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Background. With their Pan-American distribution, long-nosed armadillos (genus Dasypus) constitute an
understudied model for Neotropical biogeography. This genus currently comprises seven recognized
species, the nine-banded armadillo (D. novemcinctus) having the widest distribution ranging from
Northern Argentina to the South-Eastern US. With their broad diversity of habitats, nine-banded
armadillos provide a useful model to explore the effects of climatic and biogeographic events on
morphological diversity at a continental scale.

Methods. Based on a sample of 136 skulls of Dasypus spp., including 112 specimens identified as D.
novemcinctus, we studied the diversity and pattern of variation of internal paranasal cavities, which were
reconstructed virtually using uCT-scanning or observed through bone transparency.

Results. Our qualitative analyses of paranasal sinuses and recesses successfully retrieved a taxonomic
differentiation between the traditional species D. kappleri, D. pilosus and D. novemcinctus but failed to
recover diagnostic features between the disputed and morphologically similar D. septemcinctus and D.
hybridus. Most interestingly, the high variation detected in our large sample of D. novemcinctus showed
a clear geographical patterning, with the recognition of three well-separated morphotypes: one ranging
from North and Central America and parts of northern South America west of the Andes, one distributed
across the Amazonian Basin and central South America, and one restricted to the Guiana Shield.

Discussion. The question as to whether these paranasal morphotypes may represent previously
unrecognized species is to be evaluated through a thorough revision of the Dasypus species complex
integrating molecular and morphological data. Remarkably, our recognition of a distinct morphotype in
the Guiana Shield area is congruent with the recent discovery of a divergent mitogenomic lineage in
French Guiana. The inflation of the second medialmost pair of caudal frontal sinuses constitutes an
unexpected morphological diagnostic feature for this potentially distinct species. Our results demonstrate
the benefits of studying overlooked internal morphological structures in supposedly cryptic species
revealed by molecular data. It also illustrates the under-exploited potential of the highly variable
paranasal sinuses of armadillos for systematic studies.
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diversity of habitats, nine-banded armadillos provide a useful model to explore the effects of
climatic and biogeographic events on morphological diversity at a continental scale.

Methods. Based on a sample of 136 skulls of Dasypus spp., including 112 specimens identified
as D. novemcinctus, we studied the diversity and pattern of variation of internal paranasal
cavities, which were reconstructed virtually using pCT-scanning or observed through bone
transparency.

Results. Our qualitative analyses of paranasal sinuses and recesses successfully retrieved a
taxonomic differentiation between the traditional species D. kappleri, D. pilosus and D.
novemcinctus but failed to recover diagnostic features between the disputed and morphologically
similar D. septemcinctus and D. hybridus. Most interestingly, the high variation detected in our
large sample of D. novemcinctus showed a clear geographical patterning, with the recognition of
three well-separated morphotypes: one ranging from North and Central America and parts of
northern South America west of the Andes, one distributed across the Amazonian Basin and
central South America, and one restricted to the Guiana Shield.

Discussion. The question as to whether these paranasal morphotypes may represent previously
unrecognized species is to be evaluated through a thorough revision of the Dasypus species
complex integrating molecular and morphological data. Remarkably, our recognition of a distinct
morphotype in the Guiana Shield area is congruent with the recent discovery of a divergent
mitogenomic lineage in French Guiana. The inflation of the second medialmost pair of caudal
frontal sinuses constitutes an unexpected morphological diagnostic feature for this potentially
distinct species. Our results demonstrate the benefits of studying overlooked internal

morphological structures in supposedly cryptic species revealed by molecular data. It also
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illustrates the under-exploited potential of the highly variable paranasal sinuses of armadillos for

systematic studies.

Introduction

Detection of cryptic diversity and pertinent delimitation of extant taxonomic entities constitute a
major challenge of current-day biological research as it may have critical implications on
biodiversity conservation policies (Carstens et al., 2013). Cryptic species can be defined as “two

or more species that are, or have been, classified as a single nominal species because they are at @
least superficially morphologically indistinguishable” (Bickford et al., 2007). According to this
definition, the absence of diagnostic morphological character may have impeded the recognition

of species. Depending on the case, this absence might be real (i.e., populations of two cryptic
species do not differ significantly in their entire anatomy) or spurious (i.e., morphological

==

Advanced methods of mierecomputed tomography (u-CT-sean) now enable an

differences have been overlooked).

unprecedented assessment of internal anatomical structures, which can help uncovering
previously concealed morphological differences between taxa. The development of these non-
destructive methods permits internal anatomy to be easily and systematically investigated in
many taxa. These methodological improvements offer great opportunities for morphology-based
phylogenetic research. For animals such as mammals, internal structures like those of the skull
certainly present a great wealth of anatomical features to be scrutinized (possibly as many as the
external surface of the skull) for taxonomic and phylogenetic purposes (e.g., Farke, 2010;

Macrini, 2012; Ruf, 2014; Billet, Hautier & Lebrun, 2015). There is therefore a possibility that
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this large proportion of previously poorly explored morphological data contains undetected
morphological differences between alleged cryptic taxa.

The pan-American nine-banded armadillo (Dasypus novemcinctus) presents the largest
distribution of any living xenarthran species (McDonough and Loughry 2013), and constitutes an
interesting model for Neotropical phylogeography. Several subspecies (five to seven) have been
recognized within this species but their delineation and recognition are not consensual (Cabrera,
1958; McBee and Baker, 1982; Wetzel et al., 2008; McDonough & Loughry 2013). In fact, most
potential diagnostic characters for these subspecific distinctions are seldom detailed, often
inconstant, or based on a limited number of observations (e.g., Peters, 1864; Allen, 1911;
Lonnberg, 1913; Hamlett, 1939; Hooper, 1947; Russell, 1953). Taxonomy and phylogeny in
long-nosed armadillos (Dasypodidae, sensu Gibb et al., 2016) particularly suffer from strong
disagreement between morphological and molecular data (Castro et al., 2015; Gibb et al., 2016).
Even though it was more focused on higher taxonomic levels, a recent study suggested the
existence of an unrecognized species in French Guiana based on mitochondrial data (incl.
mitogenomes) (Gibb et al., 2016). The Guianan entity has never been distinguished from other
D. novemcinctus on morphological bases, and might thus represent another striking case of
cryptic species.

