from Wang & Lloyd (2016a; 2016b). A phylogenetic tree including these 10 species
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was constructed manually based on a recent phylogenetic analysis (Wang & Zhou 2017). The

fossil bird tree was time-calibrated using the function timePaleoPhy with the “equal” method

in the “paleotree” (Bapst 2012), with tip dates drawn randomly from a uniform distribution

between the maximum and minimum dates, producing 1000 trees. The estimate of the

evolutionary rate matrix was iterated across these 1000 trees to account for the uncertainty in

time-calibration. The estimated correlation coefficients from 1000 iterations were averaged,

weighted by Akaike weights.

Results

In extant birds, the correlation between sternal keel length and ilium length is 0.77 (95%

Confidence interval: 0.69 to 0.84). Similarly, the correlation is 0.90 in Mesozoic birds (95%

Confidence interval: 0.61 to 0.98). Both are positive and statistically significant, as their 95%

confidence intervals do not include 0.

In the morphospace defined by sternal keel length and ilium length (Fig. 2), several outliers are

identifiable in these extant birds. Phalacrocorax carbo deviates from other taxa by entering the

upper-left space, indicating that it has relatively long ilia but a relatively short keel. By contrast,

Brachyramphus marmoratus enters the lower right space, by having a relatively long keel but

relatively short ilia. Gavia stellata also deviates from others, but it largely follows the pattern

of a positive correlation between sternal keel length and ilium length.
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In the phylomorphospace defined by sternal keel length and ilium length of Mesozoic birds

(Fig. 3), the enantiornithines are located in the lower left part, while the ornithuromorphs in the

upper right part, indicating that the ornithuromorphs have a longer keel and longer ilia than

enantiornithines. An exception is Piscivorenantiornis inusitatus, which has relatively longer

ilia than most ornithuromorphs except Iteravis huchzermeyeri. Piscivoravis lii differs from

other ornithuromorphs in having a comparatively shorter keel and shorter ilia.

Discussion

Our results support the hypothesis that ilium length and sternal keel length are correlated during

avian evolution and further provide quantitative support of the integration between pelvic and

pectoral modules (Allen et al. 2013; Gatesy & Dial 1996; Heers & Dial 2015). Among basal

birds, an ossified sternal keel is absent in Archaeopteryx, Jeholornis and Sapeornis, and only a

faint keel is present in Confuciusornis (Chiappe et al. 1999; O'Connor et al. 2015; Zheng et al.

2014). The keel is small and restricted to the caudal part of the sternum in Early Cretaceous

enantiornithines (O'Connor et al. 2011; Wang & Zhou 2017; Zheng et al. 2012), while

comparatively larger in ornithuromorphs (e.g., Zhou & Zhang 2001; Zhou & Zhang 2006).

Despite these differences the recovered positive correlation between the sternal keel length and -

ilium length based on data of enantiornithines and ornithuromorphs suggests that this pattern

appears very early during avian evolution.
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Heers & Dial (2015) showed that the pectoral and pelvic modules are negatively correlated in
muscle mass and skeletal mass and suggested the tradeoff in investment is associated with a
tradeoff in performance. In other words, the less-invested module has to cope with a larger
burden. The correlated evolution of sternal keel length and ilium length may serve as a
mechanism to offset, to some extent, the effect on performance caused by the tradeoff in muscle
mass via changing moment arms of pectoral muscles and hindlimb muscles, because the torque
produced by a muscle is determined by its mass and moment arm and the effect caused by a
decrease in the muscle mass can be offset by an increase in the muscle moment arm. This
requires that the mass and moment arm of a muscle can be modified independently to some
extent. The sternal keel provides a surface for the attachment of muscles essential for flight, i.e.,
m. supracoracoideus and m. pectoralis; therefore, their moment arms can be directly affected
by changes of sternal keel length. Though sternal keel length is correlated with the mass of
these muscles (R* = 0.47; Wright et al. 2016), parts of their variances cannot be statistically
explained by each other. These facts imply that during evolution of flight, birds have the
evolution of hindlimb functions may be achieved through changing the masses or moment arms
of hindlimb muscles, though their relationship has not been empirically estimated. These

inferences need to be tested in future studies.

In the sampled extant birds, two birds, i.e., Brachyramphus marmoratus and Phalacrocorax

carbo, exhibit Jarge deviation from other taxa in the morphospace defined by sternal keel length -

Comment [TD3]: Even during their lifetime. See Lindstrom

et al. 2000 and Dietz et al.2007.
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and ilium length (Fig. 2). As a wing-propelled diver, the elongated keel Brachyramphus

marmoratus accommodates the enlarged m. supracoracoideus and the elongated m. pectoralis

situation, the pelvic girdle of B. marmoratus shifts to an upright posture rather than acquires an
elongated ilium as in other birds (Fig. 2) (Storer 1945). The relatively long ilium in
Phalacrocorax carbo is an adaptation of foot-propelled diving (HiniC-Frlog & Motani 2010).
Its comparatively shorter sternal keel than that of other foot-propelled divers, for example,
Gavia stellata, is associated with its weak flight ability; it can only slope soar in strong winds

(Norberg 1990). Phalacrocorax carbo is an example of the evolution towards flightlessness

is seen in some flightless bird species such as the Galapagos cormorant (Phalacrocorax harrisi)

(Livezey 1992) and ratites (Cracraft 1974).

Among our sampled Mesozoic birds, Piscivorenantiornis inusitatus, a fish-eating

enantiornithine (Wang & Zhou 2017; Wang et al. 2016), differs from other enantiornithines

(Longipteryx chaoyangensis, Bohaiornis guoi and Longirostravis hani) in that it has relatively

longer ilia (Fig. 3). The functional significance of this feature in Piscivorenantiornis is unclear,

Stoessel et al. 2013). This provide a side evidence of its ecology besides the pellet found

associated with the holotype skeleton (Wang et al. 2016).

In summary, pectoral and pelvic modules are linked in a more complicated way than just

to flap the wing in the waterd (Kovacs & Meyers 2000; Spear & Ainley 1997). To adapt to this Comment [TD4]: Perhaps give the numbers of this to show

how much larger it is than other comparable size birds
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negatively correlated in overall investment. Besides modifying moment arms of muscles, birds
may change behaviors to cope with the effect caused by tradeoff in investment. More integrative
studies in the future can provide more insight into the relationship between pectoral and pelvic

modules.
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