Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels (#15615)

First revision

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes
Editor Magnus Johnson

Files 1 Tracked changes manuscript(s) 1 Rebuttal letter(s)

3 Figure file(s)
5 Table file(s)

1 Raw data file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

Declarations No notable declarations are present

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels

Nicolas Lessios Corresp. 1

 $^{f 1}$ Department of Neuroscience, University of Arizona, Tucson, AZ, United States

Corresponding Author: Nicolas Lessios Email address: nlessios@email.arizona.edu

Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorbance of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike's Information Criterion (AIC) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis, the branchiopod water flea, Daphnia magna, normal humans, and humans with enhanced Scone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus, which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model oversimplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression of each opsin to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei. The modeling approach presented here will be useful in selecting the most likely alternative hypotheses of opsin-based spectral photoreceptor classes, using relative opsin expression and extracellular electroretinography.

1	Using electroretinograms and multi-model inference to identify spectral classes of
2	photoreceptors and relative opsin expression levels
3	
4	
5	
6	Nicolas Lessios*1
7	¹ Department of Neuroscience, University of Arizona, 611 Gould-Simpson, Tucson, AZ
8	85721, USA
9	
10	*Corresponding author: nlessios@email.arizona.edu
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 ABSTRACT

Understanding how individual photoreceptor cells factor in the spectral sensitivity of a
visual system is essential to explain how they contribute to the visual ecology of the animal in
question. Existing methods that model the absorbance of visual pigments use templates which
correspond closely to data from thin cross-sections of photoreceptor cells. However, few
modeling approaches use a single framework to incorporate physical parameters of real
photoreceptors, which can be fused, and can form vertical tiers. Akaike's Information Criterion
(AIC) was used here to select absorptance models of multiple classes of photoreceptor cells that
maximize information, given visual system spectral sensitivity data obtained using extracellular
electroretinograms and structural parameters obtained by histological methods. This framework
was first used to select among alternative hypotheses of photoreceptor number. It identified
spectral classes from a range of dark-adapted visual systems which have between one and four
spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis, the
branchiopod water flea, Daphnia magna, normal humans, and humans with enhanced S-cone
syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription
factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus,
which has at least five main spectral photoreceptor classes in its compound eyes, were included
to illustrate potential effects of model oversimplification on multi-model inference. The multi-
model framework was then used with parameters of spectral photoreceptor classes and the
structural photoreceptor array kept constant. The goal was to map relative opsin expression of
each opsin to visual pigment concentration. It identified relative opsin expression differences for
two populations of the bluefin killifish, <i>Lucania goodei</i> . The modeling approach presented here
will be useful in selecting the most likely alternative hypotheses of opsin-based spectral
photoreceptor classes, using relative opsin expression and extracellular electroretinography.

56	INTRODUCTION
57	Animals possess a diversity of opsin proteins, one of the main genetic components underlying
58	spectral photoreceptor classes (Porter et al., 2012). It is now possible to identify functional amino
59	acid sequence sites of opsin proteins that determine the spectral sensitivity of photoreceptors
60	(Arendt et al., 2004; Porter et al., 2007). The number and wavelength sensitivity of spectral
51	photoreceptor classes an organism possesses is needed to understand whether it can discriminate
52	natural spectra (i.e has some form of color vision), and also to understand the mechanistic
53	context of visually-guided behavior (Kelber & Osorio, 2010). Spectral classes of photoreceptors
54	are generally identified using a combination of extracellular and intracellular
65	electroretinographic (ERG) techniques (Arikawa, Inokuma & Eguchi, 1987). Extracellular
66	recordings detect a summed contribution of multiple classes of photoreceptors, including
67	relatively rare classes that are difficult to identify using intracellular techniques. It is possible to
58	isolate spectral photoreceptor classes using chromatic adaptation, where light of a restricted
59	waveband is used to light-adapt single photoreceptor classes and the resulting effects on spectral
70	sensitivity are observed in extracellular recordings. However, because visual pigments are all
71	natively sensitive to short wavelengths (Bowmaker, 1999), this procedure is most applicable to
72	long wavelength receptors in organisms that possess up to three spectral photoreceptor classes
73	(Goldsmith, 1986). Intracellular techniques are the most accurate for verifying the existence of
74	spectral classes; but they can be further supported by modeling approaches which incorporate
75	physical parameters obtained from histological techniques (Stavenga & Arikawa, 2011).
76	I have developed a framework of multi-model selection using overall spectral
77	sensitivities of the visual system. The goals of this framework were to:
78	A. Identify the most likely number of opsin-based spectral photoreceptor classes of
79	visual systems from extracellular ERGs, and from known parameters of the
30	photoreceptor array;
31	B. Establish whether differences between individuals in structural photoreceptor
32	parameters affect identification of the same underlying number of opsin-based
33	spectral photoreceptor classes found in A.
34	C. Map relative opsin expression levels to relative visual pigment concentrations
35	when structural parameters and opsin identities of the photoreceptor array are
36	known.

88

89

90

91

92

93

94

95

96

97

The framework used here employs Akaike's information Criterion (AIC_c) to select among competing alternative hypotheses (Akaike, 1974). AIC is an objective measure that imposes a realistic penalty for over-parameterization (Burnham & Anderson, 2002). For goals A) and B) the alternative hypotheses are the number and relative area in cross section, or frequency, of spectral photoreceptor classes. For goal C), the alternative hypotheses are the number of opsins which differ in relative expression level. Others have used multi-model selection to identify the number of photoreceptors in the eyes of oceanic fish, using the relative contributions of different photoreceptor classes in cross-section to spectral absorbance (Horodysky et al., 2008, 2010). Existing models of absorptance, which use parameters of real photoreceptors (Snyder, Menzel & Laughlin, 1973) are developed here to incorporate parameters of multiple tiers, or to model absorptive layers affecting the spectral sensitivity of underlying photoreceptors.

98

99

100

MATERIALS AND METHODS

Visual modeling of photoreceptor absorptance

101 Absorbance of the fused photoreceptor array per unit length was modeled as

$$\xi_j(\lambda) = \sum \alpha_i(\lambda) \frac{A_i}{A} k, \qquad [1]$$

where α_i is the normalized absorption spectrum of each rhodopsin visual pigment, Ai/A is the relative area or frequency in cross section of each photoreceptor i, and k is the peak absorption coefficient. Values used for k for invertebrates (0.008 μ m⁻¹) were established by (Bruno, Barnes & Goldsmith, 1977) and are typical for crustaceans and insects (Cronin et al., 2014a). Values used for k for humans (0.015 μ m⁻¹) are typical for vertebrates (Wyszecki & Stiles, 1982).

