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ABSTRACT
Root knot nematodes (RKN) can infect most of the world’s agricultural crop species
and are among the most important of all plant pathogens. As yet however we have
little understanding of their origins or the genomic basis of their extreme polyphagy.
The most damaging pathogens reproduce by obligatory mitotic parthenogenesis and
it has been suggested that these species originated from interspecific hybridizations
between unknown parental taxa. We have sequenced the genome of the diploid
meiotic parthenogen Meloidogyne floridensis, and use a comparative genomic ap-
proach to test the hypothesis that this species was involved in the hybrid origin of the
tropical mitotic parthenogen Meloidogyne incognita. Phylogenomic analysis of gene
families from M. floridensis, M. incognita and an outgroup species Meloidogyne hapla
was carried out to trace the evolutionary history of these species’ genomes, and we
demonstrate that M. floridensis was one of the parental species in the hybrid origins
of M. incognita. Analysis of the M. floridensis genome itself revealed many gene loci
present in divergent copies, as they are in M. incognita, indicating that it too had a
hybrid origin. The triploid M. incognita is shown to be a complex double-hybrid
between M. floridensis and a third, unidentified, parent. The agriculturally important
RKN have very complex origins involving the mixing of several parental genomes by
hybridization and their extreme polyphagy and success in agricultural environments
may be related to this hybridization, producing transgressive variation on which
natural selection can act. It is now clear that studying RKN variation via individual
marker loci may fail due to the species’ convoluted origins, and multi-species popu-
lation genomics is essential to understand the hybrid diversity and adaptive variation
of this important species complex. This comparative genomic analysis provides a
compelling example of the importance and complexity of hybridization in generating
animal species diversity more generally.
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INTRODUCTION
Root-knot nematodes (RKN) belong to the genus Meloidogyne, contain approximately

100 described species, and are globally important crop pathogens (Moens, Perry & Starr,

2009). The most frequent, widespread, and damaging species (M. incognita, M. arenaria,

and M. javanica) are tropical RKN that are highly polyphagous, infecting crop species

producing the majority of the world’s food supply, with the damage attributable to

RKN ∼5% of world agriculture (Taylor & Sasser, 1978; Trudgill & Blok, 2001; Sasser &

Carter, 1985). The adaptive phenotypic diversity of these pathogens is also remarkable,

with great variability observed both within and between species with respect to host

range and isolate-specific vulnerability to control measures (Trudgill & Blok, 2001;

Castagnone-Sereno, 2006). The tropical RKN typically reproduce by obligatory mitotic

parthenogenesis and possess aneuploid genomes (Triantaphyllou, 1982; Triantaphyllou,

1985). These species have previously been suggested to be hybrid taxa, and phylogenetic

analysis of nuclear loci supports this conclusion (Dalmasso & Berge, 1983; Triantaphyllou,

1985; Hugall, Stanton & Moritz, 1999; Castagnone-Sereno, 2006; Lunt, 2008).

Hybrid speciation has a long history of study in plants, with hybrid species formation

having had a very significant influence on our understanding of species formation,

diversity, and adaptation (Arnold, 1997; Soltis & Soltis, 2009). By contrast hybridization

has been thought to be much less common in animals, though the utilization of multilocus

genetics, and more recently genomics, has increased interest in the consequences of animal

hybridization and several reviews suggest that it is much more common and important

than previously thought (Mallet, 2007; Mallet, 2005; Bullini, 1994; Nolte & Tautz, 2010;

Schwenk, Brede & Streit, 2008; Seehausen, 2006). Although there have been repeated

suggestions that the tropical (“Group 1”) RKN might have hybrid origins, the parental

species involved have never been identified. The phylogenies in Hugall, Stanton & Moritz

(1999) and Lunt (2008) indicate that these parents (as represented by divergent sequence

clusters within the apomictic RKN) are more closely related to each other than either

is to M. hapla, though neither had a parental species within their sampling schemes.

Meloidogyne floridensis is a plant pathogenic root knot nematode that was originally

characterized as M. incognita, but has since been described as a separate species on

the basis of its morphology and a unique esterase isozyme pattern (Jeyaprakash et al.,

2006; Handoo et al., 2004). Despite both nuclear rRNA and mtDNA sequences placing it

within the phylogenetic diversity of the tropical mitotic parthenogen (apomict) species

(Tigano et al., 2005; Holterman et al., 2009) (Fig. 1), M. floridensis is a meiotic parthenogen

