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ABSTRACT
Because microorganisms are sensitive to temperature, ongoing global warming is
predicted to influence microbial community structure and function. We used large-
scale warming experiments established at two sites near the northern and southern
boundaries of US eastern deciduous forests to explore how microbial communities
and their function respond to warming at sites with differing climatic regimes. Soil
microbial community structure and function responded to warming at the southern
but not the northern site. However, changes in microbial community structure and
function at the southern site did not result in changes in cellulose decomposition
rates. While most global change models rest on the assumption that taxa will respond
similarly to warming across sites and their ranges, these results suggest that the
responses of microorganisms to warming may be mediated by differences across the
geographic boundaries of ecosystems.

Subjects Ecology
Keywords Decomposition, Microbial communities, Global warming, Soil enzyme activity,
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INTRODUCTION
Soil microbial community structure and function is directly regulated by temperature

and indirectly by temperature effects on the aboveground plant community, thus global

warming may rapidly and dramatically alter the structure and function of soil communi-

ties. Indeed, experiments demonstrate that warming alters microbial communities (Frey

et al., 2008; Schindlbacher et al., 2011; Zogg et al., 1997). Microbial responses vary among

experiments in ways that can seem idiosyncratic, which may result from the extent of

warming, historical background climate where the experiments are conducted, or due

to differences in the biotic aboveground community. Most warming studies to date

have employed straightforward experimental designs with two levels of experimental

warming—warmed vs. ambient—and implemented those treatments at a single site (Lu et

al., 2013; Rustad et al., 2001; Wolkovich et al., 2012). Such designs, though informative, can

limit the ability to predict responses to warming under different temperature regimes or

geographic variation in community responses.

How to cite this article Cregger et al. (2014), Microbial communities respond to experimental warming, but site matters. PeerJ 2:e358;
DOI 10.7717/peerj.358

mailto:mcregger@utk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.358
http://dx.doi.org/10.7717/peerj.358
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.358


Here, we examine the extent to which microbial communities and their function

respond to warming and if these responses differ between sites with different climatic

regimes. We warmed soil communities at the northern and southern extremes of the range

of Eastern deciduous forests in the United States. Both sites have an array of open-top

chambers (OTCs) that are warmed in a regression design (Cottingham, Lennon & Brown,

2005) boosting temperatures from 1.5 to 5.5 ◦C above ambient in ∼0.5◦ steps. This

design allows us to assess the functional responses of microbial communities across

a variety of temperatures at two locations. Work at these sites and elsewhere indicates

that the effect of temperature on animal communities varies geographically (Pietikainen,

Pettersson & Baath, 2005; Tewksbury, Huey & Deutsch, 2008). Across taxonomic groups, the

abundance of species operating near their critical thermal maxima at low latitudes tends

to be regulated more by warming than that of species operating farther from their critical

thermal maxima. Thus, warming may have larger effects on species, and their functions,

at warmer low-latitude sites than at cooler high-latitude sites. Previous work suggests

that while bacterial and fungal diversity and abundance might increase in response to

warming at low background temperatures, at high temperatures bacteria may respond

positively, but fungi either fail to respond or respond negatively to warming (Pietikainen,

Pettersson & Baath, 2005). This differential response may affect the rate at which carbon

and other nutrients are cycled in ecosystems. Bacteria tend to degrade more simple carbon

substrates (de Boer et al., 2005) thus initially there may be an increase in CO2 efflux into the

atmosphere followed by a leveling off as more recalcitrant carbon is left in the soil.

Given the different climates, particularly with regard to temperatures at the two

experimental sites, and that soil community structure and function are temperature

sensitive, we predicted that microbial communities would respond to warming, but these

effects would differ between the two sites and depend upon the amount of warming.

MATERIALS AND METHODS
This experiment is described in Pelini et al. (2011). Briefly, 12 octagonal (5 m diameter)

OTCs were established in 2009 and activated in January 2010 at a southern site (Duke

Forest, 35◦52′0′′N, 79◦59′45′′W) and a northern site (Harvard Forest, 42◦31′48′′N,

72◦11′24′′W). Each chamber has a ±20 cm oak tree in the center of the chamber to serve

as a thermal storage mass in order to avoid a cold core in the middle of the chamber.