Absorptance of a tiered photoreceptor array, composed of j tiers was calculated as follows,

$$S(\lambda) = \sum \left(T_{(j-1)} \left(1 - e^{-\xi_j(\lambda) l_j} \right) \right)$$
 [2]

- Where T_{j-1} is the transmittance through all preceding vertical tiers (T_0 =1.0 for the first tier).
- Normalized absorbance templates developed by (Stavenga, Smits & Hoenders, 1993), referred to
- 112 here as SSH, and by (Govardovskii et al., 2000), referred to here as GFKRD, were used for
- visual pigment absorption spectra α_i each of which has a wavelength of peak absorbance λ_{max} .
- Normalized absorption templates have two primary components, an alpha band with a
- wavelength of peak absorbance that is determined by the interaction between the chromophore

and the opsin protein, and a beta band which absorbs in the UV, and is mainly determined by the chromophore itself (Bowmaker, 1999). Effects of including both alpha and beta bands were assessed in a preliminary analysis of a global model, then only alpha bands were considered (see AIC₆ procedure). $S(\lambda)$ was normalized to 1 as in (Stavenga & Arikawa, 2011).

120121

129

130

139

140

141

142

143

144

145

146

Example selection:

- 122 I used organisms which have between one and five classes of spectral photoreceptors to examine
- capabilities and limitations of the described framework. Four organisms were used to address
- goals A) and B), and spectral sensitivities from dark-adapted eyes were used to minimize effects
- of variation among individuals of changing visual pigment concentration, pigment migration, or
- varying levels of metarhodopsin (Stavenga, 2010). The fifth organism was used to address goal
- 127 C) to map differences in visual pigment concentrations to relative opsin expression level for two
- populations of the same species.
 - 1) The onycophoran velvet worm, *Principapillatus hitoyensis* (Figure 1A) expresses a single spectral opsin class in its photoreceptors (Beckmann et al., 2015).
- 131 2) Homo sapiens possess one rod and three cone (S, M, L) photoreceptor classes. Normal human scotopic sensitivity (Figure 1B), is represented by S-class cone and rod 132 133 photoreceptor sensitivities (Bowmaker & Dartnall, 1980; Wyszecki & Stiles, 2000). In contrast, scotopic sensitivity of patients with enhanced S-cone syndrome (Figure 1C) is a 134 135 condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression (Haider et al., 2000). Human absorptance 136 137 models are corrected here for transmittance through the lens and a distal macula tier protecting the retina that affects spectral sensitivity (Wyszecki & Stiles, 1982). 138
 - 3) The branchiopod crustacean water flea, *Daphnia magna* (Figure 1D) possesses four spectral photoreceptor classes (Smith & Macagno, 1990).
 - 4) The swallow-tail butterfly, *Papilio xuthus* (Figure 1E, F) possesses at least five main spectral classes of photoreceptor type (Arikawa, Inokuma & Eguchi, 1987), in several classes of ommatidia with specialized filtering pigments (Stavenga & Arikawa, 2011).
 - 5) The bluefin killifish, *Lucania goodei*, possesses five cone photoreceptor classes based on known opsins (SWS1, SWS2B, SWS2A, RH2-1, and LWS). Separate populations of this species have been shown to regulate opsin expression depending on their photic

147	environments (Fuller et al., 2004). Killifish absorptance models are corrected here for
148	transmittance through a tier of distal ellipsosomes associated with cone classes found in
149	the related killifish Fundulus heteroclitus (Flamarique & Harosi, 2000), and through the
150	lens of the Nile tilapia Oreochromis niloticus (Lisney, Studd & Hawryshyn, 2010). The
151	relative frequency of the cones cone classes that express SWS2B, RH2-1, and LWS were
152	corrected to take into account that they are double cones.
153	Data Extraction, binning, and averaging from multiple recording locations:
154	Published spectral sensitivity data were extracted using GetData v.2.26 (Fedorov, 2013) from
155	(Arikawa, Inokuma & Eguchi, 1987; Smith & Macagno, 1990; Jacobson et al., 1990; Fuller et
156	al., 2003; Beckmann et al., 2015). Where needed, units were converted from log sensitivity to
157	relative sensitivity. Preliminary analysis indicated that 20 nm and 10 nm wavelength intervals
158	provided identical results. Binning was therefore carried out at 20 nm intervals for all sensitivity
159	data. Sensitivity ranges were 410-690 nm for humans, 350-690 nm for <i>P. hitoyensis</i> and <i>D.</i>
160	magna and 310-690 nm for P. xuthus. For P. xuthus (Arikawa, Inokuma & Eguchi, 1987) had
161	recorded extracellularly from multiple regions of the compound eye (dorsal, medial, and ventral)
162	Binned sensitivities from each region were therefore averaged to provide a single relative
163	spectral sensitivity (Figure 1E and F).
164	
	Incorporating known photoreceptor lengths l_i in Eq. [2]:
165	Incorporating known photoreceptor lengths l_j in Eq. [2]: Photoreceptor lengths were estimated or taken from published sources: P . hitoyensis (100 µm)
165 166	
	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm)
166	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin
166 167	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm)
166 167 168	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 μm) (Moldstad, 2008). The fused cross-
166 167 168 169	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 μm) (Moldstad, 2008). The fused cross-sectional and tiered three-dimensional photoreceptor array is known for <i>D. magna</i> and for
166 167 168 169	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 μm) (Moldstad, 2008). The fused cross-sectional and tiered three-dimensional photoreceptor array is known for <i>D. magna</i> and for <i>P. xuthus</i> : as in many insects and crustaceans (Kelber & Henze, 2013), the shortest wavelength
166 167 168 169 170	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 μm) (Moldstad, 2008). The fused cross-sectional and tiered three-dimensional photoreceptor array is known for <i>D. magna</i> and for <i>P. xuthus</i> : as in many insects and crustaceans (Kelber & Henze, 2013), the shortest wavelength receptor of both species becomes axon-like partway through the optical unit. Models considered
166 167 168 169 170 171	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 µm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 µm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 µm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 µm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 µm) (Moldstad, 2008). The fused cross-sectional and tiered three-dimensional photoreceptor array is known for <i>D. magna</i> and for <i>P. xuthus</i> : as in many insects and crustaceans (Kelber & Henze, 2013), the shortest wavelength receptor of both species becomes axon-like partway through the optical unit. Models considered here for <i>D. magna</i> and <i>P. xuthus</i> which have more than one spectral class of photoreceptor
166 167 168 169 170 171 172	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 μm) (Moldstad, 2008). The fused cross-sectional and tiered three-dimensional photoreceptor array is known for <i>D. magna</i> and for <i>P. xuthus</i> : as in many insects and crustaceans (Kelber & Henze, 2013), the shortest wavelength receptor of both species becomes axon-like partway through the optical unit. Models considered here for <i>D. magna</i> and <i>P. xuthus</i> which have more than one spectral class of photoreceptor incorporate this structure in Eq. [2], and in the optimization procedure. The shortest wavelength
666 667 668 669 70 71 72 73	Photoreceptor lengths were estimated or taken from published sources: <i>P. hitoyensis</i> (100 μm) (Beckmann et al., 2015); <i>H. sapiens</i> parafovea (22.5 μm) (Bowmaker & Dartnall, 1980; Cronin et al., 2014b); <i>Daphnia magna</i> (12.0 μm) (Smith & Macagno, 1990); <i>Papilio xuthus</i> (500 μm) (Arikawa & Stavenga, 1997); <i>Lucania goodei</i> (18 μm) (Moldstad, 2008). The fused cross-sectional and tiered three-dimensional photoreceptor array is known for <i>D. magna</i> and for <i>P. xuthus</i> : as in many insects and crustaceans (Kelber & Henze, 2013), the shortest wavelength receptor of both species becomes axon-like partway through the optical unit. Models considered here for <i>D. magna</i> and <i>P. xuthus</i> which have more than one spectral class of photoreceptor incorporate this structure in Eq. [2], and in the optimization procedure. The shortest wavelength receptor of <i>D. magna</i> ommatidia forms a fused structure in the distal (upper) half of the optical

optical unit (333 μ m) of *P. xuthus* ommatidia are modeled as a single optical unit, replaced by a

long wavelength receptor in the proximal portion (167 μ m).