(automict) with the standard chromosome count of the meiotically reproducing RKN

species (n = 18), has bivalent chromosomes, and an observable meiotic division (Handoo

et al., 2004). M. floridensis appears to suppress the second meiotic division which is a

known form of automictic reproduction called first-division restitution and a pathway by

which parental heterozygosity can be maintained (Bell, 1982, p. 40). With the exception

of M. floridensis, all of the Group 1 RKN (De Ley et al., 2002; Holterman et al., 2009) are

apomicts, unable to reproduce by meiosis, lacking bivalents, and exhibiting extensive

aneuploidy. This phylogenetic distribution of reproductive modes, with M. floridensis
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Figure 1 The relationships of tropical apomict Meloidogyne. This image summarizes the relationships
of the tropical apomict Meloidogyne root knot nematodes (“Group 1”) to other Meloidogyne. Meloidogyne
floridensis is a Group 1 species that can reproduce by meiotic parthenogenesis (blue colouration) while all
other Group 1 species are obligate mitotic parthenogens (red colouration). Meloidogyne hapla is a meiotic
parthenogenic species in Group 2. We have not used bifurcating trees to represent the relationships within
the Group 1 and 2 species because of issues (highlighted in this paper) concerning possible hybrid origins
of some taxa.

phylogenetically nested within the diversity of the apomict RKN (Fig. 1), is unanticipated

as it implies the physiologically unlikely route of re-emergence of meiosis from within the

obligate mitotic parthenogens. An alternative explanation for these observations is that the

observed phylogenetic relationships have not arisen from a typical ancestor-descendent

bifurcating process, but instead have been shaped by reticulate evolution and transfer of

genes by interspecific hybridization with M. floridensis a parent of the tropical apomict

species.

The origins of Meloidogyne incognita genomic duplicates
The M. incognita genome revealed that many of the genes of this species are present

as highly divergent copies (Abad et al., 2008), a situation that seems to apply to the

other tropical apomicts too (Lunt, 2008), though the origin of these divergent copies

is controversial. One possible way to account for the high divergence between alleles

is that they have originated by a process of ‘endoduplication’ (Fig. 2A). Here we use

endoduplication to refer to two distinct processes, although their genomic outcomes are

similar. Firstly, the entire M. incognita genome might have doubled to become tetraploid.

The homologous chromosomes may have then diverged, and the extant pattern of

partial retention of duplicated loci could be the result of gene loss. This process would

leave many areas of the genome possessing divergent copies. Second, an alternative

mechanism possible in apomictic species such as M. incognita, is that former alleles
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Figure 2 Scenarios of the possible relationships between Meloidogyne floridensis, Meloidogyne incognita and Meloidogyne hapla, and the
origins of duplicated gene copies. M. hapla is a diploid species in a different sub-generic group to that of M. incognita and M. floridensis. Species “X”,
“Y” and “Z” are postulated ancestral parents that could have given rise to M. incognita and M. floridensis. (A) Scenarios 1 and 2: Here M. floridensis
is a diploid sister species to M. incognita and possesses the “X” genome. Scenario 1 postulates reacquisition of apomixis in M. floridensis from an
apomict ancestor, while Scenario 2 postulates that the apomicts repeatedly lost meiosis independently. Under both these scenarios, the presence
of significant duplications in M. incognita suggests that it has undergone whole genome endoduplication. The duplicated genomes (“Z + Z”) in
M. incognita are diverging under Muller’s ratchet. (B) Scenario 3: Ancestor “X” gave rise to the diploid species M. floridensis, and also interbred with
“Z” to yield M. incognita, which thus carries two divergent copies of each gene (“X + Z”). In this model only M. incognita, not M. floridensis, is
predicted to carry two homeologues of many genes. (C) Scenario 4: Both M. floridensis (“X + Y”) and M. incognita (“Y + Z”) are hybrid species,
and share one parent (“Y”). In this model both M. incognita and M. floridensis are predicted to carry two homeologues of many genes. (D) Scenario
5: Both M. floridensis (“X + Y”) and M. incognita (“X + Y + Z”) are hybrid species, but M. incognita is a triploid hybrid between the hybrid
M. floridensis ancestor (“X + Y”) and another species (“Z”). In this model M. incognita is predicted to carry three, and M. floridensis is predicted to
carry two, homeologues of many genes.

that are released from the homogenizing effects of recombination, can independently

accumulate mutations over long periods of time resulting in highly divergent homologous

loci (‘alleles’) within a diploid genome (White, 1945, pg. 283, Judson & Normark, 1996).

Another possible explanation for a genome containing divergent homologous copies of

many genes is interspecific hybridization. One (homeologous) copy is inherited from each

parental species and the divergence between them derives from the divergence between

the hybridizing taxa. It is likely here that all genes would be present as divergent copies,

although gene conversion and related processes could homogenize some copies. If it

originated by this second mechanism the resulting M. incognita genome would be a mosaic

with genomic regions derived from both its parents.

