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ABSTRACT
Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly

results from sexual selection operating on males. However, testing predictions from

this hypothesis, particularly male size hyperallometry, has been restricted by

methodological constraints. Here, using geometric morphometrics (GMM) we

studied for the first time sex-differential shape allometry in a spider (Donacosa

merlini, Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased)

of spider sexual size dimorphism. GMM reveals previously undetected sex-

differential shape allometry and sex-related shape differences that are size

independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape

dimorphism affects both the relative carapace-to-opisthosoma size and the carapace

geometry, arguably resulting from sex differences in both reproductive roles (female

egg load and male competition) and life styles (wandering males and burrowing

females). Our results demonstrate that body portions may vary modularly in

response to different selection pressures, giving rise to sex differences in shape, which

reconciles previously considered mutually exclusive interpretations about the origins

of spider SD.
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INTRODUCTION
Sexual dimorphism (SD), defined as size or morphological differences between the

sexes (Hedrick & Temeles, 1989) is a large source of phenotypic variation in animals.

As a relevant topic in evolutionary biology ever since Darwin (Lande, 1980; Lande &

Arnold, 1985; Hedrick & Temeles, 1989; Fairbairn, Blanckenhorn & Szekely, 2007), the

evolution of SD is known to result from genetic correlations between the sexes and

sex-differential selection pressures, particularly natural selection related to reproductive

sex roles or life styles and sexual selection, related to mate competition (Lande, 1980;

Lande & Arnold, 1985;Hedrick & Temeles, 1989; Cox, Skelly & John-Alder, 2003; Foellmer &

Fairbairn, 2005a; Fairbairn, Blanckenhorn & Szekely, 2007). Hypotheses testing, however,

remains controversial, as the aforementioned mechanisms are not necessarily mutually

exclusive and several mechanisms may be operating at the same time (Hedrick &

Temeles, 1989).
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As unique systems in the analysis of the ultimate causes of SD (Foellmer &

Moya-Laraño, 2007), spiders are a widely featured model system in this controversy.

Overall, spiders follow the arthropod female-biased pattern of sex differences in size,

but spider sexual size dimorphism (SSD) actually spans from moderately male-biased

(Alderweireldt & Jocqué, 1991a; Schutz & Taborsky, 2003; Aisenberg, Viera & Costa, 2007)

to the most extremely female-biased terrestrial patterns (Foellmer & Fairbairn, 2005a;

Vollrath, 1998). However, the prevalent explanations about the evolutionary origins of

spider SD focus on a single mechanism, namely sexual competition among males

(Foellmer & Moya-Laraño, 2007). Male size usually predicts the outcome of male–male

interactions (Elias et al., 2008; McGinley, Prenter & Taylor, 2015), and males are under

directional selection for overall larger size even in extremely female-biased spider taxa

(Foellmer & Fairbairn, 2005a). As far as interference competition relaxes when population

densities are low, selection may yet favor male morphologies best advantageous at

scramble competition (Foellmer & Moya-Laraño, 2007). For instance, relatively smaller

males are better at climbing to reach females (Moya-Laraño, Halaj & Wise, 2002), whereas

spider SSD is more accentuated when male mortality increases because of the

sex-differential costs of travelling in search for females (Elgar, 1991; Vollrath & Parker,

1992; Walker & Rypstra, 2001; Moya-Laraño, Halaj & Wise, 2002; Walker & Rypstra, 2003;

Brandt & Andrade, 2007). However, spider SSD fails to follow a common trend of

phenotypic variation resulting from sexual selection, namely the higher variation of male

size over evolutionary times. This trend would lead to a reduced SSD the larger the

body size in such a female-biased taxon (i.e., Rensch’s Rule (Rensch, 1959)). However,

spider female size tends to vary more than male’s within and across taxa (Abouheif &

Fairbairn, 1997), which might be consistent with a prevalent role of fecundity selection in

the evolution of spider SSD (Head, 1995; Coddington, Hormiga & Scharff, 1997).