In order to explore if internal parts of the skull contain a useful phylogenetic signal, we
investigated the internal paranasal sinuses and recesses (Rossie, 2006), whose complex structure
has largely been ignored by morphologists working on the systematics of long-nosed armadillos
(genus Dasypus). Based on images issued from mierecomputed tomography of skulls, we
reconstructed virtually the entire network of paranasal spaces in Dasypus species with a

particular focus on specimens of D. novemcinctus covering the entire geographic range of the
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species. The observed patterns are described and discussed considering traditional taxonomic
entities of long-nosed armadillos and in light of most recent molecular findings. A focus is made
on the discriminatory power of these concealed characters in armadillos and on their utility for

diagnosing taxonomic units previously regarded as cryptic.

Materials & Methods

Specimens and CT-scanning

The total number of investigated specimens is composed of 136 skulls of Dasypus spp. harvested
from various institutions worldwide (see details in Table S1), among which 112 were identified
as D. novemcinctus, 1 as D. sabanicola, 13 as D. kappleri, 4 as D. hybridus, 3 as D.
septemcinctus, and 3 as D. pilosus. Among this sample, we reconstructed virtually the internal
paranasal spaces in 51 CT-scanned specimens belonging to D. novemcinctus (n=47), D. kappleri
(n=1), D. hybridus (n=1), D. septemcinctus (n=1), and D. pilosus (n=1). Among the 47 D.
novemcinctus specimens, 7 were considered juveniles, including a potential stillborn (USNM
020920); the 40 remaining being adults or subadults. The 47 D. novemcinctus specimens came
from: United States (n=3), Mexico (n=4), Guatemala (n=1), Nicaragua (n=1), Costa Rica (n=1),
Panama (n=1), Colombia (n=6), Venezuela (n=2), Ecuador (n=2), Peru (n=2), Bolivia (n=2),
Paraguay (n=1), Guyana (n=3), Suriname (n=2), French Guiana (n=3), Brazil (n=12; see a list of
different states in Table S1), and Uruguay (n=1). Digital data of all 51 specimens were acquired
using X—ray-miero-computed tomography (LCT). Most specimens were scanned on the X-ray
tomography imagery platform at the Université de Montpellier (France) and on the CT-scan

platform of the Imaging and Analysis Centre of the British Museum of Natural History (London,
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UK); one (MNHN.ZM-MO 2001.1317) was scanned at the Museum National d’Histoire
Naturelle (France) in Paris (AST-RX platform). Detailed information about the scans and
acquisition parameters can be found in Table S1. Three-dimensional reconstructions and
visualizations of the frontal sinuses were performed using stacks of digital uCT images with
AVIZOv. 6.1.1 software (Visualization Sciences Group 2009).

An additional subset of 65 D. novemcinctus, 1 D. sabanicola, 12 D. kappleri, 3 D.
hybridus, 2 D. septemcinctus and 2 D. pilosus specimens was added to the sample mentioned
above. These additional specimens correspond to i) skulls that allowed observing frontal sinuses
boundaries through bone transparency throughout direct observations or photographs (NB: this
was not possible for all observed skulls, some being insufficiently prepared or having no @
transparency of the frontal bone) and/or to ii) CT-scanned skulls whose paranasal cavities were
not virtually reconstructed but their boundaries observed with ISE-Meshtools (Lebrun, 2008)
with an artificial cutting of the specimen following a coronal section and with the software

Landmark 3.6 (available at http://graphics.idav.ucdavis.edu/research/EvoMorph ; Institute for

Data Analysis and Visualisation ©) with the option transparent surface rendering. These methods
helped us to increase the number of investigated specimens and, most particularly, to include a

paratype specimen of D. sabanico@vlondolﬁ, 1968) (Table S1).

Nomenclature of paranasal anatomy
To our knowledge, no detailed description of paranasal cavities exists for extant armadillos. A
maxillary recess is mentioned and figured in Euphractus (Wible & Gaudin, 2004) and brief notes

were reported on the soft paranasal anatomy in Dasypus (Soares da Silva et al., 2016). The most
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extensive work on paranasal spaces in Cingulata concerns in fact some glyptodonts (Fernicola et
al., 2012), whose sinuses are very different from that of long-nosed armadillos. For these
reasons, our nomenclature follows several conventions used in other taxa, as detailed below. The
standard practice for paranasal sinuses is to name them after the bones they excavate (Novacek,
1993); we respected this practice for all the cavities we detected (i.e., both sinuses and recesses).
The identity of the bones housing these cavities was determined through the examination of
juvenile specimens that display clearly visible bone sutures. Following recent works by Maier
(2000), Rossie (2006), and Farke (2010), we made a distinction between sinus and recess for
paranasal cavities. Paranasal sinuses are pneumatic and mucosa-lined spaces that are located in
the bones surrounding the nasal chamber (Curtis & Van Valkenburg, 2014). Contrary to sinuses
that are found between two layers of cortical bones (e.g., frontal), paranasal recesses are defined @
as simple concavities of the nasal cavity, and are not associated with active bone removal (Farke,
2010; Rossie, 2006). Hereafter, we employed the terms sinus or recess accordingly. Because
there are often several sinuses or recesses within a given bone (e.g., frontal, maxillary), we also
used the English equivalents of positional terms of the Nomina Anatomica Veterinaria (NAV,
2005) for the paranasal sinuses when feasible (e.g., caudal frontal sinus). It was not possible to
elaborate robust homology hypotheses for all cavities of the paranasal region because they are
found in large numbers and may represent neoformations when compared to the common
terminology. Consequently, we complemented the common terminology with a numbering
system that allows distinguishing the numerous frontal recesses and sinuses found in long-nosed
armadillos. The terminology for turbinal bones, which are only briefly mentioned for spatial
localization of paranasal cavities, is based on Van Valkenburgh, Smith & Craven (2014) and

Maier & Ruf (2014).

Peer] reviewing PDF | (2017:03:17199:0:1:NEW 6 Apr 2017)


iruf
Hervorheben

iruf
Notiz
However, a sinus can also be partly a recess e.g., where it starts to expand into the bone. Thus a single structure gets two names which can be really confusing and implys presence of several structures.


Peer]

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Institutional abbreviations: AMNH, American Museum of Natural History, New York, USA;
BMNH, British Museum of Natural History (Natural History Museum), London, UK; IEPA
Instituto de Pesquisas Cientificas e Tecnologicas do Estado do Amapé in Macapa, Brazil;
KWATA, Kwata Association collection, Cayenne, French Guiana; LSU, Louisiana State
University, Baton Rouge, LA, USA; MBUCV Museo de biologia de la Universidad central de
Venezuela; MHNG, Muséum d’Histoire Naturelle in Geneva, Switzerland; MNHN.ZM.MO,
collections “Zoologie et Anatomie comparée, Mammiféres et Oiseaux” of Muséum National
d’Histoire Naturelle, Paris, France; MUSM Museo de Historia Natural-Universidad Nacional
Mayor de San Marcos, Lima, Peru; RMNH, Naturalis Biodiversity Center, Leiden, Netherlands
(Rijksmuseum van Natuurlijke Historie); ROM, the Royal Ontario Museum in Toronto, Canada;

USNM, National Museum of Natural History, Smithsonian Institution; Washington, DC, USA.