There are several ways in which M. incognita and M. floridensis might be related through

hybridization. M. floridensis might be one of the two parental species which hybridized to

form the tropical apomicts, including M. incognita (Fig. 2B). Alternatively, M. floridensis

might be an independent hybrid that shares one parental taxon with M. incognita, and
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thus represents a ‘sibling’ hybrid taxon (Fig. 2C). Finally, M. floridensis may itself be a

hybrid, but still have played a role as a parent of M. incognita by a subsequent hybridization

event (Fig. 2D). This last option predicts three gene copies in M. incognita and two in

M. floridensis.

The nuclear gene phylogenies of Lunt (2008) indicate that the parental taxa of the

apomict RKN were closely related and derived from within the cluster of Group 1

Meloidogyne species after the divergence of M. enterolobii (= M. mayaguensis). Since this

closely matches the phylogenetic position of M. floridensis, which is known to reproduce

via sexual recombination as the parental species also must have done, we set out to test by

comparative genome sequencing and analysis if M. floridensis was one of the progenitors of

the tropical apomicts.

Reproductive mode and Meloidogyne evolutionary history
Given the unexpected distribution of meiosis across Group 1 Meloidogyne species

described above (Fig. 1), there are several possible evolutionary pathways for the evolution

of reproductive modes (Fig. 2): In scenario 1, M. floridensis has regained meiosis from an

apomict state. Alternatively (scenario 2), the numerous apomict species could have lost

meiosis many times independently. There are several additional scenarios involving hybrid

origins. In scenario 3, the apomicts have hybrid origins with the automict M. floridensis

as a putative parent, while in scenario 4 both M. floridensis and the apomicts have

independent hybrid origins. In scenario 5, a hybrid M. floridensisis in turn parental to a

complex hybrid apomict.

Scenario 1 is very unlikely. Meiosis is an exceptionally complex system to re-evolve

once it has been lost (Dollo’s law), and the only suggested example we are aware of in the

literature is not supported by robust reanalysis (see Goldberg & Igić, 2008). In addition,

the extant apomicts are highly aneuploid, making it necessary for M. floridensis to have

re-evolved 18 homologous chromosome pairs, which again suggests that cytologically

this route is highly unlikely. Scenario 2 is also not parsimonious, potentially implying

very many independent major reproductive transitions. Since there are already genetic

data indicating that the apomicts may have hybrid genomes (Lunt, 2008), we focused

our analyses on the much more biologically plausible scenarios 3, 4 and 5 that propose

hybridization drove the evolution of the apomictic RKN.

Scenario 3 restricts the hybrid taxa to the apomict Group 1 species, and places M. flori-

densis as one of the hybridizing parental species (Fig. 2B). This model makes predictions

that, where divergent homeologous sequences are detected in the M. incognita genome,

M. floridensis would possess two alleles closely related to one of these homeologues. The

M. floridensis genome itself would also be substantially different from that of M. incognita,

not possessing divergent homeologous blocks but rather displaying normal allelic

variation, perhaps more similar to that observed in the M. hapla genome.

In scenarios 4 (Fig. 2C) and 5 (Fig. 2D) M. floridensis would also be a product of

an interspecific hybridization, as are the apomicts. Both these scenarios predict that

the M. floridensis genome will, like M. incognita, show substantial sequence divergence
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between homeologues throughout its genome, although it may also possess some regions

where one parental copy has been eliminated, and remaining diversity is simple allelism. In

scenario 4, the parents of M. incognita need not be the same as those of the apomicts,

although the phylogenetic position of M. floridensis implies that at least one of them

may have been identical or very closely related. The different putative hybrid origins of

M. incognita predict two (scenario 4, Fig. 2C) or three (scenario 5, Fig. 2D) homeologous

copies, potentially modified by subsequent loss events.

Here, we generate a de novo assembled genome for M. floridensis, identify and analyse a

large number of sets of homologous sequences in M. floridensis, M. incognita and M. hapla,

and use both gene copy number distributions and gene phylogenies to test the predictions

of the different scenarios outlined in Fig. 2.

MATERIALS AND METHODS
Nematode materials
DNA from female egg mass cultures of Meloidogyne floridensis isolate 5 was generously

sourced and provided from culture by Dr. Tom Powers (University of Lincoln, Nebraska,

USA) and Dr. Janete Brito (Florida Department of Agriculture and Consumer Services,

Gainesville, USA).