179180

- Parameter estimates, maximum likelihood estimation, optimization, and AICc procedure
- 181 The maximum likelihood estimate (MLE) of each model was calculated according to (Burnham
- 182 & Anderson, 2002),

log
$$(L(\hat{\underline{\theta}})) = -\frac{1}{2}\log(\hat{\sigma}^2) - \frac{n}{2}\log(2\pi) - \frac{n}{2},$$
 [3]

- where the MLE for $\hat{\sigma}^2$ is $\frac{RSS}{n}$, and RSS is the residual sum of squares for a given model.
- Optimization of model parameters λ_{max} , and Ai/A for goals A) and B), then k for goal C) were
- carried out using custom scripts, and the Optimization Toolbox in MATLAB. A linear constraint
- was used for *D. magna* and *P. xuthus* during optimization to maintain λ_{max1} as the shortest
- wavelength receptor in the first tier ($\lambda_{\text{max i}} < \lambda_{\text{max i+1}}$). The absorption coefficients for *Lucania*
- 189 goodei were constrained to a value greater than 0.001/μm and less than 1.000/μm.
- I used Akaike's information criterion for small samples (AIC_c) to compare the optimized
- 191 log-likelihood,

192
$$AIC_c = -2\log(L(\hat{\underline{\theta}}) + \frac{2K(K+1)}{n-K-1}),$$
 [4]

193

- where K is the number of parameters.
- AIC scores were compared to the best model ($\triangle AIC_c = AIC minAIC$), and were weighted
- 196 using Akaike weights,

197
$$wAIC_{C} = e^{-0.5\Delta AIC_{i}} / (\sum_{1}^{R} e^{-0.5\Delta AIC_{r}}),,$$
 [5]

- where R is the number of models considered. $wAIC_C$ provides a weighting indicating the
- 199 likelihood of a single optimized model compared to all considered models, while penalizing for
- 200 over-parameterization. Akaike weights were used to calculate evidence ratios relative to the best
- 201 model (Tables 1,2 and S1,S2). See (Posada & Buckley, 2004; Symonds & Moussalli, 2011) for
- abbreviated explanations of Akaike weights and evidence ratios.
- The above procedure was first used to optimize models to extracellular ERG data for D.
- 204 magna. Beta bands were considered for every possible photoreceptor, an "all subsets"
- generalized linear model examining the influence of each parameter on $S(\lambda)$ relative to known

 $S(\lambda)$, comparing among 124 optimized models (Table S4). Generalized linear model results indicated beta bands were uninformative for model selection as they were the least important covariate β , in this case $(\frac{\hat{\beta_{\beta}}}{E(yi)}) < 3.0$, and upon removal led to a reduction in AIC_c according to methods outlined in (Burnham & Anderson, 2002; Arnold, 2010). Models which included beta bands were therefore removed and only models in Tables S1, S2 and S3 were included for the formal analysis.

212213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

206

207

208

209

210

211

RESULTS AND DISCUSSION

Visual physiologists have long used inferences from thin sections to identify the wavelength of peak absorbance for visual pigments. The reason is the absorbance of visual pigments can be predicted very accurately once the wavelength of peak absorbance, λ_{max} , is identified. In practice, this is achieved by excising a portion of the retina, taking sections of the photoreceptors, and measuring the fraction of light which is transmitted or absorbed. Ideally, this is performed on single photoreceptors, using a range of narrow-bandwidth light to infer the wavelength of peak absorbance. Vision researchers found that peak absorbance can be used to normalize the rest of the absorbance curve to create a template curve (Dartnall, 1953). Then, using just the wavelength of peak absorbance, it was found the rest of the curve can be predicted using mathematical expressions. These nomograms correspond closely to visual pigment that is extracted in solution (Govardovskii et al., 2000). Therefore, the idea of a "universal visual pigment template" is very useful when the wavelength of peak absorbance is known, referred to as "normalized absorption templates". And because λ_{max} of a visual pigment is primarily determined by the particular opsin amino acids in opsin-chromophore interactions, it is now possible to determine which amino acids determine a specific absorbance profile (Arendt et al., 2004; Porter et al., 2007). However, a normalized absorption template can be misleading when placing the function of a single photoreceptor class in context of other photoreceptors, or the overall spectral sensitivity of the eye. Therefore, absorptance models were used here with the assumption that they are a more realistic approximation for overall sensitivity estimated from extracellular ERGs, and in order to incorporate multiple layers of filtering.

The first goal of the framework presented here was to find whether overall sensitivity can be used to identify the most likely number of underlying spectral classes of photoreceptors. As can be seen from the fit of each best model to the data (Figure 1), and from the evidence ratios

(Tables 1 and 2), the framework described here is generally able to resolve the number and 237 relative cross sectional area or frequency of the photoreceptors in the visual systems I have 238 modeled. It is important to note that AIC avoids over-parameterization with the clearest example 239 240 shown here for velvet worm *Principapillatus hitoyensis*. Though one to five spectral classes were considered (Table 1 and S1), in order to add parameters (i.e. more complex models), the 241 242 likelihood of those models, given the data, must outweigh the penalty imposed by additional parameters. P. hitovensis sensitivity (Figure 1A, points) is represented by a single spectral opsin 243 class expressed in its photoreceptors with an estimated λ_{max} of 484 nm, and the best-supported 244 model here was a single receptor GFKRD absorptance model with λ_{max} of 481 nm (Figure 1A, 245 black curve). 246 This framework is also able to resolve the presence of more photoreceptors, if the data 247 248 support them. Daphnia magna sensitivity (Figure 1D) is represented by four spectral photoreceptor classes with a distal UV receptor (Smith & Macagno, 1990), and the best-249 250 supported model here was a four receptor SSH absorptance model (Table 2, and S2). The results 251 strongly support the presence of a UV sensitive photoreceptor in the compound eye of D. magna. 252 Though it was poorly supported in comparison to the best model (evidence ratio ≥ 2.0), the second best-supported model for D. magna is a three receptor SSH model, rather than a four 253 receptor GFKRD model (Table This finding can be explained by better performance of the 254 255 SSH template in the UV range, which has been documented (Stavenga, 2010). Future modeling 256 efforts for organisms with UV photoreceptors should expect stronger cumulative performance of absorptance models based on the SSH template. 257 258 Results for P. hitovensis and D. magna indicate this technique resolves a range of opsin-259 based photoreceptor classes in visual systems. In comparison to more traditional null-hypothesis 260 testing (Table 3), AIC results were similar, with the exception of humans, in which an F-test of 261 nonlinear regression results would identify 3 spectral photoreceptor classes. Table 3 also shows how the penalty imposed by AIC for unneeded parameters provides similar results to 262 comparisons of non-linear regression models. Intuitively, this type of multi-model selection 263 should make sense in terms of natural selection, as maintaining photoreceptors is costly, and if 264 265 those do not match natural spectra, there is an inarguable cost. It should also be emphasized that, to date, P. hitovensis and D. magna have not been found to possess specialized optical filtering 266 in their visual systems (Smith & Macagno, 1990; Martin, 1992; Beckmann et al., 2015). 267