Anatomical abbreviations and measurements: CFS, cauda@ontal sinus (numbered from 0 to 5);
FR, frontal bone; LA, lacrimal bone; LTC, length total cranium, measured from the anterior

nasal tip to the posteriormost extent of the nuchal occipital crests; NA, nasal bone; RFR, rostral
frontal recess (numbered from 1 to 3); RL, lacrimal recess (numbered from 1 to 2); RMXC, @

caudal maxillary recess; RMXR, rostral maxillary recess.

Results

Observations common to all long-nosed armadillos (genus Dasypus)
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In all investigated long-nosed armadillos, paranasal sinuses and recesses consistently excavate
the same three bones of the cranial face and vault: the lacrimal, the maxillary and the frontal.
Sinuses are present only in the frontal bone of D. novemcinctus, D. pilosus, and D. kappleri; they
are absent or weakly marked in D. hybridus and D. septemcinctus (Fig. 1). Only the posterior
pneumatic parts of the frontal bone form sinuses whereas, more anteriorly, the pneumatization of
the frontal bone forms recesses, which are in direct contact with the underlying turbinals all
along their anteroposterior length. In most adult individuals of D. novemcinctus (see more details
below) and D. kappleri, the frontal sinuses almost entirely cover the posterior part of the fronto-
and ethmoturbinals dorsally. In all species, the frontal sinuses and recesses regularly thicken @
dorsoventrally toward the front. The number of sinuses and recesses varies intragenerically and
these structures will be described hereafter.

In all Dasypus species, recesses excavate the paranasal cavity dorsally and laterally.
These recesses represent large free-of-bone spaces in the nasal cavity, generally separating
turbinal bones medioventrally from the bones that build up the cranial walls. The lacrimal
recesses are in contact with the mass of fronto- and ethmoturbinals medially, whereas the @
maxillary recesses cover the naso- and maxilloturbinals dorsolaterally. Two distinct lacrimal
recesses are invariably present and are separated by the bony cover of the nasolacrimal duct.
Two recesses, variably individualized, excavate the maxillary bone (Fig. 1) and are bordered by
the nasolacrimal duct ventrolaterally.

In addition to the taxonomic and geographic variation described below, variable levels of
intra-individual asymmetry appear to affect all species and all paired paranasal spaces under
consideration here. This asymmetry is not directional, it is ubiquitous and present in most if not

all specimens, which suggests a case of fluctuating asymmetry (Van Valen, 1962). The species
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D. kappleri seems to be characterized by stronger levels of asymmetry than the species D.

novemcinctus (see below).

Juveniles of D. novemcinctus

In addition to delivering critical information on the identity of bones housing the various sinuses
and recesses, the study of juvenile individuals provided some clues on the growth pattern of the
paranasal pneumatization in the nine-banded armadillo. Juveniles show a less tight medial
contact between paired medial sinuses, such as the rostral and intermediate frontal recesses
(RFRI and RFI@ or the caudal frontal sinuses @r 1 (Fig. 2). Compared to adults, caudal
frontal sinuses (CFS) are less expanded posteriorly in juveniles and do not cover the@st
posterior part of the mass of fronto- and ethmoturbinals.

A very young specimen (likely a stillborn, AMNH 33150) shows that very early
ontogenetic phases of paranasal pneumatization start with a weak individualisation of the caudal
maxillary recess, whereas no other sinus or recess is individualized and the turbinals are not yet
ossified. The large cavity excavated in the posterior part of the fro@s in this specimen
pestertorly does not represent a sinus but a transverse canal, presumably for the frontal diploic
vein (Wible and Gaudin, 2004) (Fig. 3). Other juveniles in our dataset clearly correspond to later
ontogenetic stages, as indicated by their size: LTC= AMNH33150 38,93mm; LSU3244
66,14mm; USNMO020920 72,89mm; AMNH133259 68,85mm (NB: LTC ~ 90-105mm in adults;
Hautier L., unpublished data). This age difference is confirmed by their stage of dental eruption:
first decidual bicuspid tooth erupting in AMNH 33150; dP1-dP7 present in LSU3244 and USNM
20920; dP1-dP7 and alveolus of M1 present in AMNH 133259 (see Ciancio et al., 2011). The

juvenile series shows that paranasal pneumatization and turbinal ossification just barely started in

Peer] reviewing PDF | (2017:03:17199:0:1:NEW 6 Apr 2017)


iruf
Hervorheben

iruf
Notiz
I guess the labeling indicates splitting of one recess. Please explain/describe this pattern!

iruf
Hervorheben

iruf
Notiz
Why "0"? Please explain/describe!

iruf
Hervorheben

iruf
Notiz
see comment above

iruf
Durchstreichen

iruf
Hervorheben

iruf
Notiz
These cavities should be labeled in the figures.


Peer]

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

perinatal stages lesser than 40% adult skull length (AMNH 33150; Fig. 3) whereas these
structures are well-developed in later stages with dp1-dp7 erupted and with ~70% of adult skull

length (Fig. 2).

Observations common to all adults of nine-banded armadillos (D. novemcinctus)

Skulls of adult D. novemcinctus are more pneumatized than juvenile ones (Figs. 2-4). All adult
D. novemcinctus present a similar pattern of sinuses: posteriorly, a number of 5 to 6 paired CFS
generally cover dorsally the posterior part of the mass of fronto- and ethmoturbinals (Figs. 1, 4
and 5). These sinuses form a continuous transversal chain of dorsal paranasal spaces between the
orbits (Fig. 5). Anterior to these sinuses, the frontal bone houses several pairs of rostral frontal
recesses (RFR). These recesses show variable shapes (see below), but can be at least divided in
two main areas: a medial recess generally elongated (RFR1) and/or subdivided anteroposteriorly
(RFR1 & RFR1’), and a recess or group of recesses that excavate the frontal bone more laterally
up to the lacrimal recesses (RFR2-3) (Fig. 1). The CFS 0-1 are always located directly posterior

to the RFR1 and the CFS2-4 are located posterior to the RFR2-3.