Sequencing and draft genome assembly
Meloidogyne floridensis DNA was prepared for sequencing using standard Illumina

protocols by the GenePool Genomics Facility of the University of Edinburgh. A 260 bp

insert library was sequenced using one lane of an Illumina HiSeq2000 (v2 reagents) with

101 base paired-end sequencing. 14.5 gigabases (Gb) of raw sequence data were adapter

trimmed and quality filtered using perl and bash scripts to yield 70.2 M pairs totaling

13.2 Gb.

The genomic DNA sample derived from nematodes isolated from plant roots, and

surrounded, therefore, by the bacterial communities of the rhizosphere. Egg masses of

RKN are known to be associated with microbial taxa. To identify potential contaminants,

we performed a preliminary assembly of all the trimmed reads ignoring pairing

information. We then estimated read coverage of each assembled contig by mapping all

reads back to the assembly, and annotated 10,000 randomly sampled contigs with the

taxonomic order of their best megablast (BLAST+ version 2.2.25+ (Zhang et al., 2000))

match to the NCBI nt database (Benson et al., 2011). A taxon-annotated scatter plot of

the GC% and coverage of each contig was used to visualize the contaminants present in

the data (Fig. S1) (Kumar & Blaxter, 2012). Distinct GC%-coverage clusters in this plot

were annotated with distinct taxonomic matches. A major cluster annotated as nematode

was clearly dominant. Additional minor clusters were annotated as deriving from the

bacterial orders Bacillales, Burkholderiales, Pseudomonadales and Rhizobiales. These all

either had much lower coverage or much higher GC content than the nematode cluster.

We conservatively removed contigs that matched the GC content and coverage of the

identified contaminant blobs. To ensure optimal contamination removal, a second round
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of megablast searches was performed and any contigs that matched Bacterial databases

were removed. Only reads mapping to the remaining, putatively nematode contigs and

their pairs were retained for the next step. The true insert size distribution of these reads

was also estimated by mapping the pairs back to the preliminary assembly.

A stringent reassembly of the cleaned read set (11.1 Gb) was performed using reliable

coverage information estimated from the preliminary assembly GC%-coverage plot. Velvet

v1.1.04 (Zerbino, 2010; Zerbino & Birney, 2008) was used with a k-mer value of 55 and

the parameters -exp cov 45, -cov cutoff 4.5, and -ins length 260. Other parameters and

assemblers were also tried but this assembly had the best contig length optimality scores

(e.g., N50, the contig length at which 50% of the assembly is in contigs of that length

or greater) and the highest CEGMA values (using CEGMA version 2.3, Parra, Bradnam

& Korf, 2007). Redundant contigs likely to derive from independent assembly of allelic

copies were removed using CD-HIT-EST (version 4.5.5, Li & Godzik, 2006) with -c 0.97

(removing all contigs that were more than 97% identical over their entire length to another,

longer contig).

Protein predictions and comparisons
A full annotation of the M. floridensis draft genome was not carried out, because no

transcriptome data for the species was available. Instead, because we were interested

in comparing coding sequences conserved with M. hapla and M. incognita, we used

the protein2genome model in exonerate v2.2.0, (Slater & Birney, 2005) to align all

M. hapla and M. incognita proteins, derived from the published genome sequences, to

the M. floridensis draft genome. We extracted coding sequences (CDSs) that aligned to at

least 50% of the length of the query protein sequences. If multiple M. hapla or M. incognita

query protein sequences aligned to overlapping loci on the M. floridensis genome, only the

longest locus was chosen as a putative M. floridensis CDS. The CDSs for all three species

were trimmed after the first stop codon, and only sequences with a minimum of 50 amino

acids were retained for further analysis.

To assess the level of self-identity among CDSs in each species, a BLASTn (version

2.2.25 +Altschul et al., 1990) search (with a sensitive E-value cutoff of 1e-5) was performed

and the top scoring hit for each sequence to a CDS (other than itself) was selected if the

length of the alignment was longer than 70% of the query sequence. The transcriipts of

M. incognita were compared to the genomes of M. floridensis and M. hapla to identify levels

of between species similarity using the same strategy.

Clustering
We used Inparanoid (version 4.1, Ostlund et al., 2010) and QuickParanoid (Kim & Park)

with default settings to assign proteins from the three Meloidogyne species to orthology

groups. While assessing the level of duplication within the CDS sets (Fig. 3), we noted that

several M. incognita CDS sequences were identical or nearly identical (>98% identity).