Three chambers serve as unheated controls, and the remaining nine chambers manipulate

air temperature in 0.5 ◦C increments using hydronic heating and forced air from 1.5 ◦C

to 5.5 ◦C above ambient. Target and observed temperatures are strongly correlated

(r2
= 0.99). Mean annual air temperature was 15.5 ◦C and mean annual precipitation

was 1140 mm at the southern site and 7.1 ◦C and 1066 mm, respectively at the northern site

(Pelini et al., 2011). The southern site was established in a mixed deciduous, 80 year-old

oak-hickory (Quercus alba-Carya sp.) forest, with an understory that was dominated

by oak (Quercus alba), red maple (Acer rubrum), and hickory (Carya sp.). The soils are

mainly Ultic Alfisols with a soil pH, as measured in calcium chloride (Carter & Gregorich,

1993), of 3.5 ± 0.03. The northern site was established in a mixed deciduous, 70 year-old
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oak-maple (Quercus rubra-Acer rubrum) forest with an understory that was dominated

by blueberry (Vaccinium sp.), pine (Pinus strobus), and maple (Acer pensylvanicum). The

soils are mainly of the Canton series (coarse-loamy over sandy or sandy skeletal, mixed,

semi-active, mesic Typic Dystrudepts) (Melillo et al., 2011) with a soil pH, as measured

in calcium chloride (Carter & Gregorich, 1993), of 3.6 ± 0.08. Previous research on ants

at these sites showed that ant forager abundance and richness correlated to experimental

temperature increases at the southern site, but not the northern site. Further, individual

ant species responded differently to temperature increases at the southern site (Stuble et al.,

2013). Another approach to examining whether the responses of microbial communities

differ among regions would consist of installations of this warming experiment at multiple

sites from Duke Forest to Harvard Forest rather than at only two sites. However, such a

design is currently cost prohibitive (both in terms of setting up the experiment and in

processing samples). But, importantly, our design allows us to explore the dynamics of

communities at range boundaries, where it is predicted that the strongest responses to

ongoing warming will be Parmesan & Yohe (2003) and Walther, Berger & Sykes (2005).

We monitored air temperature as well as organic and mineral soil temperature con-

tinuously in each chamber with Apogee data loggers (model SQ110; Apogee Instruments

Inc., Logan, UT, USA). Relative humidity (HS-2000V capacitive polymer sensors; Precon,

Memphis, TN, USA) and soil moisture (Model CS616 TDR probes; Campbell Scientific

Inc.) were also continuously monitored in each chamber at both sites. Monitored air

temperatures within the chambers matched the target temperatures (Burt et al., in press).

Soil temperature in the organic and inorganic layers was positively correlated with air

temperature whereas soil moisture was never correlated with air temperature (Burt et al., in

press).

Five soil cores (2-cm diameter, 5-cm depth) were collected from within each of the 12

warming chambers on April 23rd, 2011 at Duke Forest and on May 17th, 2011 at Harvard

Forest (5 cores/chamber × 12 chambers × 2 sites = 120 soil cores). We were unable

to sample multiple times across the year because we needed to limit disturbance to the

plots, thus we selected a time when we knew the microbial community would be actively

degrading soil carbon. Soil from each chamber was homogenized (24 total samples); 15 g

of soil were immediately removed from the homogenized sample, stored on dry ice in the

field, and kept frozen at −80 ◦C until analyzed. The remaining soil was sieved (2 mm) and

assayed for potential extracellular enzymatic activity and soil gravimetric water content

within 48 h of collection.

To explore how warming altered microbial community structure and function we

assessed microbial abundance using quantitative PCR (Castro et al., 2010), microbial

community composition using terminal restriction fragment length polymorphism

(TRFLP) (Cregger et al., 2012; Singh et al., 2006), the potential activity of nine extracellular

enzymes, and a microbially mediated ecosystem function—cellulose decomposition.

To assess bacterial and fungal gene copy number, a commonly used proxy for abundance

(Allison & Treseder, 2008), we ran quantitative polymerase chain reaction (qPCR) on each

individual sample in conjunction with primers Eub 338 and Eub 518 for 16S ribosomal
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DNA and nuSSU1196F and nuSSU1536R for 18S ribosomal DNA (Castro et al., 2010).

PCR mixtures for both 16S rRNA and 18S rRNA gene amplification contained 15 µl of

SYBR green master mix (Invitrogen, Life Technologies, Grand Island, NY), 5 µmol of

each primer (Eurofins MWG Operon, Huntsville, AL), and 1 µl of sample DNA diluted

1:10 in sterile water. Reactions were brought up to 30 µl with sterile water. Amplification

protocol for the 16S rRNA gene consisted of an initial denaturing cycle of 95 ◦C for three

minutes. This cycle was followed by 39 cycles of 95 ◦C for 15 s, 53 ◦C for 15 s, and 72 ◦C

for 1 min. Amplification of the 18S rRNA gene consisted of an initial denaturing cycle of

95 ◦C for three minutes. This cycle was followed by 39 cycles of 95 ◦C for 15 s, 53 ◦C for

15 s, and 70 ◦C for 30 s. Abundance was quantified by comparing unknown samples to

serial dilutions of 16S and 18S rDNA from Escherichia coli and Saccharomyces cerevisiae,

respectively in each PCR run. After completion, for both ribosomal genes, a melting curve

analysis was conducted to ensure purity of the amplification product. PCR amplification

was performed on a 96-well Chromo4 thermocycler (Bio-Rad Laboratories, Hercules, CA).