Northern morphotype of D. novemcinctus

Thirty nine (39) specimens from North and Central America and from the Pacific coast of
eastern Ecuador are attributed to this morphotype (Figs. 1 and 4). Specimens attributed to this
group originate from (in alphabetical order of countries): Belize, Colombia (Antioquia
Department), Costa Rica, Ecuador (Provinces El Oro and Pichincha), Guatemala, Honduras,
Mexico (Sinaloa, Tabasco, Oaxaca, Colima, Jalisco, and an undetermined state (USNM 179172)

for the adults, San Luis Potosi and Morelos for the juveniles), Nicaragua, and USA (states of
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Mississipi, Texas, Florida, Kansas, and Louisiana). The main diagnostic feature for this group is
the anteroposterior elongation of the CFS2 to 5; in addition, the left and right CFS2 are obliquely
orientated and contact each other posterior to the CFS1. Another distinctive feature of this
morphotype is the subdivision and the relative shortening of RFR1. As for the Southern
morphotype (see below), the number of CFS pairs in this group varies from 5 to 6, because the
CFSO pair is either very reduced or absent. The medialmost CFS have been numbered Qse
of their variable presence; on the contrary, CFS1-5 are always present. The CFS1 are rather
small, shorter than the more lateral CFSs and bordered posteriorly by the contacting pair of
CFS2. The CFS2 and/or CFS3 are the largest CFSs within this group, and though they do not
contact posteromedially, each CFS3, similarly to the CFS2, bends or orientates obliquely toward
the midline posteriorly. The CFS4 can be as elongated as the CFS2-3 or slightly smaller; the
CFSS5 are more reduced. The median rostral frontal recesses are subdivided into two
anteroposterior pairs RFR1 and RFR1’ and contrast with the long RFR1 of the Southern
morphotype. The posterior pair, the RFR1, apparently forms earlier within the ontogenetic
sequence as it is clearly more developed than RFR1’ in two juvenile specimens from Mexico
(Fig. 2). The shape of RFR1 in adults is rather square whereas the anterior pair, RFR1’, is
usually slightly more elongated anteroposteriorly. Lateral to the RFR1 and RFR1’, the RFR2 and
3 are often well separated (distinction often better marked than in the Southern group); the RFR3
is immediately lateral to the RFR2. The same applies to the caudal and rostral maxillary recesses
(RMXC & RMXR), which are often better separated in this morphotype compared to the
Southern morphotype; the caudal maxillary recess is posterolateral to the rostral one and located

just anterior to the lacrimal recess 2.
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The specimen AMNH 40984 from southwest Ecuador is attributed to this Northern group
because of the presence of large and posteriorly convergent CFS2 and short and subdivided
RFR1-RFR1’ (Fig. 4). The other specimen from western Ecuador, BMNH 16.7.12.37, also
shows these characters through bone transparency. Nevertheless, on the virtual reconstruction of
AMNH 40984, the lateral RFR2-3 appear more subdivided than in other members of this
morphotype, and also more than in other morphotypes. In addition, the anterior edge of its
medialmost CFS (CFS 0) is shifted anteriorly. These unique characters could not be checked on

the specimen observed on photos only.

Southern morphotype of D. novemcinctus

Fifty one (51) specimens (incl. the paratype of D. sabanicola) spanning the Amazon Basin
(excluding the Guiana Shield) and including the southernmost distribution of the species in
Uruguay show a distinct pattern of paranasal spaces (Fig. 4). Specimens attributed to this group
thus span the Southern range of D. novemcinctus and originate from the following countries (in
alphabetical order): Bolivia (states of Beni, Pando and Santa Cruz), Brazil (states of Amazonas,
Para, Goias, Santa Catarina, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Sdo Paulo, Rio
Grande do Sul and Espirito Santo), Colombia (Meta and Magdalena departments), Ecuador
(Morona Santiago Province), Paraguay, Peru (regions of Ucayali, Ayacucho and San Martin),
Uruguay, and Venezuela (states of Anzoategui and Apure (state of the paratype of D.
sabanicola)). The distinctive features of the Southern pattern of paranasal spaces mostly consist
in an anteroposteriorly reduced posterior chain of caudal frontal sinuses and an elongated rostral
frontal recess 1 (Figs. 1 and 4). In this group, the CFSO are variably present. When present, they

are generally smaller than the more lateral CFS1 to 5. The CFS1 always contact each other

Peer] reviewing PDF | (2017:03:17199:0:1:NEW 6 Apr 2017)



Peer]

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

medially, or just at their posteromedial corner if the CFSO are present. In most specimens, the
CFS are much shorter anteroposteriorly than the rostral frontal recess RFR1, usually around a 1/2
or 1/3 ratio. Some specimens referred to this morphotype show more balanced ratios but the
anteroposterior length of the CFS never exceeds that of the RFR1. The CFSI1 to 4 are usually of
similar length and width, the areas of the CFS 1 and 2 may just slightly exceed that of the others
in average. The lateralmost caudal frontal sinus that lies immediately medial to the orbital rim,
i.e. the CFSS5, is generally shorter than the other CFS.

Additionally, many individuals of that group show a weak distinction or even a fusion
between the RFR2 and 3 (Figs. 1 and 4). Though the RFR2 and 3 are in average less separated
than in other groups of D. novemcinctus, this character is not stable within the Southern group.
Ontogenetic data are unfortunately lacking to state on a possible influence of development on
this feature. When not completely fused, the RFR 2 and 3 are often separated by a short bony
ridge posteriorly.

The maxillary recesses are located dorsal to the nasolacrimal duct and (antero)lateral to
the RFR1. As for the RFR2 and 3, the caudal and rostral maxillary recesses are variably distinct;

in average, they are less separated than in the other groups.

Guianan morphotype of D. novemcinctus

Seventeen (17) specimens are attributed to this group and originate from: Brazil (Amapa State),
French Guiana, Guyana and Suriname. The most conspicuous diagnostic feature of this group is
the strong inflation of the CFS2, which is by far the largest caudal frontal sinus (Figs. 1, 4 and 5).
These hypertrophied CFS2 occupy most or all the pneumatized frontal area between the orbits up

to the level of the anterior edge of the posterior zygomatic root posteriorly. More precisely, it is
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the posterior part of the CFS2 that is hypertrophied and borders all or most other CFSs on their
caudal side. The anterior part of the CFS2, which is sandwiched between CFS1 and CF3, is as
narrow as the CFS3-4. The outline of CFS2 often exhibits a complex irregular pattern and pairs
are clearly asymmetric in all specimens (Fig. 4).