These are most likely derived from allelic variants rather than gene duplications (which

show a separate peak between 95 and 97% identity). To simplify the construction of

orthologous gene clusters, we reduced these near identical sequences in each species using
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Figure 3 Inter- and intra-genomic identification of duplicated protein-coding regions. (A) Each
coding sequence from each of the three target genomes (M. hapla, M. incognita and M. floridensis)
was compared to the set of genes from the same species. The percent identity of the best matching
(non-self) coding sequence was calculated, and is plotted as a frequency histogram. Both M. incognita
and M. floridensis show evidence of the presence of many duplicates, while M. hapla does not. (B) The
M. incognita gene predictions were compared to the M. floridensis genome and the M. hapla gene set.
For each M. incognita gene, the similarity of the top matches in each genome was assessed. M. incognita
has many genes that are highly similar to those of M. floridensis (similarity >98%). This contrasts with
the matches to M. hapla, where the modal similarity is ∼92%, and there is no peak of high-similarity
matches.

CD-HIT-EST, removing any CDSs that were at least 98% identical across their whole

length to another CDS.

Phylogenetic analyses
For each InParanoid cluster, Clustal Omega v1.0.3, (Sievers et al., 2011) was first used

to align the protein sequences. Tranalign (from the Emboss suite, v6.2.0, Rice, Longden

& Bleasby, 2000) was then used along with the protein alignment as a guide to align

the nucleotide CDS sequences. Finally, RAxML v7.2.8, (Stamatakis, 2006) was used

to create maximum likelihood trees for each set of aligned CDS sequences in three

steps: (i) finding the best ML tree by running the GTRGAMMA model for 10 runs

using the command “raxmlHPC-PTHREADS-SSE3 -m GTRGAMMA -s $a -# 10 -n

$a -T 2”; (ii) getting the bootstrap support values for this tree by running the same

model until the autoMRE convergence criterion was satisfied employed the command

“raxmlHPC-PTHREADS-SSE3 -m GTRGAMMA -s $a -# autoMRE -n $a.b -T 2 -b

12345”; (iii) using the bootstrap trees to draw bipartitions on the best ML tree used the

command “raxmlHPC-PTHREADS-SSE3 -m GTRCAT -f b -t RAxML bestTree. $a -z

RAxML bootstrap. $a.b -n $a.l -T 2 -o mh”. Gene trees with a BP support of 70% or more

were included in the analysis. The resulting trees were imported into the R Ape package

v2.8, (Paradis, Claude & Strimmer, 2004) to count the number of trees with the same

topology. Datafiles, treefiles, and scripts for processing the trees and other data can be

obtained from FigShare 10.6084/m9.figshare.978784.
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RESULTS
The genome of Meloidogyne floridensis
The M. floridensis genome was assembled using 11.1 Gb of cleaned data (see Table 1,

Fig. S1) from 116 M reads (an estimated ∼100X coverage), using Illumina HiSeq2000 100

base paired-end sequencing of 250 bp fragments. The raw read data have been submitted

to the Short Read Archive as accession ERP001338, the final assembly file is available at

EMBL, and a blast database, CDS download, and other resources are available at http:

//brock.bio.ed.ac.uk/M floridensis/ and http://nematodes.org/genomes/meloidogyne

floridensis.

Intra-genomic comparisons reveal high numbers of duplicate
genes in M. incognita and M. floridensis
Analysis of the distribution of within-genome CDS matches (Fig. 3A) identified an

unexpected excess of apparent duplication in M. floridensis. While the CDS set of M. hapla

had a relatively low rate of duplication, and no excess of duplicates of any particular

divergence level, both M. incognita and M. floridensis had many more duplicates and a peak

of divergence between duplicates at 95 to 97% identity. M. incognita showed an additional

peak at ∼100% identity likely due to a failure to collapse allelic copies of some genes by the

original authors (Abad et al., 2008). Because of the way we constructed our draft genome

assembly, collapsing high-identity assembly fragments before analysis, M. floridensis lacked

a near complete identity peak. To test for divergent copies of mtDNA within M. floridensis

we searched the genomic contigs with a M. floridensis 16S mitochondrial rRNA gene from

the international sequence databases (Genbank accession: AY635609.1) using blastn.

Different regions of this query matched to two contigs comprising 1087 nucleotides in total

and we observed a divergence between query and contig of 4/1087 nucleotides or 0.37%.

The very high frequency of intragenomic duplicate copies with a consistent divergence

level strongly suggest that either M. floridensis, like M. incognita, is a hybrid species, with

contributions from two distinct parental genomes, or that it has undergone a whole

genome duplication. These distinct possibilities are addressed below. Comparing CDS

between species we identified a high frequency of near-100% identity between M. incognita

and its best match in the M. floridensis genome (Fig. 3B). This pattern was not evident

when M. incognita was compared to M. hapla.