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

To establish whether this framework can identify the same number and photoreceptor $\lambda_{\rm max}$ of a visual system when the frequency of the spectral photoreceptor classes is known to change, this framework was applied to scotopic human spectral sensitivities. Normal and Enhanced S cone Human scotopic sensitivities (Figure 1B and 1C) are represented by S cone and rod photoreceptors, with a higher frequency of S cones in patients with Enhanced S Cone syndrome (Jacobson et al., 1990; Hood et al., 1995; Haider et al., 2000). Although the full width half-maximum (FWHM) of normal, dark-adapted humans is 20 nm narrower than P. hitovensis (Figure 1), the best-supported model using this technique is a two receptor GFKRD absorptance model (Table 1). The narrow bandwidth of normal dark-adapted humans can be explained primarily by the presence of the macula, and illustrates that overlooking absorptive layers which affect spectral sensitivity of underlying photoreceptors leads to erroneous interpretation of the number of spectral photoreceptor classes they possess. As can be seen from Table 1 and Figure 1, the framework presented here identifies increased frequency of S cones in individuals with Enhanced S Cone syndrome, and also identifies two primary spectral photoreceptor classes. To identify limitations of model oversimplification, I applied this technique to *Papilio* xuthus sensitivity (Figure 1E and F). Absorptance models (Figure 1E, dashed lines) illustrate poor results with this technique for P. xuthus: as can be seen by the very broad (>100 µm at FWHM) sensitivity of each modeled photoreceptor in the "best" model, self-screening has been over-estimated. P. xuthus is known to employ specialized filtering pigments in part to sharpen the spectral sensitivity of its receptors (Arikawa, 2003). Opsins are expressed heterogeneously in separate classes of ommatidia leading to regions of their compound eyes differing in spectral sensitivity (Arikawa, Inokuma & Eguchi, 1987; Arikawa & Stavenga, 1997). However, absorbance (Figure 1F) at cross-section two thirds from the distal tip of the rhabdom of an ommatidium selects a five spectral photoreceptor GFKRD absorbance model. P. xuthus possess filtering pigments in the peak spectral regions of the photoreceptor classes with the largest deviations identified by this technique (λ_{max1} , λ_{max2} , λ_{max5} , Table 2). *P. xuthus* is not known to possess filtering pigments in the peak bandwidths of the remaining spectral classes (λ_{max3} , λ_{max4} , Table 2) (Wakakuwa, Stavenga & Arikawa, 2007). The comparison of P. xuthus absorbance and absorptance results serve to illustrate that multi-model selection must be employed judiciously in based on what is known for a given visual system. Absorbance results presented here fail to identify the diversity of receptors, and ommatidial spectral classes of organisms where fine-scale

spectral discrimination is essential to their visual ecology (Koshitaka et al., 2008). The modeling framework is still useful for incorporating both electrophysiology and histology to compare the effects on overall spectral sensitivity. Deviations from these models can identify the presence of previously unknown spectral filters for an organism, or can provide objective multi-model inference to validate what is known of their visual system.

The examples used until this point are from dark-adapted eyes, and k, the peak absorption coefficient in Eq. [2], remained constant. In these examples λ_{max} , the wavelength of peak absorbance of each photoreceptor, and Ai/A, the relative area or frequency in cross section of each photoreceptor, were allowed to vary for optimization. However, relative opsin gene expression levels can vary over short time scales (Fuller & Claricoates, 2011), or can change depending on light environment (Fuller, Noa & Strellner, 2010). Therefore, an additional goal of the modeling framework presented here was to use overall sensitivity to map relative opsin expression levels to visual pigment concentration in an organism with well-characterized photoreceptor classes, by allowing k to vary. The bluefin killifish, *Lucania goodei*, was used as two populations found in spring (broad wavelength) and swamp (red-shifted) light environments have been shown to differ in relative opsin expression level for multiple cone photoreceptor classes. The first two rows of Table 4 show the known values of λ_{max} , and Ai/A which were entered as constants into this framework, and the final two rows show the expression level of each opsin in proportion to all other opsins which were measured in a real-time PCR study (Fuller et al., 2004).

The alternative hypotheses in this example pertained to the number of photoreceptors that had visual pigments with absorption coefficients k greater than $0.001/\mu m$. The three best models for the spring population are all well supported by the data (evidence ratio > 2.0), indicating that the framework presented here will select the presence of photoreceptors with 3 or 4 visual pigments in meaningful concentrations; the model with 3 visual pigments is supported for the swamp population (Table5). Though killifish are known to have at least five main spectral cone photoreceptor classes, relative expression levels of class SWS2A reported to date for this species are not found at meaningful expression levels (Table 4) (Fuller et al., 2004). The relative frequency of UV photoreceptors (which express opsin SWS) for swamp populations is less than 0.01 (Table 4), indicating 3 visual pigments are likely the main contributors to overall sensitivity. The best SSH models and transmittance through the lens and ellipsosomes are shown in Figure 2.