Selection pressures acting differently on particular male and female body parts are

likely to produce different patterns of allometric growth (Zelditch, Swiderski & Sheets,

2012), leading to sex differences in shape and sexual shape dimorphism (Fairbairn, 2007;

Szekely, 2007). Furthermore, sexually selected traits have been long suspected to show

positive static allometry, as larger individuals are expected to exhibit disproportionally

larger traits (Kodric-Brown, Sibly & Brown, 2006), and sex-differential allometric variation

could hence indicate a role for sexual selection in the evolution of particular traits.

However, the analysis of spider shape and shape allometry has not attracted much

attention, likely because of methodological constraints. For instance, as in many other

groups (Stuart-Fox, 2009; Cabrera, Scrocchi & Cruz, 2013; Roitberg et al., 2015), spider SSD

is usually analyzed either from single linear body measurements (Jakob, Marshall &

Uetz, 1996; Aisenberg, Viera & Costa, 2007; Aisenberg et al., 2010) or from linear

combinations of them obtained from multivariate statistical techniques, essentially

principal components analysis (PCA) (Prenter, Montgomery & Elwood, 1995;

Foellmer & Fairbairn, 2005a, 2005b), which is limited to describe shape as residual

deviations from size (Mosimann, 1970). Today, landmark-based geometric

morphometrics (GMM) stands among the suite of new analytical tools which have
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been successfully applied to the analysis of sexual shape dimorphism (O’Higgins &

Collard, 2002; Pretorius, Steyn & Scholtz, 2006; Kaliontzopoulou, Carretero &

Llorente, 2007; Bonnan, Farlow & Masters, 2008; Benı́tez, 2013). In spite of the great

potential of GMM for the evaluation of shape and sex-differential shape allometry,

however, the method has not been ever applied to the study of spider sexual shape

dimorphism and shape allometry, with the exception of studies on shape variation in key

characters of spider taxonomy, such as genital structures (Crews, 2006; Costa-Schmidt &

de Araujo, 2010).

Here, we applied GMM to the analysis of body shape allometry and sexual shape

dimorphism in a wolf spider (Donacosa merlini Alderweireldt & Jocqué, 1991a, Araneae,

Lycosidae), known to unambiguously exhibit male-biased SSD on the basis of traditional

morphometrics (Alderweireldt & Jocqué, 1991b). We measured spider size and shape at

several locations, covering the whole range of habitat variation in the known species

distribution area. D. merlini shows sex differences in reproductive roles and life styles;

mature males are the roving sex and search for mates, whereas females are obligate

burrowers during their whole lives and remain inside their burrows for cocoon

production and spiderling hatching, caring for cocoons and spiderlings before dispersal.

Particular body parts may relate differentially to male and female fitness: spider

opisthosoma structures relate to vegetative tasks, including reproduction (Foelix, 1996),

and larger opisthosomas enable increased energy and egg storage and production.

Therefore, fecundity selection should tend to favor the evolution of female-biased

opisthosomas or total body length (Preziosi et al., 1996; Head, 1995). On the contrary,

spider prosoma structures relate to locomotion, food intake and integrative nervous

functions (Foelix, 1996), and arguably larger carapaces could improve resource holding

potential, trophic efficiency or spider mobility. If natural selection drives the evolution of

SD, we expected sex differences in the allometric growth of prosoma and opisthosoma

structures (relatively larger female opisthosomas and more robust male prosomas),

leading to size-independent sexual shape dimorphism. Moreover, if sexual selection drives

the evolution of sexual shape differences, we expected sex-differential carapace shape

allometry.

METHODS
The species
Donacosa merlini is a burrowing, medium-sized wolf spider the distribution of which is

restricted to the sandy coastal areas surrounding Doñana in Southwestern Spain, where

it inhabits a variety of habitats, ranging from grasslands to xerophytic scrublands

(Fernández-Montraveta & Cuadrado, 2008). D. merlini is the only known worldwide

representative of the genus (Alderweireldt & Jocqué, 1991a, 1991b), and exhibits singular

life history traits: mating is delayed compared to closely related wolf spiders and takes

place during the late autumn; males mature later than females and reach larger

maturation sizes. Spiderlings hatch in spring and mature after a relatively long

post-embryonic development of 15–20 months under laboratory conditions

(Fernández-Montraveta, Moya-Laraño & Cuadrado, 2004). The species is semelparous,
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and females exhibit maternal care; cocoon and spiderling carrying is mostly restricted to

the female burrow (Fernández-Montraveta & Cuadrado, 2008).