We assessed microbial community composition using terminal-restriction fragment

length polymorphism (TRFLP), which provided fingerprints of the bacterial and fungal

communities (Singh et al., 2006). Due to decreases in fluorescence when samples were

multiplexed, we performed bacterial and fungal TRFLPs in separate reactions. PCR was

performed to amplify the 16S rRNA gene from bacteria using primers 63f (Marchesi

et al., 1998) and 1087r (Hauben et al., 1997) and the fungal ITS region using primers

ITS1f (Gardes & Bruns, 1993) and ITS4r (Singh et al., 2006). PCR mixtures contained 5 µl

10× KCL reaction buffer, 2 µl 50 mM MgCl2, 5 µl 10 mM dNTPs (Bioline, Tauton, MA),

1 µl 20 mg/ml BSA (Roche, location), 0.5 µl (2.5 Units) Taq DNA polymerase (Bioline,

Tauton, MA), either 1 µl of each bacterial primer or 2 µl of each fungal primer (Labeled

primers—Invitrogen, Life Technologies, Grand Island, NY; unlabeled primers—Integrated

DNA Technologies, Coralville, IA), and 1 µl sample DNA diluted 1:10 in sterile water.

All PCR reactions were performed using a 96-well Tgradient thermocycler (Biometra,

Germany). DNA was amplified with an initial step of 95 ◦C for 5 min, followed by 30 cycles

at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 1 min. This was followed by extension at

72 ◦C for 10 min. PCR product quality was assessed with 1% agarose gel electrophoresis.

PCR products were cleaned using the QIAquick PCR purification kit (Qiagen, Valencia,

CA), quantified using a Synergy HT microplate reader (Biotek, Winooski, Vermont, USA),

and digested with MspI. After digestion, a cocktail was made containing 0.5 µl LIZ labeled

GeneScan 1200 internal size standard (Applied Biosystems, Grand Island, NY), 12.5 µl

Hi–Di formamide (Applied Biosystems, Grand Island, NY), and 1 µl of digested product

which was centrifuged, then incubated at 94 ◦C for 4 min followed by incubation at 4 ◦C

for 5 min. Fragments were analyzed on an ABI Prism 3100 genetic analyzer (Applied

Biosystems, Grand Island, NY).

TRFLP profiles were measured using the GeneMapper software (Applied Biosystems,

NY) with a cutoff of 50 bp. The relative abundance of a TRF in a TRFLP profile was

calculated by dividing the peak height of the TRF by the total peak height of all TRFs in

the profile (Singh et al., 2006). Community analyses of fragments were conducted using
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Primer 6 with site specified as a factor and soil temperature and soil moisture specified

as covariates (Primer-E Ltd., United Kingdom). Soil temperature and soil moisture were

significantly different between the southern and northern site (soil temperature, F = 187.8,

p < 0.01; soil moisture, F = 17.6, p < 0.01). Thus, we followed up the community analyses

and separated the data by site using a distance based linear model (DISTLM) that assessed

the effect of soil temperature and soil moisture on total microbial, fungal, and bacterial

community composition at each site (Anderson, 2004; Langlois, Anderson & Babcock, 2006).

Additionally, bacterial, fungal, and total microbial richness for all chambers at each site was

calculated by summing the unique number of TRFs in each sample.

We assayed microbial activity by measuring potential extracellular enzyme activity

using methylumbelliferone (MUB) linked substrates and 3,4 Dihydroxyphenylalanine

(L-DOPA) (Saiya-Cork, Sinsabaugh & Zak, 2002). Soils were assayed for nine ecologically

relevant enzymes in order to assess the functional diversity of the soil community: sulfatase

(hydrolysis of sulfate esters), nitrogen acetylglucosaminidase (nagase; mineralization of

nitrogen from chitin), xylosidase (hemicellulose degradation), phosphatase (hydrolysis

of phosphomonoesters and phosphodiesters releasing phosphate), α-glucosidase (degra-

dation of storage carbohydrates), β-glucosidase (degradation of cellulose and other–1,4

glucans), cellobiohydrolase (cellulose degradation), phenol oxidase (lignin degradation),

and peroxidase (lignin degradation). Soils were prepared by adding 125 ml of 0.5 M

sodium acetate buffer (buffer, pH 5) to approximately 1 g of soil and homogenized for