The CFSO0 are variably present as in other groups. When present, they are rather small,
clearly elongated transversally and entirely bordered by the CFS1 posteriorly. In comparison to
other morphotypes, the CFSO0 are slightly shifted anteriorly relative to other CFSs. The size and
shape of the CFS1 is also variable. In specimens with no CFS0, the CFS1 are much reduced and
rather square-shaped (AP 207; Fig. 4). In specimens with CFSO0, the CFS1 are relatively larger
and can extend as far posteriorly as the hypertrophied CFS2. In such case (MNHN.ZM-MO
2001-1317), they are transversally thin and sandwiched between the pairs of CFS2 (Fig. 4). In
one specimen (MNHN.ZM-MO 1996-587), the CFS1 seems to be partly fused posteromedially
with the CFS2 on both sides. The CFS3 and 4 are considerably smaller than the CFS2, and are
similar in size as in the Southern morphotype. The CFSS5 is generally smaller than CFS3-4, and
can be absent (e.g., MNHN.ZM-MO 2001-1317).

The configuration of the RFR1 is variable, as they seem to be irregularly divided into an
anterior RFR1’ and posterior RFR1. The limits between these two subdivisions are not only
variable between individuals of this morphotype, they are also labile intra-individually: the
subdivisions may be marked on one side of the skull, not on the other (ROM 32275) or it may
follow another path (MNHN.ZM-MO 1995-553), or the boundaries may be irregularly marked
overall (marked on some portion, then absent, and then marked again a little farther away;

USNM 339668). As in the Southern morphotype, the RFR2 and 3 are poorly distinguishable in
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most Guianan specimens (but this is also variable), except for a posterior demarcation that is
almost always present.

The lacrimal recesses 1 and 2 are very similar to that of the other morphotypes, also
delimited by the nasolacrimal duct. The intensity of the separation between the rostral and caudal
maxillary recesses is variable, but these recesses are otherwise very similar to other

morphotypes.

Problematic Specimens from Panama, Venezuela and Colombia

Five specimens (AMNH 32356, 37356, USNM 281290 from Colombia, BMNH 5-7-521 from
Merida, Venezuela and USNM 171052 from Panama) show somewhat intermediate
morphologies between the Southern and Northern morphotypes (Fig. 4). They all present CFS
and RFR1 of similar length and do not show a medially contacting pair of CFS2 (though close in
AMNH 37356). The RFR1 are usually not subdivided, except in the Venezuelan specimen and,
to a lesser extent, in the Colombian AMNH 32356. The CFS2 and 3 do not represent the largest
CFS except in the Colombian AMNH 32356 and 37356. These specimens therefore show a
combination of features characterizing the Southern and Northern groups.

In addition, the probable stillborn specimen AMNH 33150 from Colombia could not be referred

»,
to any morphotype because its paranasal spaces are not i-ﬁdi*éduali-zeQig. 3).

Other Dasypus Species
Greater long-nosed armadillo (D. kappleri)
The D. kappleri specimens present a large pneumatization of their paranasal region, as in D.

novemcinctus. However, all D. kappleri specimens exhibit less numerous, but wider and longer
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finger-shaped CFS than D. novemcinctus. In fact, this may be due to various partial or complete
fusions of the CFS with the RFR, which we tentatively identify as follows: the CFS1 and RF@
are fused and occupy the medialmost region (but not posteriorly in some specimens; see below),
the CFS2-3 are fused with the RFR2-3 (Fig. 1). ©n some specimens, a blunt bony bridge still
marks a separation between these sinuses and recesses. This general pattern is typical of the
species, yet the arrangement of paranasal cavities largely varies intraspecifically. Two groups
can be distinguished: specimens from the Guiana Shield display fused CFS1-RFR1 that reach the
posterior boundary of the other CFS, whereas specimens from more western locations have the
right and left CFS2 that contact posteriorly in the midline (Fig. S2). The relative sizes of the CFS
also vary a lot, but the fused CFS2-3 with RFR2-3 are in most cases the largest ones. In addition,
most of these recesses show a substantial amount of asymmetry, probably higher than in D.
novemcinctus. Other recesses are grossly similar in size and location to those described for D.

novemcinctus.

Hairy long-nosed armadillo (D. pilosus)

The investigated specimens of D. pilosus probably resemble the most te-the D. novemcinctus
groups (Fig. 1). Conversely to D. kappleri, specimens of D. pilosus show caudal frontal sinuses
well-individualized from the rostral frontal recesses. However, there is some variation in the
shape of the caudal frontal sinuses. In the only scanned specimen of D. pilosus, the caudal frontal
spaees, are barely recognizable as they do not excavate the frontal bone (not found between two
layers of frontal bone); they are located just dorsal to the mass of fronto- and ethmoturbinals. In
fact, they rather represent thin cell-shaped recesses with irregular outlines, which are sandwiched

between the frontal bone dorsally and the fronto- and ethmoturbinals ventrally. Conversely, the
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two additional specimens of D. pilosus observed through bone transparency show slightly longer
caudal frontal sinuses that are better delineated. In any case, the caudal cell-shaped frontal
sinuses are in all three specimens comparable to the CFS of D. novemcinctus groups in their
number (4 to 5 pairs), dorsal outline and location. The rather short anteroposterior extent and
reduced mediolateral width of the CFS of D. pilosus are most reminiscent of the pattern seen in
the Southern group of D. novemcinctus. The more anterior recesses resemble the RFR1 and
RFR2-3 of the same Southern group, especially the un(sub)divided and elongated RFR1.
Remarkably, the lacrimal recesses are more elongated anteroposteriorly than in other Dasypus

species.

Southern long-nosed armadillo (D. hybridus) and seven banded armadillo (D. septemcinctus)
These two species are here described together because they exhibit strong similarities in their
pattern of paranasal cavities and could not be distinguished in our sample. These two small-sized
species show the least pneumatized skulls among of our adult sample of Dasypus. Both species
present RFR1 that are transversely narrow and curved, never in contact medially, and thus partly
recall the configuration seen in young D. novemcinctus specimens (see above) (Figs. 1-2). In
addition, specimens of both species have poorly defined CFS, i.e., the fronto- and
ethmoturbinals fill in most of the space just ventral to the cranial vault made by the frontals and
the CFS are very thin dorsoventrally. The frontal bones are in fact poorly pneumatized and show
a thin diploe. Other cavities (rostral frontal recesses, lacrimal and maxillary recesses) show a

pattern and extent grossly similar to that of other Dasypus species.

Discussion
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Distribution and significance of paranasal pneumatization in mammals and armadillos
Paulli (1900a; 1900b) first provided detailed descriptions of paranasal cavities based on sagittal
and transverse osteological sections of mammalian skulls. With the recent development of
micro-tomography and virtual modeling of internal structures, the paranasal sinuses and recesses
could be more systematically and precisely studied in extant mammals such as vombatiform
marsupials, carnivorans, artiodactyls and primates (e.g., Rossie, 2008; Farke, 2010; Curtis & Van
Valkenburg, 2014; Maier & Ruf, 2014; Sharp, 2016). Though not yet thoroughly investigated
with modern techniques, these structures are also known to occur in many other groups of
placental mammals (Paulli, 1900a; Paulli, 1900b; Edinger, 1950; Novacek 1993) and may
constitute convergently lost symplesiomorphic placental features (Foster & Shapiro, 2016).