Distinguishing sibling from parent–child species relationships
We identified several models that might explain the observed levels of within-genome

divergent duplicates in M. incognita and M. floridensis (Fig. 3A). Expectations of relative

numbers of (homeologous) gene copies per species, and the phylogenetic relationships

of these homeologue sets differ and allow us to distinguish between the models. Thus for

example under scenario 3 (Fig. 2B) we test to determine if M. incognita has two divergent

homeologous gene copies, one of which is phylogenetically very closely related to the

(collapsed) allelic copies in M. floridensis. We therefore clustered the CDS of the three

species using InParanoid, after removing all CDS encoding peptides less than 50 amino

acids in length.
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Table 1 Summary statistics describing genome assemblies of Meloidogyne.

Species Meloidogyne hapla Meloidogyne incognita Meloidogyne floridensis

Source NCSU/WormBase WS227 INRA/WormBase WS227 959 Nematode Genomes
Project

Data URL ftp://ftp.wormbase.org/pub/wormbase/
species/m hapla/

ftp://ftp.wormbase.org/pub/
wormbase/species/m incognita/

http://downloads.
nematodegenomes.org

Citation Opperman et al. (2008) Abad et al. (2008) This work

Maximum scaffold length 360,446 154,116 40,762

Number of scaffolds 3,452 9,538 81,111

Assembled size (bp) 53,017,507 82,095,019 99,886,934

Scaffold N50* (bp) 37,608 12,786 3,516

GC% 27.4 31.4 29.7

CEGMA** completeness
Full/Partial

92.74/94.35 75.00/77.82 60.08/72.18

Predicted proteins
(used for clustering***)

13,072 (12,229) 20,359 (17,999) 15,327 (15,121)

Notes.
* N50, weighted median contig length; the contig length at which 50% of the assembled genome is present in contigs of that or greater length.

** CEGMA, Core Eukaryotic Genes Mapping Approach (Parra, Bradnam & Korf, 2007).
*** Predicted proteins used for clustering and inferring phylogenies after filtering for length >50 amino acids (see Methods).

Table 2 Numbers of Meloidogyne floridensis and Meloidoigyne incognita members in homeologue gene sets that have one Meloidogyne hapla
member.

0 M. incognita
members

1 M. incognita
member

2 M. incognita
members

3 M. incognita
members

>3 M. incog-
nita members

0 M. floridensis members 0 907 327 44 17

1 M. floridensis member 2196 2189 920 102 40

2 M. floridensis members 226 257 156 36 21

3 M. floridensis members 17 17 20 7 14

>3 M. floridensis members 8 11 6 4 21

We defined 11,587 clusters that contained CDS from more than one species, and

4,018 that had representatives from all three species (Fig. S2) These represent a number

and proportion similar to comparisons between other nematode species with complete

genomes (e.g., 2501 clusters were previously identified containing representatives from

four nematode genomes Mitreva et al., 2011). As M. hapla is not expected to have

undergone whole genome duplication, and we find no evidence of an excess of diverged

duplicates in the M. hapla genome, we selected homologous gene sets where the ancestral

gene was likely to have been single-copy by excluding clusters with more than one

M. hapla member, and those lacking M. hapla members. We classified these clusters by

the numbers of M. incognita and M. floridensis genes they contained (Table 2; Fig. 4). The

trees generated and the scripts used to parse them into the categories represented in Fig. 4

are available through FigShare 10.6084/m9.figshare.978784.
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Figure 4 Phylogenomic analyses of clustered gene sets. For cluster sets represented in Table 2 that had
representation of both M. floridensis and M. incognita, more than three members (i.e., where there was
more than one possible topology), and fewer than five total members (i.e., where the number of possible
topologies was still reasonably low and close to the number of clusters to be analyzed), we generated an
estimate of the relationships between the sequences using RAxML. The resultant trees were bootstrapped,
and rooted using the M. hapla representative. For each cluster set, the topologies were summarized by
the different unique patterns possible. Within each figure cell, each cladogram in the figure is scaled
by the number of clusters that returned that topology, with terminal nodes coloured by the origin of the
sequences (black representing M. hapla, blue M. incognita, and red M. floridensis). The number of clusters
congruent with each cladogram is given above the trees. The numbers of clusters contributing to each cell
in the figure is represented by the grey box, which is scaled by the number of clusters summarized (e.g.,
the box in the central cell represents 902 trees, while the box in the bottom left cell represents 17 trees).