2 min by immersion blending. Sulfatase, nagase, xylosidase, phosphatase, α-glucosidase,

β-glucosidase, and cellobiohydrolase were measured using MUB linked substrates. We

prepared 96 well plates with blanks, experimental controls, and samples, which were

replicated 8 times each. All plates were incubated at room temperature in the dark. The

nagase and phosphatase reactions were incubated for 0.5 h, while sulfatase, xylosidase,

α-glucosidase, β-glucosidase, and cellobiohydrolase were incubated for 2 h. Fluorescence

was read at an excitation of 365 nm and an emission of 450 nm (Biotek, Winooski,

Vermont, US). Phenol oxidase and peroxidase activity were measured using L-DOPA.

Assays were replicated 16 times and reactions were incubated in the dark for 24 h.

Absorbance was read at 460 nm on a Synergy HT microplate reader (Biotek, Winooski,

Vermont, US). Potential enzymatic activity is presented as nmol h−1 g−1 (Saiya-Cork,

Sinsabaugh & Zak, 2002; Sinsabaugh, 1994).

The decomposition rate of a standard cellulose substrate was measured in each chamber

to determine how warming might alter the rate of carbon degradation, a microbially

mediated process. Twelve mesh decomposition bags (10 cm × 10 cm; 3 mm mesh double

layered on top and 1.3 mm mesh on bottom) containing 10 g of Whatman # 1 filter paper

were deployed in each of the chambers and collected after 3, 6, 9, and 12 months. All

data are shown on an ash-free oven dry mass basis. K-constants were calculated for each

chamber at each site following collection (Olson, 1963).

Because microbial communities experience changes in soil temperature and moisture

as a result of changing air temperature, we used an analysis of covariance (ANCOVA) to

examine the effect of site, average organic layer soil temperature on the day of sampling,
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Figure 1 Site, soil temperature, and soil moisture interactively altered bacterial abundance (F =

18.17, p < 0.01). (A) At the southern site, abundance was greatest at low soil moisture and high soil
temperatures. (B) At the northern site, there was no effect of soil temperature or moisture on abundance.

average volumetric soil moisture on the day of sampling, and the interactions of these

factors on microbial community composition, abundance, enzymatic activity, and

decomposition rates. When three way interactions among site, soil temperature, and

soil moisture were detected, we separated the data by site and ran regressions using soil

temperature and soil moisture as factors. We assessed the effect of minimum, maximum,

and variation in soil temperature and moisture over one year on microbial structure

and function, but found no significant effects, so results including those factors are not

presented.

RESULTS AND DISCUSSION
Due to their short generation times and rapid turnover, soil bacteria are predicted to

respond quickly to global warming (Pietikainen, Pettersson & Baath, 2005; Rinnan et

al., 2007; Zogg et al., 1997). Soil fungi, in contrast, are relatively slow growing, so fungal

responses may lag relative to bacteria and be a function of substrate availability (de Boer

et al., 2005). Consistent with this, we found that experimental warming influenced the

bacterial communities to a greater extent than the fungal communities at the southern

site (Fig. 1, Appendix 4). Optimal soil temperatures for bacterial growth range between

25 and 30 ◦C (Pietikainen, Pettersson & Baath, 2005)—a temperature that is much higher

than the soil temperatures measured on the days we collected our samples (14 and 9.5 ◦C

at the southern and northern site, respectively). The observed temperatures in chamber

soils are well below the optimum for bacterial growth, thus warming should increase both

bacterial abundance and function at both sites. Surprisingly, bacterial abundance increased

with warmer temperatures only at the southern site, not at the northern site. Bacterial

abundance responded to a significant site × soil temperature × soil moisture interaction

(F1,16 = 18.17, P < 0.01). Bacterial abundance was greatest when soil moisture was low

and soil temperatures were high at the southern site (Fig. 1A, F1,8 = 16.11, P < 0.01).
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Figure 2 Fungal abundance was similar among sites, soil temperatures, and soil moistures at the
southern (A, F = 0.56, p = 0.48) and northern site (B, F = 1.86, p = 0.21).

However, there was no effect of soil temperature or moisture on bacterial abundance at the

northern site (Fig. 1B, F1,8 = 0.86, P = 0.50), where soils were cooler, moister, and fungal

dominated.