The ubiquitous distribution of these structures in several clades of amniotes (Witmer,
1999) long raised questions regarding the potential functional role of paranasal pneumatization.
As noted by Farke (2010: 988), cranial pneumatization such as paranasal sinuses “remains one of
the most functionally enigmatic and debated structures within the vertebrate skull”. Indeed,
researchers have long speculated on the potential functional role of these air-filled chambers, and
proposed a wealth of hypotheses (Blanton & Biggs, 1969; Blaney, 1990; Marquez, 2008), most
of which remain, as of today, untested. However, one of the current dominating hypotheses
regards sinuses as functionless structures influenced by constraints inherent to bone growth and
patterning (Farke, 2010 and citations therein). In fact, sinuses may just opportunistically fill
space where bone is not mechanically necessary (Curtis & Van Valkenburg, 2014) and reduce
skull mass in return (Curtis et al., 2015). This might be compatible with the fact that the presence
and extent of sinuses may, at least in some instances, be linked to size increase and to the shape

of the bone in which they are contained (Weidenreich, 1941; Zollikofer et al., 2008; Farke, 2010;
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Curtis et al., 2015; Krentzel & Angielczyk, 2016; Ito & Nishimura, 2016). Though these
alternative architectural explanations do not preclude the existence of functional advantages
(e.g., to dissipate stress; Tanner et al., 2008), it seems that there is no overarching explanation for
the function of sinuses (Curtis et al., 2015).

A substantial variation of paranasal sinuses shape and outline has long been noted in
many taxa at the interspecific, intraspecific, and intra-individual levels (e.g., Paulli, 1900a;
Paulli, 1900b; Novacek, 1993; Farke, 2010; Curtis & Van Valkenburg, 2014). These
observations clearly suggest that these structures have a non-negligible propensity to vary greatly
in mammals. It is questionable whether or not their high variability (sensu Hallgrimsson & Hall,
2005) could make paranasal sinuses good markers of phylogenetic history. Interestingly, the
highly variable shape and size of the frontal sinus in modern humans proved to be largely
inherited from parents to children (Szilvassy, 1982) and is used in forensic science for individual
and population identifications (e.g., Kim et al., 2013). At higher taxonomic levels, a significant
phylogenetic signal was detected in the pattern of paranasal sinuses of primates and bovid
artiodactyls (Rossie, 2008; Farke, 2010), but the size and shape frontal sinuses were not tightly
linked with phylogenetic groupings in Carnivora (Curtis & Van Valkenburg, 2014). Similarly,
the diversity of maxillary sinuses in macaques was not linked to phylogeny (Ito & Nishimura
2016) even though these structures were at least in part controlled by intrinsic genetic factors (Ito
etal., 2015).

In the case of long-nosed armadillos, the clear discrete differences in patterns of paranasal
sinuses observed between the different species and subgroups of Dasypus (D. novemcinctus, D.
kappleri, D. pilosus, D. septemcinctus and D. hybridus) argue for a high discriminatory power

and a good phylogenetic signal carried by these structures within the genus. The fluctuating
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asymmetry (Van Valen, 1962) tentatively identified for these structures in armadillos suggests
that they are also impacted by random perturbations of developmental processes (Klingenberg,
2010). Curiously, early anatomical accounts of paranasal anatomy disagreed on the presence of
sinuses in long-nosed armadillos. While Cuvier (1845) and Weinert (1925) correctly observed
the presence of such structures in long-nosed armadillos, other early authors overlooked it
(Paulli, 1900b; Zuckerkandl, 1887 (as cited in Weinert, 1925)). In fact, frontal sinuses were still
considered absent in armadillos as a whole in recent anatomical works (Novacek, 1993). Our
results clearly contradict these considerations and investigation of paranasal cavities in some
Chlamyphoridae, the sister group of Dasypodidae within Cingulata (Gibb et al., 2016), even
reveals homoplastic evolution of these structures in armadillos. Frontal sinus or recesses are @
absent in the extant chlamyphorid Euphractus sexcinctus (Wible & Gaudin, 2004) and some CT-
scanned specimens of Cabassous unicinctus (MNHN.ZM.MO 1953-457) and Zaedyus pichiy
(MNHN.ZM.MO 1917-135) do not show any free-of-bone space between the frontal and the
frontoethmeo-turbinalg (personal observations). On the other hand, an extensive system of
paranasal sinuses exists in the extinct glyptodont Neosclerocalyptus (Fernicola et al., 2012).
Further comparisons are needed in extant and fossil forms (see sinuses in the fossil D. punctatus,

Castro et al., 2013), as these structures might provide potentially interesting characters for the

understanding of higher-level relationships within the order (Delsuc et al., 2016).

Relevance of paranasal sinuses for the systematics of long-nosed armadillos
Our detailed investigation of paranasal cavities in Dasypus species revealed an important
variation at different levels. We first described the ontogenetic pattern of the paranasal sinuses @

and recesses, which probably start individualizing in perinatal stages. Postnatal juvenile
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specimens show CFS that are less developed posteriorly when compared to adult specimens,
revealing the late posterior growth of these structures. Second, as indicated above, adults show
clear differences between traditionally recognized species, mostly in the configuration of the
CFS and RFR. Besides the large variation seen within D. novemcinctus (see below), clear
differences can be observed between D. kappleri, D. pilosus and the sister species D. hybridus -
D. septemcinctus. The greater long-nosed armadillo (D. kappleri) probably has the most
divergent morphology regarding these sinuses and recesses with the fusion of its CFS and RFR.
In contrast, these structures are better separated in all other long-nosed armadillos reconstructed
here. This is congruent with the early diverging position of D. kappleri in the phylogeny of long-
nosed armadillos (Gibb et al., 2016). Our sample for D. kappleri is also characterized by a
substantial variation, which is partly structured geographically: specimens from the Guiana
Shield show a CFS1-RFRI1 that reaches the posterior level of other CFS, whereas this is not the
case in other specimens originating from more western areas in South America (Fig. S2).
Interestingly, these two allopatric groupings are congruent with the new taxonomic subdivision
proposed by Feijo & Cordeiro-Estrela (2016), with a revised D. kappleri species restricted to the
Guiana Shield area, and a new species (D. pastasae) found from the eastern Andes of Peru,
Ecuador, Colombia, and Venezuela south of the Orinoco River into the western Brazilian
Amazon Basin. These preliminary results now require a larger sample, including specimens
referred to D. beniensis (Feijo & Cordeiro-Estrela, 2016), in order to further test species
delimitation in the D. kappleri complex.