The process of idiosyncratic gene loss (or failure to capture a gene in the draft

sequencing and assembly) is evident in the numbers of genes that have one M. hapla

representative and no members from either M. incognita (column 1 of Table 2) or

M. floridensis (row 1 of Table 2). Here it is striking that the clusters that contain only one

M. hapla and one M. floridensis member (Mh1:Mf1:Mi0) outnumber by approximately
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two to one clusters that have one M. hapla and one M. incognita member (Mh1:Mf0:Mi1).

This suggests that the M. floridensis genome draft is a good substrate for these analyses (it

contains homologues of many conserved genes apparently lost from, or missing in the draft

assembly of, the M. incognita genome), and that the M. incognita draft is either incomplete

or has experienced greater rates of gene loss.

The numbers of genes present in clusters that have two or more members, but lack

one of M. floridensis or M. incognita (for example the 226 Mh1:Mf2:Mi0 clusters) reveal

the potential extent of within-lineage duplication and divergence (and a component

of stochastic loss of several homeologues in the missing species). There is no excess of

these classes of cluster in M. incognita, arguing against a within-lineage, whole-genome

duplication (i.e., against scenarios 1 or 2; Fig. 2A).

The striking feature of the membership of clusters (Table 2) is the number of cases where

M. incognita has more cluster members than does M. floridensis. Thus there are 920 clusters

in the class Mh1:Mf1:Mi2, but only 257 in the class Mh1:Mf2:Mi1, and 102 clusters in

the class Mh1:Mf1:Mi3 compared to 17 in the class Mh1:Mf3:Mi1. This finding argues

for the presence in M. incognita of at least one more genome copy than in M. floridensis,

i.e., that M. incognita is likely to be a degenerate triploid hybrid (scenario 5, Fig. 2D). It is

possible that some of the clusters in the Mh1:Mf1:Mi0 and Mh1:Mf0:Mi1 sets arise from

M. floridensis and M. incognita being derived from different, divergent parents.

Phylogenomic analysis of homologue relationships
A second set of predictions from the models in Fig. 2 concerns the phylogenetic

relationships of the resulting sets of homologous gene sequences. Each model predicts a

particular set of relationships between gene copies in each species. We therefore analyzed

each informative set of clusters represented in Table 2 to identify which alternate topology

was supported, assuming in each case that the single M. hapla representative was the

outgroup. These phylogenomic results are summarized in Fig. 4. For each informative set

of clusters, the majority topology supported scenario 5 (Fig. 2D), i.e., that M. floridensis

is a hybrid, and was one of the parent species in a hybridization event that gave rise to

a triploid M. incognita. Thus for the 902 Mh1:Mf1:Mi2 clusters, the topology in which

one M. incognita CDS groups with the M. floridensis CDS to the exclusion of the other

M. incognita sequence was favoured in 79% of the clusters, while in only 201 clusters

(21%) the two M. incognita genes instead appeared to have arisen by duplication within

M. incognita. In the Mh1:Mf2:Mi2 cluster set, one third of the clusters supported the

topology where there were two independent sister relationships between M. incognita

and M. floridensis genes. A further 48% of the trees were congruent with a triploid status

for M. incognita where gene loss (or lack of prediction) had removed one M. incognita

representative. The other classes of clusters could be interpreted in the same manner, and

displayed trends that supported scenario 5.

DISCUSSION
The genome structure and content of tropical Meloidogyne is revealed by our analyses to

have had complex origins. It is likely that hybridization, ploidy change, and subsequent
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aneuploidy have all played a role in the evolution of the diversity in this genus. The

molecular evolutionary patterns revealed by comparative genomics however give us

tools to conduct detailed analysis of these histories. This approach allows us to interpret

the evolution of different reproductive strategies in terms of genome change, and better

understand the evolution of these polyphagous pathogens.

The M. floridensis genome reveals its hybrid origins
Our draft assembly of the genome of M. floridensis reveals a relatively typical nematode

genome. The base haploid genome size for Meloidogyninae is likely to be ∼50 Mb.

Both the sequenced genome of M. hapla (Opperman et al., 2008), and independent

measurement of its genome size from densitometry (Pableo & Triantaphyllou, 1989),

yield estimates of 50–54 Mb. The sequenced genome estimate is unlikely to be inflated

through issues of uncollapsed haploid contigs, as M. hapla is expected to have reduced

heterozygosity through its automictic reproductive mode (Liu, Thomas & Williamson,

2007), and the sequenced strain was inbred (Opperman et al., 2008). Hybrid taxa, contain-

ing homeologous chromosomes from more than one parental lineage, would be expected

to have genome assembly sizes that are the sum of the parental genomes, albeit modified

by idiosyncratic post-hybridization gene loss and repeat copy change. Thus the ∼100 Mb

genome size estimated for M. floridensis is in keeping with a base Meloidogyninae genome

of ∼50 Mb, with homeologous sequences assembled independently. The divergence

between inferred homeologous genes in our genome (∼4–8%) would preclude coassembly

of homeologous coding sequences, and the higher divergence found in intergenic and

intronic sequences would make them even less likely to be coassembled. The published

M. incognita genome is 86 Mb, but ongoing revision of the assembly suggests a true value

of ∼130 Mb (E Danchin, pers. comm., 2014), as might be expected for a hypo-triploid

species.