Experimental setup
During the mating season, we captured mature spiders at four different field sites

representing almost the entire range of habitats at which D. merlini is known to occur

in the Doñana area (field project number 022/2007). At this time of the year, only

mature females and juveniles are found inside burrows; we captured females by hand

following burrow excavation during the day (10:00–17:00 hours) and males after the sunset

(19:00–21:00 hours) during mate searching, using headlamps. We only included mature

animals in the study, hence returning immature spiders back to their burrows immediately

after instar determination by visual inspection. Following capture, we transported spiders

to the laboratory for individual measurements. We measured spiders from dorsal pictures

of living individuals (Olympus E-300 digital camera); for the pictures, we immobilized

spiders inside a plastic bag placed on top of a scaled paper, to avoid any motion and prevent

individual damage. To standardize the spider position, we always oriented the animal

horizontally and facing to the right. We returned spiders to the field on the day following

capture; to reduce predation risk, we placed females back to their reconstructed burrows

and males in the vegetation. Finally, to minimize any negative effect of manipulation on

populations of this singular and protected species (Verdú & Galante, 2005; Barea-Azcón,

Ballesteros-Duperón & Moreno, 2008), we prevented any accidental damage of burrows by

marking them and removing all marks when the fieldwork was over. Overall, we captured

and measured 178 spiders (97 males and 81 females).

On each spider picture, we digitized 37 bidimensional landmarks for shape analysis.

The spider’s anterior body portion (i.e., prosoma) is covered by two firm plates (dorsal

carapace and ventral sternum) and only expands at molting, whereas the posterior

opisthosoma is comparatively softer and expands as the spider stores nutrients or

develops eggs (Foelix, 1996). On the spider’s carapace, we digitized 17 landmarks and

20 along the outline of the opisthosoma (Fig. 1). The carapace landmarks are all optimal

(Type I) (Bookstein, 1991), as their spatial positions are defined on the basis of highly

repeatable and unambiguous anatomical locations (i.e., the places at which legs, pedipalps

or chelicerae insert at the carapace; see Fig. 1). We spaced the points regularly along

the opisthosoma outline, and therefore treated these opisthosoma coordinates as

semilandmarks (Zelditch, Swiderski & Sheets, 2012).

To obtain the shape data, landmark configurations were superimposed using the

generalized Procrustes method, also known as general Procrustes analysis (Adams,

Rohlf & Slice, 2004), based on a generalized least-squares minimization of the distance

between corresponding landmarks (Gower, 1975). Landmark configurations are

compared by this superimposition, which is achieved by translating, rotating and

scaling all configurations to a common reference system (the mean). Shape in this context

is the residual mismatch and irreducible distance among homologous landmarks after

the complete Procrustes alignment, and is thus “invariant” to (i.e., it does not possess

any information about) translation, rotation and scale. To treat the opisthosoma
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semilandmarks, we used the minimum Procrustes distance sliding method (Bookstein,

1997), better suited for relatively simple outlines such as those of the opisthosoma at

intraspecific levels (Pérez, Bernal & González, 2006). Following the Procrustes fit, we used

PCA to summarize the sample shape variation into fewer components. As a proxy for

size we used the centroid size of the landmark configurations, which corresponds to the

squared root of the sum of the squared distances from each landmark to the centroid

(Bookstein, 1991). We calculated two separate shape and size datasets, one including the

whole set of landmarks and semilandmarks (i.e., both the carapace and the opisthosoma)

which thereby accounted for overall body size and shape, and another excluding the

opisthosoma semilandmarks, thereby only capturing the carapace size and shape.

We used the TPSrelw program (v.1.49; Rohlf, 2010) to slide the semilandmarks and

MorphoJ (v. 1.6.0_27, (Klingenberg, 2011)) to perform all subsequent analyses, including

landmark superimposition. MorphoJ allows isolating a component of shape that only

accounts for symmetric variation out of a bilaterally symmetric configuration of

landmarks (Mardia, Bookstein & Moreton, 2000; Klingenberg, Barluenga & Meyer, 2002).