The pattern of paranasal cavities of the hairy long-nosed armadillo (D. pilosus) is more
similar to the Southern morphotype of D. novemcinctus than to any other morphotype, which

may have important implications on the reconstruction of its phylogenetic affinities. Castro et al.
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(2015) found this species to be the sister group of all other species attributed to the genus
Dasypus, and therefore proposed to place it in its own genus Cryptophractus. This early
diverging position and generic status is in disagreement with a more recent mitogenomic
analysis, which retrieved D. pilosus in a more nested position within the genus Dasypus, with D.
kappleri representing the earliest diverging species (Gibb et al., 2016). Remarkably, our findings
may provide new morphological arguments for such a nested position of D. pilosus as
unambiguously supported by molecular data. The related species D. septemcinctus and D.
hybridus, for their part, closely resemble each other, as it could have been expected given their
overall morphological resemblance and their phylogenetic proximity. This observation adds to
the growing body of evidence that these two parapatric species might in fact represent a single
taxonomic entity with a large distribution (Abba & Superina, 2010; Gibb et al., 2016).

Most importantly, the variation within the nine-banded armadillo (Dasypus
novemcinctus) allowed clearly separating three distinct geographical groups based on the pattern
of paranasal cavities (Fig. 6). These individual subsets do not exactly correspond to traditional
subspecies proposed for the nine-banded armadillo (McBee & Baker, 1982) though the
distinction between the Northern and Central American (Northern morphotype) and the Southern
American (Southern morphotype) groups may recall some subspecific boundaries (see below). In
fact, although bone transparency often offers the possibility to observe the boundaries between
the frontal sinuses and recesses, it seems that these characters have long been overlooked in
cingulate systematics. The most interesting result lies in the distinction of a well-characterized
entity restricted to the Guiana Shield area. Guianan nine-banded armadillos are distinguished by
an inflated CFS2 in comparison to all other armadillos investigated here. The irregular outline of

the CFS2 varies greatly among individuals belonging to the Guianan morphotype but its large
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size relative to other CFS appears distinctive. While nine-banded armadillos from the Guiana
Shield have never been distinguished as a subspecies (i.e. they were until now considered as part
of the subspecies D. novemcinctus novemcintus Linnaeus 1758; Wetzel et al., 2008),
mitochondrial data showed that populations from French Guiana may represent an early
diverging and previously unrecognized lineage clearly separated from other D. novemcinctus
(Gibb et al., 2016; Arteaga M-C, unpublished data). Specimens from French Guiana present
unexpectedly distant mitochondrial D-loop region (Huchon et al., 1999) and divergent
mitogenomes (Gibb et al., 2016) from the invasive US populations of nine-banded armadillos.
Based on these new data, nine-banded armadillos from French Guiana are supposed to have
diverged 3.7 Ma ago from a clade formed by other D. novemcinctus, D. sabanicola, D. mazzai
and D. pilosus (Gibb et al., 2016). In this regard, the new data on paranasal cavities deliver
unprecedented and very enlightening results: there exists a discrete morphological signal of
internal cranial structures that supports the distinctness not only of French Guianan specimens,
but also of specimens from Suriname, Guyana and the state Amapa in Brazil (Fig. 6). Based on
this distribution, we refer to this entity as specimens from the Guiana Shield (or Guianan
specimens) whereas we do not know the exact outline and boundaries of the range occupied by
these distinctive armadillos. Taken together with recent mitogenomic data (Gibb et al., 2016) and
analyses of cranial shape variation (Hautier L., unpublished data), the paranasal autapomorphies
found in this study make a strong case for the distinction of nine-banded armadillo specimens
from the Guiana Shield as a potentially new species. The discovery of discrete paranasal
characters supporting this purportedly distinct species demonstrates the necessity to study

internal anatomy for a truly integrative taxonomy.

Peer] reviewing PDF | (2017:03:17199:0:1:NEW 6 Apr 2017)



Peer]

546 The number and delimitation of subspecies recognized within D. novemcinctus has long
547 been a matter of debate among armadillo taxonomists (Cabrera, 1958; McBee & Baker, 1982;
548 McBee, 1999; Wetzel et al., 2008; McDonough & Loughry 2013). Alongside the Guianan

549 morphotype, the study of paranasal cavities also permitted to distinguish a mostly North and
550 Central American morphotype (Northern group) and another South American morphotype

551 (Southern group), which largely comes from the Amazon area (Fig. 6). The Northern

552 morphotype is characterized by 1) an anteroposterior elongation of the CFS2 to 5, with the

553 obliquely oriented pair of CFS2 contacting each other posteromedially, and ii) subdivided and
554 relatively shortened RFR1. The area where this morphotype is found fully covers the proposed
555 repartition of the subspecies D. novemcinctus mexicanus (Peters, 1864), D. novemcinctus davisi
556 Russel 1953, and part of D. novemcinctus fenestratus Peters 1864, and D. novemcinctus

557 aequatorialis Lonnberg 1913 (McBee & Baker, 1982; Wetzel et al., 2008; McDonough &

558 Loughry, 2013). It is generally well distinguished from the Southern morphotype, which is

559 characterized by an anteroposteriorly reduced posterior chain of CFS and an elongated RFR1
560 (Fig. 6). The area occupied by specimens belonging to this morphotype corresponds mostly to
561 the subspecies D. novemcinctus novemcintus (to the notable exception of the Guiana Shield area)
562 and may also cover the distribution of D. novemcinctus mexianae Hagmann 1908 (Wetzel et al.,
563  2008).

564 Problematic specimens whose pattern of paranasal sinuses is not easily referable to one of
565 the three main morphotypes are present in Panama and in the eastern parts of Colombia and

566 Venezuela (Fig. 6). This geographic area also partly corresponds to the subspecies D.

567 novemcinctus fenestratus (Wetzel et al., 2008). The partial incongruence of these internal data

568 with recognized subspecies of D. novemcinctus raises important taxonomic issues. In addition,
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these challenging results may also call into question the validity of the debated species Dasypus
sabanicola (Mondolfi, 1968; Abba & Superina, 2010; Gibb et al., 2016), whose paratype
MBUCYV 439 exhibits the pattern of paranasal cavities of the D. novemcinctus Southern
morphotype. However, this paratype represents a subadult specimen (Mondolfi, 1968), which
casts doubts on the growth stage exhibited by its paranasal cavities (NB: other specimens
attributed to this species could not be checked). The possibility also exists that this morphotype
represents a plesiomorphic condition within the genus, since D. pilosus also exhibits a similar
pattern. The question as to whether or not the three D. novemcinctus paranasal morphotypes
represent natural taxonomic entities is now to be evaluated through a thorough revision of the
Dasypus species complex that should integrate various morphological aspects and substantial
molecular data (Hautier L., unpublished data; Arteaga M-C., unpublished data). The case of the
problematic specimens found in Colombia, Venezuela and Panama clearly illustrates this

necessity.