Fungal abundance was 3.5× greater at the northern site than at the southern site

indicating a fungal dominated decomposition pathway (Fig. 2). Because soil fungi and

bacteria compete for resources, at the northern site fungi may outcompete bacteria for

resources suppressing bacterial growth, in essence preventing the bacteria from responding

to warming. Across treatments, bacterial abundance was 1.6× higher at the southern site

relative to the northern site (F1,16 = 9.22, P = 0.01), indicating a bacterial dominated

decomposition pathway at the southern site (Allison & Treseder, 2008; Strickland & Rousk,

2010). In contrast, we found that bacterial richness was highest at intermediate soil

temperatures and soil moistures at the southern site (F1,16 = 23.51, P < 0.01). Importantly,

these differences between sites match predictions that the responses of organisms to

changes in temperature vary between southern and northern sites. Alternatively, changes

in the richness and abundance of predatory organisms like soil nematodes may constrain

bacterial abundance in response to warming (Briones et al., 2009).

In addition to the effects of warming on microbial abundance and diversity there

was a significant effect of soil temperature on total microbial community composition

(F1,16 = 17.86, P < 0.01), fungal community composition (F1,16 = 4.33, P < 0.01), and

bacterial community composition (F1,16 = 41.89, p < 0.01). Additionally, total microbial

community composition (F1,16 = 1.67, P = 0.03) and bacterial community composition

(F1,16 = 3.43, P < 0.01) differed between sites. When sites were analyzed separately,

there was no effect of soil temperature or moisture on community composition. This

suggests that the effect of soil temperatures on community composition was driven by

large landscape-scale differences in soil temperature, and other unmeasured factors such

as differences in plant community composition or historical legacies, between the two sites

rather than any differences among treatments within sites.
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Figure 3 Site, soil temperature, and soil moisture interactively altered potential xylosidase (F = 10.22,
p = 0.01) and nagase (F = 5.42, p = 0.03) activity. (A) At the southern site, xylosidase activity was
lowest under high soil temperatures and low soil moisture. (B) At the northern site, there was no effect
of soil temperature or moisture on xylosidase activity. (C) At the southern site, there was no effect of soil
temperature or moisture on nagase activity. (D) At the northern site, nagase activity was greatest under
high soil temperatures and moisture.

We predicted soil enzymatic activity would proportionally increase with temperature

because enzyme reaction rates are temperature sensitive. Instead, we found that site,

soil temperature, and soil moisture interacted to influence enzyme activity. The highest

levels of xylosidase activity—an enzyme involved in hemicellulose degradation—were at

intermediate temperatures and low levels of soil moisture at the southern site (Fig. 3A,

F1,8 = 29.57, P < 0.01), but xylosidase activity did not differ among treatments at the

northern site. The low levels of soil moisture at the southern site may have decreased

enzymatic turnover leading to an increase in “standing”, but not active enzyme (Wal-

lenstein & Weintraub, 2008). When soil moisture levels were low, extracellular enzymes

are more likely to be adsorbed onto soil particles making them relatively inactive in situ,

even though they produced higher measurable activity in the laboratory (Wallenstein &

Weintraub, 2008). At the northern site, nagase activity was highest at intermediate levels of

soil moisture and high soil temperatures (Fig. 3D, F1,8 = 5.25, P = 0.05), but there was no
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effect of treatment on nagase activity at the southern site (Fig. 3C, F1,8 = 1.19, P = 0.31),

suggesting that nitrogen limitation may be greater at the northern site during this time.

Interestingly, the changes in microbial community composition, abundance, and

potential activity did not influence cellulose decomposition between the sites or among the

warming treatments (Table 1, P > 0.05, Appendix 1). One possibility is that decomposer

communities are functionally redundant, thus shifts in their communities due to warming

do not alter decomposition (Allison & Martiny, 2008; Allison & Treseder, 2008). Because this

experiment had been running for only a year, it is more likely that the communities are still

using up carbon substrates present in the soil prior to plot establishment and that changes

in the decomposition process may take longer than one year before they become evident

(Rinnan et al., 2007). Nevertheless, the changes in the bacterial community and potential

microbial function in response to experimental warming suggest that as soil temperatures

increase, changes in the fungal community and, at least some of the processes it mediates

will follow. But, just as importantly, these effects need not be consistent among sites, which

suggests that models predicting ecosystem responses to climate change should account for

geographic variation in responses to ongoing warming.

CONCLUSIONS
We conclude that the effect of warming on microbial community structure and function

may become more pronounced as soil temperatures increase and carbon substrates are

depleted through time. Further the response of communities, even communities in the

same ecosystem, will likely vary by location. Thus, predicting and modeling the extent

to which terrestrial ecosystems will respond to global change requires globally replicated

experiments across habitat types and climates.
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