330	The optimized values of k for each visual pigment were also informative. Though they tended to
331	individually be less than values typically found in vertebrate photoreceptors, the sum of these
332	ranges from 0.0163 in the best 4 SSH model, to \sim 0.0455 in one of 3 GFKRD models. These are
333	all within the range of k typically found in vertebrate photoreceptors (Cronin et al., 2014b).
334	These values are informative for two reasons: first, they mean that there are most likely
335	physiological limits to visual pigment concentrations because they are near saturation in
336	photoreceptors, and second, when modeling k it is assumed to be at the peak wavelength of each
337	visual pigment, which is not possible at all wavelengths, which has been addressed by (Warrant
338	& Nilsson, 1998). Further, when k is compared to the sum of all k values in Figure 3, it becomes
339	apparent that the main opsin expression results have been reproduced by these optimized models
340	This indicates that future opsin expression studies, which are often difficult to place in context of
341	either overall sensitivity or behavior (Fuller & Noa, 2010) could use the framework suggested
342	here, and models of overall sensitivity inferred from extracellular ERGS.
343	Currently, empirical studies which identify the spectral properties of individual
344	photoreceptor cells or visual pigments are difficult to place in the larger context of the visual
345	system if all the organism's spectral classes are not identified. The framework I have presented
346	here can be informative for future opsin expression studies and for objectively guiding
347	extracellular or intracellular electroretinography.
348	
349	Acknowledgements
350	I thank Justin Marshall and one anonymous reviewer for their reviews of a previous version of
351	this manuscript, as well as the editor, Magnus Johnson. Thanks to Ronald Rutowski and
352	Jonathan Cohen for support throughout the course of this research.
353	
354	REFERENCES
355	
356	Akaike H. 1974. A new look at the statistical model identification. IEEE transactions on
357	automatic control 19:716–723.
358	Arendt D., Tessmar-Raible K., Snyman H., Dorresteijn AW., Wittbrodt J. 2004. Ciliary
359	photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871.
360	Arikawa K. 2003. Spectral organization of the eye of a butterfly, Papilio. Journal of

- 361 *Comparative Physiology A* 189:791–800.
- Arikawa K., Inokuma K., Eguchi E. 1987. Pentachromatic visual system in a butterfly.
- 363 Naturwissenschaften 74:297–298.
- Arikawa K., Stavenga DG. 1997. Random array of colour filters in the eyes of butterflies.
- *Journal of Experimental Biology* 200:2501–2506.
- 366 Arnold TW. 2010. Uninformative parameters and model selection using Akaike's Information
- 367 Criterion. *The Journal of Wildlife Management* 74:1175–1178.
- 368 Beckmann H., Hering L., Henze MJ., Kelber A., Stevenson PA., Mayer G. 2015. Spectral
- sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic
- behaviour and opsin gene expression. *Journal of Experimental Biology* 218:915–922.
- Bowmaker JK. 1999. Molecular biology of photoreceptor spectral sensitivity. In: *Adaptive*
- Mechanisms in the Ecology of Vision. Dordrecht: Kluwer Academic Publishers, 439–464.
- Bowmaker JK., Dartnall HJ. 1980. Visual pigments of rods and cones in a human retina. *The*
- *Journal of Physiology* 298:501–511.
- 375 Bruno M., Barnes S., Goldsmith TH. 1977. The visual pigment and visual cycle of the lobster,
- Homarus. *Journal of comparative physiology* 120:123–142.
- 377 Burnham KP., Anderson DR. 2002. Model selection and multimodel inference: a practical
- *information-theoretic approach.* New York, NY: Springer Science & Business Media.
- Cronin TW., Johnsen S., Marshall NJ., Warrant EJ. 2014a. Visual pigments and photoreceptors.
- In: *Visual ecology*. Princeton University Press, 37–65.
- 381 Cronin TW., Johnsen S., Marshall NJ., Warrant EJ. 2014b. Visual ecology. Princeton University
- 382 Press.
- Dartnall HJA. 1953. The Interpretation of Spectral Sensitivity curves. *British Medical Bulletin*
- 384 9:24**–**30.
- Fedorov S. 2013. GetData Graph Digitizer. Available at http://getdata-graph-digitizer.com
- 386 Flamarique IN., Harosi F. 2000. Photoreceptors, visual pigments, and ellipsosomes in the
- killifish, Fundulus heteroclitus: A microspectrophotometric and histological study. *Visual*
- 388 *Neuroscience* 17:403–420.
- Fuller RC., Carleton KL., Fadool JM., Spady TC., Travis J. 2004. Population variation in opsin
- expression in the bluefin killifish, Lucania goodei: a real-time PCR study. *Journal of*
- 391 *Comparative Physiology A* 190:147–154.

- Fuller RC., Claricoates KM. 2011. Rapid light-induced shifts in opsin expression: finding new
- opsins, discerning mechanisms of change, and implications for visual sensitivity. *Molecular*
- 394 *Ecology* 20:3321–35.
- Fuller RC., Fleishman LJ., Leal M., Travis J., Loew E. 2003. Intraspecific variation in retinal
- cone distribution in the bluefin killifish, Lucania goodei. *Journal of Comparative*
- 397 *Physiology A* 189:609–616.
- Fuller RC., Noa LA. 2010. Female mating preferences, lighting environment, and a test of the
- sensory bias hypothesis in the bluefin killifish. *Animal Behaviour* 80:23–35.
- 400 Fuller RC., Noa L a., Strellner RS. 2010. Teasing apart the many effects of lighting environment
- on opsin expression and foraging preference in bluefin killifish. *The American naturalist*
- 402 176:1–13.
- 403 Goldsmith TH. 1986. Interpreting trans-retinal recordings of spectral sensitivity. *Journal of*
- 404 *Comparative Physiology A* 159:481–487.
- 405 Govardovskii VI., Fyhrquist N., Reuter T., Kuzmin DG., Donner K. 2000. In search of the visual
- pigment template. *Visual Neuroscience* 17:509–528.
- 407 Haider NB., Jacobson SG., Cideciyan A V., Swiderski R., Streb LM., Searby C., Beck G.,
- Hockey R., Hanna DB., Gorman S., Duhl D., Carmi R., Bennett J., Weleber RG., Fishman
- GA., Wright AF., Stone EM., Sheffield VC. 2000. Mutation of a nuclear receptor gene,
- NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. *Nat Genet*
- 411 24:127–131.
- Hood DC., Cideciyan A V., Roman AJ., Jacobson SG. 1995. Enhanced S cone syndrome:
- Evidence for an abnormally large number of S cones. *Vision Research* 35:1473–1481.
- 414 Horodysky AZ., Brill RW., Warrant EJ., Musick JA., Latour RJ. 2008. Comparative visual
- function in five sciaenid fishes inhabiting Chesapeake Bay. *Journal of Experimental*
- 416 *Biology* 211:3601–3612.
- 417 Horodysky AZ., Brill RW., Warrant EJ., Musick JA., Latour RJ. 2010. Comparative visual
- function in four piscivorous fishes inhabiting Chesapeake Bay. *Journal of Experimental*
- 419 *Biology* 213:1751–1761.
- 420 Jacobson SG., Marmor MF., Kemp CM., Knighton RW. 1990. SWS (blue) cone hypersensitivity
- in a newly identified retinal degeneration. *Investigative Ophthalmology & Visual Science*
- 422 31:827–838.