Conclusions

As an early worker on Dasypus systematics, Hamlett (1939: 335) noted that in spite of the
dispersion of D. novemcinctus through many geographical regions, “it remains so uniform that it
is apparently impossible to find external variations sufficiently constant to be of subspecific
rank”. In fact, he suspected that cranial characters could offer the only promise for subspecific
analysis of the species. These words resonate particularly, as the strong geographical imprint
found in the variation pattern of paranasal cavities sheds new light on the delimitation of D.
novemcinctus and its subspecies. As demonstrated in this work, the investigation of frontal

sinuses may help to uncover previously overlooked phylogenetic subsets within the large
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geographic range of nine-banded armadillos. This study highlights the under-exploited potential
of internal characters for systematic studies and their utility for detecting otherwise potentially
cryptic species. The strong variation and high discriminatory power found in the paranasal
sinuses of armadillos is even strangely reminiscent of the extremely variable frontal sinuses of
modern humans which can be used as forensic fingerprints (Kim et al., 2013) and kinship
markers (Szilvassy, 1982; Slavec, 2005). In addition to its great potential for extant species, the
study of the paranasal spaces also constitutes a promising approach to provide new informative
characters for the phylogenetic placement of fossil species of the genus Dasypus (e.g., see partly

exposed frontal sinuses in D. punctatus; Castro et al., 2013).
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Figure legends

Figure 1. Dorsal views of virtually reconstructed skulls of long-nosed armadillos species, with
bone transparency showing internal paranasal sinuses and recesses in light blue. See Material and

Methods for the abbreviations. Scale-bar: 10mm.

Figure 2. Paranasal sinuses and recesses in juvenile individuals of Dasypus novemcinctus,
virtual reconstructions of skulls in lateral and dorsal views (left and right sides of the figure
respectively), with and without bone transparency. See Material and Methods for the

abbreviations. Scale-bar: 10mm.
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Figure 3. Virtual reconstruction of the skull of the stillborn specimen AMNH 33150, Dasypus
novemcinctus, with bone transparency leaving the caudal maxillary recess and cavity for the

frontal diploic vein apparent. Top, dorsal view; bottom, lateral view.

Figure 4. Dorsal views of virtually reconstructed skulls of Dasypus novemcinctus clustered by
morphotypes of paranasal anatomy as described in the text. Bone transparency leaves apparent

the paranasal recesses and sinuses in light blue. Scale bar: 10 mm.

Fie 5. Computed-tomography transversal slices through the skull of D. novemcinctus
individuals showing details of the internal paranasal anatomy for each morphotype. Slices were
made at similar transversal locations at the posterior end of the anterior root of the zygomatic @

arch. See Material and Methods for the abbreviations. Scale-bar: 10mm.

Figure 6. Summary map showing the geographical distribution of nine-banded armadillo
specimens investigated in this study and their attribution to a paranasal morphotype. Each of the
morphotype is represented by a schematic dorsal view of skulls (in grey) on which the paranasal
sinuses and recesses are drawn (in blue, yellow, or green for each morphotype). Specimens

reported with a star denote the absence of geographical information besides the country of origin.
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Supplemental Table S1. Table with information on investigated specimens: taxa, geographical

origins, collection number, scan details, sinus morphotypes.

Supplemental Figure S2. Illustration of the paranasal sinuses and recesses in different specimens

of Dasypus kappleri, with geographical information. Skulls not to scale.
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Figure 1

Dorsal views of virtually reconstructed skulls of long-nosed armadillos species, with
bone transparency showing internal paranasal sinuses and recesses in light blue.

Figure 1. Dorsal views of virtually reconstructed skulls of long-nosed armadillos species,
with bone transparency showing internal paranasal sinuses and recesses in light blue. See

Material and Methods for the abbreviations. Scale-bar: 10mm.
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Figure 2

Paranasal sinuses and recesses in juvenile individuals of Dasypus novemcinctus

Figure 2. Paranasal sinuses and recesses in juvenile individuals of Dasypus novemcinctus,
virtual reconstructions of skulls in lateral and dorsal views (left and right sides of the figure
respectively), with and without bone transparency. See Material and Methods for the

abbreviations. Scale-bar: 10mm.
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Figure 3

Virtual reconstruction of the skull of the stillborn specimen AMNH 33150, Dasypus
novemcinctus

Figure 3. Virtual reconstruction of the skull of the stillborn specimen AMNH 33150, Dasypus
novemcinctus, with bone transparency leaving the caudal maxillary recess and cavity for the

frontal diploic vein apparent. Top, dorsal view; bottom, lateral view.
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Figure 4

Dorsal views of virtually reconstructed skulls of Dasypus novemcinctus clustered by
morphotypes

Figure 4. Dorsal views of virtually reconstructed skulls of Dasypus novemcinctus clustered
by morphotypes of paranasal anatomy as described in the text. Bone transparency leaves

apparent the paranasal recesses and sinuses in light blue. Scale bar: 10 mm.
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Figure 5

Computed-tomography transversal slices through the skull of D. novemcinctus
individuals showing details of the internal paranasal anatomy

Figure 5. Computed-tomography transversal slices through the skull of D. novemcinctus
individuals showing details of the internal paranasal anatomy for each morphotype. Slices
were made at similar transversal locations at the posterior end of the anterior root of the

zygomatic arch. See Material and Methods for the abbreviations. Scale-bar: 10mm.

Northern morphotype Southern morphotype
LSU 15762 BMNH 3-9-4-102
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Figure 6

Summary map showing the geographical distribution of nine-banded armadillo
specimens investigated in this study and their attribution to a paranasal morphotype

Figure 6. Summary map showing the geographical distribution of nine-banded armadillo
specimens investigated in this study and their attribution to a paranasal morphotype. Each of
the morphotype is represented by a schematic dorsal view of skulls (in grey) on which the
paranasal sinuses and recesses are drawn (in blue, yellow, or green for each morphotype).
Specimens reported with a star denote the absence of geographical information besides the

country of origin.
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