The method, informally called “symmetrization”, yields a component of shape variation

among individuals in what might be considered a left-right averaging (Klingenberg,

Barluenga & Meyer, 2002; Savriama et al., 2012). This helps ignoring any source of

variation within the sample due to asymmetry, thus reducing the small yet potential

error introduced by, for instance, measuring immobilised animals with a globular

morphology and bilateral symmetry such as spiders. Shape allometry was studied using

multivariate regression analyses (Monteiro, 1999) based on the pooled within group

variance, to control for the effect of sexual size differences on shape variation. For

further comparisons between the sexes, we used a discriminant function analysis.

For traditional size comparisons, we applied general linear models (sex as the fixed factor)

on body size and carapace size. We applied multivariate regressions of the shape variables

on centroid size to analyze body and prosoma shape allometry. As a method for

verification, such allometric models were compared using univariate general linear

models on the obtained regression shape scores, including sex as a fixed factor and size as

the covariate (significant sex�centroid size interaction would indicate that the two

allometric slopes differ; Klingenberg, 2016). We used R (R Core Team, 2017) for the

standard statistical analyses.

1

2
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56

78

9

10
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Figure 1 Landmarks (white) and semilandmarks (gray) exemplified on a spider picture.
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RESULTS
Shape variation and sexual shape dimorphism
We found unequivocal sexual differences in body and carapace shapes. The first two

PCs explained 89.1% body shape variance. PC1 (85.7% variance explained) is the

dominant dimension of variation and unambiguously yields an ordination related to

sexual shape differences (Fig. 2). Females clearly show more globular opisthosomas and

laterally flattened and cephalically squared carapaces. Males exhibit much slender

opisthosomas and both laterally and cephalically protruding carapaces (Fig. 2A).

The ordination was far more dispersed for carapace shape, and the two first PCs only

accounted for 58.4% variance. Nonetheless, PC1 (44.5% variance explained) definitely

separates male and female shapes (Fig. 2B). Not surprisingly, the CVA clearly finds a

statistically predictable sexual shape dimorphism both for the body (p < 0.001) and the

carapace (p < 0.001).

Allometry and size-independent shape variation
The statistics of both body and carapace sizes revealed significant sex differences; females

are 1.1 larger than males for body size. However, sexual size differences revert, and males

turn out to be 1.1 times larger than females for carapace size (see Table 1).

The multivariate regressions indicate that spider shape variation is clearly allometric.

Interestingly, the allometric slopes are not sexually dimorphic (Body shape: males 0.01,

A) B)
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Figure 2 Principal Component Analysis of shape variation. (A) body and (B) carapace shapes. Extreme female and male shapes are polarized at the

extreme of PC1 (x axis). (A) Males (blue dots) and females (red dots) clearly differ on PC1, which explains most body shape variation (85.7%).

(B) Sex differences in carapace shape are also distinct.
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females 0.01; carapace shape: males 0.04, females 0.05), whereas the intercepts

(Body shape: males -0.06, females 0.007; carapace shape: males -0.04, females -0.07) are
(Table 2; see Fig. 3). The sign of intercept differences revert depending on the particular

body part studied (i.e., either whole body or carapace) (see Fig. 3). This notwithstanding,

sexual shape dimorphism is size-independent, as sex differences remain when we

statistically control for the effect of body size (Table 2). In fact, the PCA on the regression

residuals extracts again two independent components, and PC1 explains 67.2% of body

and 57.8% of carapace shape variance, respectively; PC1 clearly discriminates between

males and females, thus corroborating the size-independent sexual shape dimorphism.

This result stands either including, i.e., body shape, or excluding, i.e., carapace shape, the

opisthosoma information. Again, relatively slender opisthosomas and carapaces both

laterally and cephalically protruding characterize male shape. On the contrary, females

exhibit relatively larger and more globular opisthosomas as well as laterally flattened

and cephalically squared carapaces. Reinforcing these results, CVA unambiguously

discriminates between size-independent male and female shapes (body shape:

Procrustes distance 0.09, p < 0.001; carapace shape: Procrustes distance 0.06,

p < 0.0001).

Table 1 Summary statistics (mean ± 1SE) of size and shape depending on the spider sex (male–female).