- Kelber A., Henze MJ. 2013. Colour vision: parallel pathways intersect in *Drosophila*. Current
- 424 *Biology* 23:R1043–R1045.
- 425 Kelber A., Osorio D. 2010. From spectral information to animal colour vision: experiments and
- 426 concepts. *Proceedings. Biological sciences / The Royal Society* 277:1617–25.
- 427 Koshitaka H., Kinoshita M., Vorobyev M., Arikawa K. 2008. Tetrachromacy in a butterfly that
- has eight varieties of spectral receptors. *Proceedings of the Royal Society B: Biological*
- 429 *Sciences* 275:947–54.
- Lisney TJ., Studd E., Hawryshyn CW. 2010. Electrophysiological assessment of spectral
- sensitivity in adult Nile tilapia Oreochromis niloticus: evidence for violet sensitivity.
- 432 *Journal of Experimental Biology* 213:1453–1463.
- 433 Martin JW. 1992. Branchiopoda. In: *Microscopic anatomy of invertebrates*. 25–224.
- 434 Moldstad AJ. 2008. Development of vision and the effect of spectral environment on the cone
- photoreceptor mosaic of the bluefin killifish. Florida State University.
- 436 Porter ML., Blasic JR., Bok MJ., Cameron EG., Pringle T., Cronin TW., Robinson PR. 2012.
- Shedding new light on opsin evolution. *Proceedings. Biological sciences / The Royal*
- 438 *Society*. DOI: 10.1098/rspb.2011.1819.
- Porter ML., Cronin TW., McClellan D a., Crandall K a. 2007. Molecular characterization of
- crustacean visual pigments and the evolution of pancrustacean opsins. *Molecular biology*
- 441 *and evolution* 24:253–68.
- Posada D., Buckley TR. 2004. Model selection and model averaging in phylogenetics:
- advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio
- tests. Systematic Biology 53:793–808.
- Smith KC., Macagno ER. 1990. UV photoreceptors in the compound eye of *Daphnia magna*
- 446 (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. *Journal of*
- 447 *Comparative Physiology A* 166:597–606.
- 448 Snyder AW., Menzel R., Laughlin S. 1973. Structure and function of the fused rhabdom. *Journal*
- of comparative physiology 87:99–135.
- 450 Stavenga DG. 2010. On visual pigment templates and the spectral shape of invertebrate
- 451 rhodopsins and metarhodopsins. *Journal of Comparative Physiology A* 196:869–878.
- 452 Stavenga DG., Arikawa K. 2011. Photoreceptor spectral sensitivities of the Small White butterfly
- 453 Pieris rapae crucivora interpreted with optical modeling. *Journal of Comparative*

454	Physiology A 197:373–385.
455	Stavenga DG., Smits RP., Hoenders BJ. 1993. Simple exponential functions describing the
456	absorbance bands of visual pigment spectra. Vision research 33:1011-7.
457	Symonds MRE., Moussalli A. 2011. A brief guide to model selection, multimodel inference and
458	model averaging in behavioural ecology using Akaike's information criterion. Behavioral
459	Ecology and Sociobiology 65:13–21.
460	Wakakuwa M., Stavenga DG., Arikawa K. 2007. Spectral organization of ommatidia in flower-
461	visiting insects. Photochemistry and Photobiology 83:27-34.
462	Warrant EJ., Nilsson D-E. 1998. Absorption of white light in photoreceptors. Vision Research
463	38:195–207.
464	Wyszecki G., Stiles WS. 1982. Color science. Wiley New York.
465	Wyszecki G., Stiles WS. 2000. Color Science: Concepts and Methods, Quantitative Data and
466	Formulae. 2000. :720–722.
467	

Figure legends

Figure 1. Photoreceptor absorptance models (curves) based on known photoreceptor lengths and vertical tiering, fit to relative spectral sensitivity data extracted from published sources (data points). Models were selected using Akaike's Information Criterion corrected for small sample sizes (AIC_c) with the best three models shown in Tables 1 and 2, and all models in Tables S1-S2. (A) Velvet worm *Principapillatus hitoyensis* sensitivity, known to be represented by a single spectral opsin class expressed in its photoreceptors (Beckmann et al., 2015). (B and C) Normal and Enhanced S cone Human scotopic sensitivities, known for normal humans to be represented by S-class cone and rod photoreceptor sensitivities, and with a higher frequency of S cones in patients that have Enhanced S Cone syndrome (Jacobson et al., 1990; Hood et al., 1995; Haider et al., 2000). Absorptance models for humans are corrected for transmittance through the lens and a distal macula layer which protects the retina, but which does not contribute to spectral sensitivity (gray lines) (Wyszecki & Stiles, 2000). D) Daphnia magna sensitivity, known to be represented by four spectral photoreceptor classes with a distal UV receptor (Smith & Macagno, 1990). (E and F) Papilio xuthus sensitivity, averaged from extracellular recordings from multiple positions in the compound eye, known to be represented by at least five main spectral photoreceptor classes (Arikawa, Inokuma & Eguchi, 1987). (E) Absorptance models (dashed

lines) illustrate poor results with this technique because of model-oversimplification explained in text. (F) Absorbance (given by Eq.1) at a cross-section approximately two thirds from the distal tip of the rhabdom of an ommatidium selects 5 spectral photoreceptor classes, with deviations of each spectral class explained further in the text due to specialized filtering pigments.

Figure 2. Absorption coefficient models based on known relative opsin expression levels from two populations for the killifish, *Lucania goodei*. Models were fit to relative spectral sensitivity data extracted from published sources (data points). Models were selected using Akaike's Information Criterion corrected for small sample sizes (AIC_c) with the best three models shown in Tables 1 and 2, and all models in Tables S3. λ_{max} and Ai/A were held constant and not included as parameters.

Figure 3. Absorption coefficient values from Table 4 for comparison to relative opsin expression levels from (Fuller et al., 2004). Opsin expression was quantified relative to the total opsin expression level.

Table 1. Absorptance model comparisons for *Principapillatus hitoyensis* and *Homo sapiens* using maximum likelihood and Akaike's Information Criterion corrected for small sample sizes (AICc). Photoreceptor arrays were modeled for each species and condition using parameters from Equations 1 and 2 (Materials and Methods). A_i/A , relative area of photoreceptor in cross-section. SSH, rhodopsin visual pigment template (Stavenga, Smits & Hoenders, 1993). GFRKD, rhodopsin visual pigment template (Govardovskii et al., 2000). Three best supported models are displayed here for each species or condition. All model comparisons considered are included in Table S1. Evidence ratios were calculated relative to the best model for each species or condition. Models with ambiguous $wAIC_c$ (evidence ratio < 2.0) are indicated by (a). Models with low support relative to the best model (evidence ratio > 2.0) are indicated by (b).

Species or Condition	(Reference) Model	$\lambda \max_1 (A_1/A)$	$\lambda \max_2 (A_2/A)$	$\lambda \max_3 (A_3/A)$	$\lambda \max_4 (A_4/A)$	AIC _c	ΔAIC _c	wAIC _c	Evidence Ratio
P.hitoyensis	(Beckmann	484	-	-	-	_	_	_	-
	et al., 2015)								
	1,GFKRD	481							
	1,0111112	(1.0)	-	-	-	55.8	0	0.508	-
	1,SSH ^a	481			_				
	1,5511	(1.0)	-	-		54.9	0.863	0.330	1.54
	2, GFKRD ^b	481	481						
	2, OTKIND	(0.70)	(0.30)	-	-	53.2	2.54	0.143	3.56
		(0.70)	(0.30)						
Normal	(Wyszecki	420	497	_	_	_	_	_	_
Human	& Stiles,	0	.,,						
(scotopic)	2000)								
(sectopie)	2,SSH	421	495						
	2,5511	(0.16)	(0.85)	-	-	91.3	0	0.500	-
	2,GFKRD ^a	419	495						
	2,01100	(0.17)	(0.83)	-	-	91.1	0.176	0.458	1.09
	3,SSH ^b	407	493	493					
	5,5511	(0.11)	(0.45)	(0.45)	-	85.1	6.24	0.02	22.6
		(0.11)	(0.73)	(0.73)					
Enchanced	(Jacobson et	420	497	_	_	_	_	_	_
S-cone	al., 1990)	0	.,,						
Human	ui., 1990)								
(scotopic)									
(sectopie)	2,SSH	429	506						
	2,5511	(0.76)	(0.24)	-	-	65.6	0	0.587	-
	2,GFKRD ^a	429	506						
	2,01 KKD	(0.75)		-	-	64.0	1.62	0.261	2.25
	3, GFKRD ^b	` ′	(0.25)						
	J, Ul'KKD	375	432	507	_	62.0	3.79	0.088	6.65
		(0.27)	(0.54)	(0.20)		02.0	2.17	0.000	0.02

Table 2. Absorptance model comparisons for *Daphnia magna* and *Papilio xuthus* using maximum likelihood and Akaike's Information Criterion corrected for small sample sizes (AIC_c). Tiered photoreceptor arrays were modeled for each species and condition using parameters from Equations 1 and 2 (Materials and Methods). A_i/A, relative area of photoreceptor

parameters from Equations 1 and 2 (Materials and Methods). A_i/A , relative area of photoreceptor in cross-section. SSH, rhodopsin visual pigment template (Stavenga, Smits & Hoenders, 1993). GFRKD, rhodopsin visual pigment template (Govardovskii et al., 2000). Three best supported models are displayed here for each species or condition. All model comparisons considered are included in Table S2. Evidence ratios were calculated relative to the best model for each species or condition. Models with ambiguous $wAIC_c$ (evidence ratio < 2.0) are indicated by (a). Models with low support relative to the best model (evidence ratio > 2.0) are indicated by (b).

Species or	(Reference)	$\lambda \max_{1}$	$\lambda \max_2$	λmax ₃	$\lambda \max_4$	$\lambda \max_{5}$	AICc	ΔAIC _c	wAICc	Evidence
Condition	Model	(A_1/A)	(A ₂ /A)	(A ₃ /A)	(A ₄ /A)	(A_5/A)				Ratio
D. magna	(Smith &	356	440	521	592	=-	-	-	-	-
(Tiered	Macagno,									
absorptance)	1990)	262	442	510	507					
	4,SSH	362	442	518	587	-	46.2	0	0.979	-
		(0.52)	(0.21)	(0.12)	(0.15)					
	3, SSH ^b	367	455	560	-	-	38.3	7.96	0.018	53.64
		(0.50)	(0.22)	(0.28)	500					
	4, GFKRDb	364	437	508	582	=.	33.3	12.97	< 0.01	656
	ŕ	(0.50)	(0.21)	(0.12)	(0.17)					
P. xuthus	(Arikawa,	360	390/	460	520	600	-	-	-	-
(Tiered absorptance)	Inokuma & Eguchi, 1987)		400							
	2 0011	429	529				240	0	0.726	
	2,SSH	(0.48)	(0.52)	-	-	-	34.9	U	0.726	-
	3,SSH ^b	429	505	559			31.4	3.477	0.128	5.69
	3,330	(0.56)	(0.23)	(0.21)	-	-	31.4	3.477	0.128	3.09
	2,GFKRDb	422	529				30.5	4.389	0.081	8.98
	2,GFKKD*	(0.49)	(0.51)	-	-	-	30.3	4.369	0.081	0.90
P. xuthus (Absorbance)	(Arikawa, Inokuma & Eguchi, 1987)	360	390/ 400	460	520	600	-	-	-	-
	5, GFKRD	346	381	457	529	586	50.4	0	0.653	-
		(0.10) 371	(0.25) 463	(0.32) 557	(0.20)	(0.12)				
	3, SSH ^b	(0.35)	(0.37)	(0.28)	-	-	47.8	2.63	0.176	3.71
	4, GFKRD ^b	348 (0.13)	385 (0.26)	465 (0.36)	559 (0.25)	-	46.6	3.83	0.096	6.77

Table 3. AIC inferences compared to traditional hypothesis testing which uses an F-test to distinguish between two best models of similar fit. The best model and the closest model with a different number of photoreceptor spectral classes according to AIC are displayed in this order for each species or condition. An F-test typically used for comparing non-linear regression models with similar fits was used here to compare two models with lowest residual sum of squares. In cases were p<0.05 the model with more parameters is accepted. Examples which deviated from AIC results are shown with an asterisk (*). This comparison indicates that AIC provides a similar framework to nonlinear regression to compare multiple models and can generally eliminate unneeded parameters (in this table, photoreceptor classes and cross-sectional area).

Species or	Model	Residual	F-test	p value	Number of	Evidence	
Condition		Sum of	comparing	from	parameters	Ratio	
		Squares	two models	F-test	(K)		
		(RSS)	with best fit				
P.hitoyensis	1,GFKRD	0.031	1.90	0.13	3	-	
	2, GFKRD	0.024	-	-	5	3.56	
Normal Human	2,SSH	0.003	2.75	0.05*	5	-	
(scotopic)							
	3,SSH	0.002	-	-	7	22.6	
Enhanced S-cone	2,SSH	0.012	2.75	0.05*	5	-	
Human (scotopic)							
	3, GFKRD	0.008	-	-	7	6.65	
D. magna	4,SSH	0.009	11	< 0.001	9	-	
	3, SSH	0.031	-	-	7	53.64	
P. xuthus (Tiered	2,SSH	0.100	2.05	0.10	5	-	
absorptance)							
	3,SSH	0.076	-	-	7	5.69	
P. xuthus	5, GFKRD	0.006	10.5	< 0.001	11	-	
(Absorbance)							
	3, SSH	0.034	-	-	7	3.71	

Table 4 Photoreceptor parameters and reported relative opsin expression values for two populations of L goodei used in modeling absorption coefficient k for known opsin-based spectral photoreceptor classes. Values for λ max and cone frequencies (A_i/A) were identified using microspectrophotometry (Fuller et al., 2003). These values were incorporated as constants into model optimization of absorption coefficients below. Relative opsin expression (exp) is in comparison to the sum of all opsins expression is reported from (Fuller et al., 2004) Relative expression levels should be compared to Table 5 normalized absorption coefficients.