Trait Males Females F df p Value

Body size 2.9 ± 0.03 3.1 ± 0.05 14.1 1 <0.001

Carapace size 1.3 ± 0.02 1.2 ± 0.02 14.3 1 <0.001

Body shape PC1 0.04 ± 1.7 � 10-3 -0.05 ± 3.6-3 674.2 1 <0.001

PC2 -0.001 ± 1.12 � 10-3 0.001 ± 1.1 � 10-3 2.1 1 0.15

CV1 3.3 ± 0.1 -4 ± 0.1 229.8 1 <0.001

Carapace shape PC1 0.03 ± 1.19 � 10-3 -0.04 ± 2.1 � 10-3 777.4 1 <0.001

PC2 4.02 � 10-5 ± 1.88 � 10-3 -5.2 � 10-5 ± 2.2 � 10-3 9 � 10-4 1 0.98

CV1 2.7 ± 0.09 -3.2 ± 0.1 154.3 1 <0.001

Note:
We estimated spider shape and size on the basis of the overall body or the carapace landmarks. Shape is described after the Canonical Variate 1 and the two first
PCs from a PCA following Procrustes superimposition of individual landmark configurations. Spider size is the centroid size. Significant differences are
highlighted.

Table 2 Results of regression analyses showing the allometric intercepts and slopes of regression

scores on size, depending on the body portion considered (body shape, carapace shape).

Trait Effect df F p Value

Body shape Size 1 7.5 <0.01

Sex 1 646.3 <0.001

Size � sex 1 0.8 0.4

Carapace shape Size 1 85.4 <0.001

Sex 1 109.4 <0.001

Size � sex 1 0.8 0.4

Note:
Significant differences are highlighted.
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Figure 3 Allometric regressions of spider shape. (A) body and (B) carapace shapes. (C) Histogram with the scores for the leave-one-out

cross-validation of Discriminant analysis in body and (D) carapace shapes. (E) Shape differences between females and males shown as

image deformations (warps) of the original stock of images computed with the Image Unwarp algorithm using TPSSuper (v.1.15; Rohlf, 2013)

(Marugán-Lobón & Buscalioni, 2009; Rohlf, 2002).
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DISCUSSION
Our results on shape variation in D. merlini reveal new and previously undetected

aspects of spider sexual morphological variation. Using shape analysis GMM, we have

quantified for the first time that, (1) spider males and females unambiguously differ in

body shape, (2) such shape differences relate to two main features: the carapace-to-

opisthosoma ratio and the carapace shape, (3) a portion of spider shape variation is

allometric, but sexual shape differences are completely independent on size, and

(4) the shape allometric intercepts are sexually dimorphic, whereas the slopes—

scaling—are not.

The evolution of spider sexual dimorphism has been widely studied (Foellmer &

Moya-Laraño, 2007) on the basis of single linear measurements of size, such as the

maximum carapace width or the correlated carapace body or leg lengths (Jakob, Marshall

& Uetz, 1996; Aisenberg, Viera & Costa, 2007; Aisenberg et al., 2010). Thus far, such

empirical evidence supports a primary role of sexual selection operating on male bodies,

but hyperallometry of male size or sex-differential shape allometry had been seldom

addressed. On the other hand, spider multivariate sexual shape dimorphism had been

also described (Prenter, Montgomery & Elwood, 1995) using PCA based on linear

combinations of linear size estimates (reviewed in Foellmer & Moya-Laraño, 2007),

yielding to identify two main independent factors, one interpreted as “multidimensional

size”, and another, orthogonal, interpreted as body condition or shape (Prenter,

Montgomery & Elwood, 1995; Foellmer & Fairbairn, 2005a, 2005b). Not only spider shape

resulting from the allometric growth of body parts had not yet been reported thus far;

the fact that all such analyses were based on traditional morphometrics (i.e., linear

measurements) implies that any such type of approach to spider morphological evolution

would have been inevitably correlated to body mass and condition.

Patterns of shape differences in D. merlini suggest that sexual dimorphism results from

divergent selection related to male and female reproductive roles and life styles. In our

analyses, the main sex differences relate to the carapace-to-opisthosoma size, where

females tend to exhibit disproportionally larger opisthosomas compared to males (Fig. 2).