λmax ₁ (A ₁ /A)	opsin ₁ (exp)	λ max ₂ (A_2/A)	-	λmax ₃ (A ₃ /A)	opsin ₃ (exp)	λmax ₄ (A ₄ /A)	opsin ₄ (exp)	$\lambda \max_5$ (A_5/A)	opsin ₅ (exp)
359	SWS1	405	SWS2B	454	SWS2A	538	RH2-1	572	LWS
(0.08)	(0.21)	(0.31)	(0.26)	(0.16)	(<0.01)	(0.25)	(0.27)	(0.25)	(0.25)
359 (<0.01)	SWS1 (0.11)	405 (0.16)	SWS2B (0.21)	456 (0.10)	SWS2A (<0.01)	541 (0.32)	RH2-1 (0.33)	573 (0.42)	LWS (0.34)
	(A ₁ /A) 359 (0.08)	(A ₁ /A) (exp) 359 SWS1 (0.08) (0.21) 359 SWS1	(A ₁ /A) (exp) (A ₂ /A) 359 SWS1 405 (0.08) (0.21) (0.31) 359 SWS1 405	(A ₁ /A) (exp) (A ₂ /A) (exp) 359 SWS1 405 SWS2B (0.08) (0.21) (0.31) (0.26) 359 SWS1 405 SWS2B	(A ₁ /A) (exp) (A ₂ /A) (exp) (A ₃ /A) 359 SWS1 405 SWS2B 454 (0.08) (0.21) (0.31) (0.26) (0.16) 359 SWS1 405 SWS2B 456	(A ₁ /A) (exp) (A ₂ /A) (exp) (A ₃ /A) (exp) 359 SWS1 405 SWS2B 454 SWS2A (0.08) (0.21) (0.31) (0.26) (0.16) (<0.01)	(A ₁ /A) (exp) (A ₂ /A) (exp) (A ₃ /A) (exp) (A ₄ /A) 359 SWS1 405 SWS2B 454 SWS2A 538 (0.08) (0.21) (0.31) (0.26) (0.16) (<0.01)	(A ₁ /A) (exp) (A ₂ /A) (exp) (A ₃ /A) (exp) (A ₄ /A) (exp) 359 SWS1 405 SWS2B 454 SWS2A 538 RH2-1 (0.08) (0.21) (0.31) (0.26) (0.16) (<0.01)	(A ₁ /A) (exp) (A ₂ /A) (exp) (A ₄ /A) (exp) (A ₅ /A) 359 SWS1 405 SWS2B 454 SWS2A 538 RH2-1 572 (0.08) (0.21) (0.31) (0.26) (0.16) (<0.01)

Table 5 Absorptance model comparisons for two populations of L goodei identify differences in absorption coefficient k for known opsin-based spectral photoreceptor classes. Three best supported models are reported for comparison between absorption coefficients (k) normalized by the sum of absorption coefficients (k/k). All model comparison

coefficients (k) normalized by the sum of absorption coefficients (k_i/k). All model comparisons considered are included in Table S3. Evidence ratios were calculated relative to the best model for each species or condition. Models with ambiguous $wAIC_c$ (evidence ratio < 2.0) are indicated by (a). Models with low support relative to the best model (evidence ratio > 2.0) are indicated by (b).

Species and	Model	SWS1 k ₁	$SWS2B$ k_2	SWS2A k ₃	RH2-1 k ₄	LWS k ₅	AICc	ΔAIC _c	wAICc	Evidence Ratio
population		(k_1/k)	(k_2/k)	(k_3/k)	(k_4/k)	(k_5/k)				
L. goodei Spring population	3,SSH ^a	- (-)	0.0045 (0.40)	- (-)	0.0042 (0.37)	0.0027 (0.24)	37.8	0	0.448	-
	3,GFKRD ^a	(-)	0.019 (0.42)	- (-)	0.017 (0.38)	0.0095 (0.21)	37.0	0.819	0.298	1.51
	4,SSH ^a	0.0030 (0.18)	0.0051 (0.32)	(-)	0.0050 (0.31)	0.0032 (0.20)	36.7	1.18	0.249	1.80
L. goodei Swamp population	3,SSH ^b	- (-)	0.0027 (0.28)	- (-)	0.0036 (0.38)	0.0033 (0.34)	37.0	0	0.945	-
	3,GFKRD ^b	- (-)	0.0077 (0.33)	- (-)	0.0085 (0.36)	0.0074 (0.31)	30.2	6.833	0.031	30.46
	2,SSH ^b	- (-)	- (-)	- (-)	0.011 (0.54)	0.0092 (0.46)	28.6	8.42	0.014	67.38

Figure 1

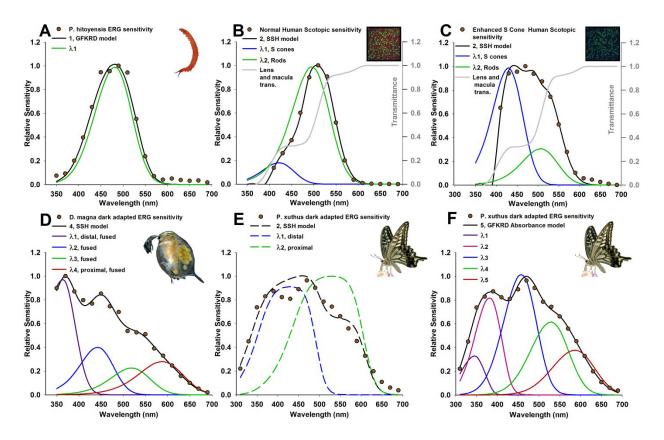


Figure 2

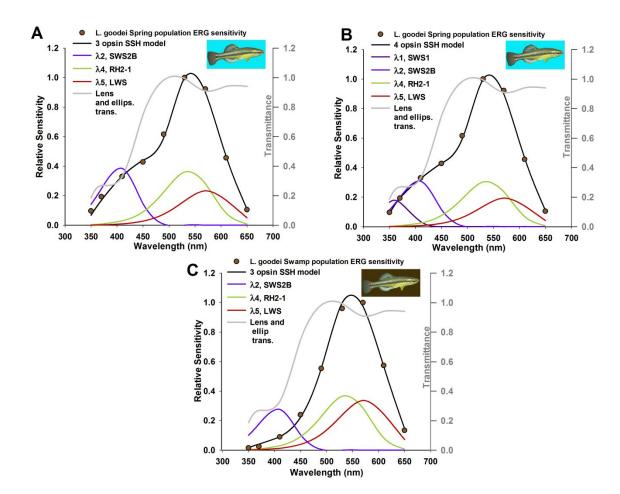
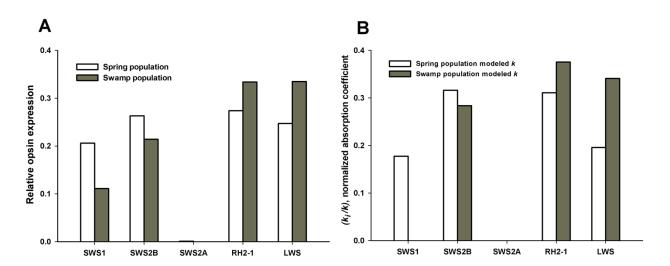



Figure 3