Additionally, sex differences in the allometric intercepts vary depending on whether we

consider the body as a whole or only the carapace, and sex differences in body size

and shape largely result from the relative growth of the opisthosoma. As spider

opisthosoma is mostly related to egg production and storage (Foelix, 1996), fecundity

selection arguably explains sex-diverging overall body morphologies in our case study

species. Carapace morphologies and their sexual divergence also fit the expected

considering sex-differential life-styles, particularly the different male and female activity

patterns, where males are roving and females are permanent burrowers. Our results

stress that male carapaces are clearly wider and more cephalically protruding,

compared to those of the females. Several studies have indeed shown that mobility

and competitive advantages drive the evolution of sex differences in spider carapace

size (Moya-Laraño, Halaj & Wise, 2002; Foellmer & Fairbairn, 2005a, 2005b;
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Brandt & Andrade, 2007); more robust male carapaces could arguably be positively

selected either by scramble or by contest competition, an hypothesis that requires further

testing in field experiments.

Donacosa merlini morphology scales similarly between the sexes (i.e., slopes nearly

equivalent for males and females), but differ in their intercepts (i.e., sexual differences are

size-independent). The lack of sex differences between allometric slopes would argue

against a role for sexual selection in the evolution of the observed sexual shape differences

(Kodric-Brown, Sibly & Brown, 2006). However, sexual selection has been demonstrated

to not always promote an increase in the allometric slope, but to lead instead to

differences in the allometric intercepts (Bonduriansky, 2007; Shingleton & Frankino, 2012).

On the other hand, sexually selected traits do not necessarily show allometry, whereas

non-sexually selected traits often do (Shingleton & Frankino, 2012). Our results thus

underscore that sexual selection might play an important role in the evolution of

carapace shape differences.

These results also have important implications at the proximate level of this organism’s

biology. First, the lack of sex differences in the allometric slopes and the existence

of differences in the intercepts suggest that shape differences originate earlier in

development. Stationary anatomical spider structures such as the carapace only expand at

molting (Foelix, 1996), and sex differences in D. merlini life styles arise following the

maturation molt, when males become wandering, indicating that carapace shape

differences are likely to emerge at least following the penultimate molt. During

development, arthropod SSDmay result from sex differences in growth rate, development

duration or size-dependent survival, though they usually result from an increased

number of molts in one sex (Stillwell & Davidowitz, 2010). In order to achieve their larger

carapaces, males might therefore undergo either an increased number of molts or an

increased growth rate (i.e., heterochrony). A recent developmental model posits that

differential trait growth may arise from differential sensitivity to environmental cues

(i.e., plasticity) (Emlen et al., 2012), and males of a closely related species (Lycosa

hispanica) are indeed known to respond more than females to variation in developmental

conditions (Fernández-Montraveta & Moya-Laraño, 2007). Hence, male differences in

carapace shape might result from a higher degree of male morphological plasticity

in response to environmental variation. The alternative hypothesis that males undergo an

increased number of molts during development is yet consistent with male delayed

maturation (Fernández-Montraveta, Moya-Laraño & Cuadrado, 2004), and this question

requires further testing.

Our results warn about previous common scientific wisdom on the evolution of

spider SSD. Previously undetected sexually dimorphic carapace traits are far less

noticeable than differences in the carapace-to-opisthosoma ratio, though they are

definitely statistically significant (Fig. 2). Furthermore, a portion of this shape variation is

allometric, probably entailing that only relatively larger spiders tend to exhibit more

pronounced traits. Thus, it is unlikely that the observed differences could be detected in

samples containing only small representatives of the species or reduced ranges of
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spider sizes. On the other hand, D. merlini could be considered either a female- or a

male-biased sexually dimorphic species depending on the particular morphological trait

measured: it shows the common Lycosidae pattern (F>M) on the basis of body size,

yet it turns out to be male-biased and shows SSD reversal on the basis of the carapace size.

This discrepancy is due to the fact that females exhibit comparatively larger opisthosomas

compared to males, which show comparatively larger carapaces. Not surprisingly, the

SSD pattern found when using carapace size is similar to that described on the basis of

traditional metrics such as the carapace width (Foellmer & Moya-Laraño, 2007; Jakob,

Marshall & Uetz, 1996). In all, SSD is a multifaceted phenomenon and our findings

using shape analysis clearly warn about the limitations of single traits to make

generalizations about this complex, yet crucial biological issue.
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