The M. floridensis genome assembly is less contiguous than those of M. hapla and

M. incognita (reflected in the lower contiguity and content of conserved eukaryotic genes).

Such fragmentation is a known limitation of using a single small-insert paired-end library,

and refinement of the assembly using larger-insert mate pair, or long single molecule reads,

would undoubtedly improve the biological completeness of the product. Our primary

aim however was not to produce a highly contiguous assembly, but rather to identify

protein-coding sequences (CDS) for use in comparative genomic analyses. Despite the

fragmentation we were able to identify over 15,000 CDS segments to address the possible

hybrid status of M. floridensis and M. incognita, making it more than sufficient for this

study.

We note that both the M. incognita and the M. floridensis genomes have low scores

(60–75%) when assessed by the Core Eukaryotic Genes Mapping Approach (CEGMA),

compared to the 94% scored by the M. hapla assembly (and assemblies of other nematode

genomes). However, the published M. incognita genome, while having much better

assembly statistics (only 9,538 scaffolds, and a contiguity ∼4 times that achieved for

M. floridensis), has similarly poor scores in CEGMA analysis. Whether this is a reflection
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of shared divergent biology, or, as we suspect, a poor fragmented assembly, will require

additional sequencing data, reassembly and reassessment.

The phylogenetic position of the automictic M. floridensis suggest that this species, or

an immediate ancestor, was parental to the tropical apomicts, i.e., being one partner in the

hybrid origins of the group (scenarios 3 and 5, Figs. 2B and 2D). It is also possible however

that M. floridensis is not directly parental to the apomicts, but rather a hybrid sibling,

also arising by interspecific hybridization (scenario 4, Fig. 2C). In this case one parent of

M. floridensis is very likely to also have been involved in the hybrid origins of M. incognita

as very many loci were found to be nearly identical between M. incognita and M. floridensis

(Fig. 3B). In order to distinguish between scenario 3 (diploid parent), scenario 4 (hybrid

sibling) and scenario 5 (hybrid parent) we examined the sequence diversity within each

species’ genome.

Intra-genomic divergence of coding loci
Information concerning the hybrid status of M. floridensis can be gained from comparing

the pattern of gene duplication within its genome to that of other RKN species, since

Meloidogyne incognita has been suggested previously to have hybrid origins (Dalmasso

& Berge, 1983; Triantaphyllou, 1985; Hugall, Stanton & Moritz, 1999; Castagnone-Sereno,

2006; Lunt, 2008) whereas M. hapla never has. An interspecific hybrid would be expected

to have an excess of divergent intra-genomic duplicates compared to a non-hybrid, due

to its homeologous chromosome pairs. The genome of M. hapla, a closely related species

without a hybrid origin, represents the normal intra-genomic duplication pattern without

homeologous chromosomes. In M. hapla there was a very much lower number of divergent

duplicates compared to the other species, and these had a wide range of divergences rather

than a frequency peak at any divergence value. While there was a slight excess of duplicates

with high identity in M. hapla, the distribution overall is consistent with an ongoing rare

process of stochastic duplication followed by gradual divergence (Fig. 3A).

In contrast to the pattern observed in M. hapla, the intra-genomic comparisons of

both M. incognita and M. floridensis revealed many more divergent duplicated CDS

(Fig. 3A). We observed a peak of high-identity duplicates in M. incognita that was absent in

M. floridensis. This is most likely because we stringently collapsed high identity segments

(as putative allelic copies) during assembly of M. floridensis whereas the M. incognita

genome assembly may still contain some of these alleles. Most striking however was the

presence in both species of a frequency peak of more diverged duplicates showing ∼96%

identity. Such duplicates have been described in M. incognita (Abad et al., 2008; Lunt, 2008)

although the scale of these diverged loci and their presence in M. floridensis has not been

reported previously.

If the M. floridensis divergent copies were the product of a mixed sample, and thus

represented polymorphism rather than homeologs, we would predict that mitochondrial

DNA would also display this pattern. Our BLAST search however did not find any

divergent contigs matching to our mtDNA genbank query. The query sequence differed

by only 0.37% and this divergence between the genbank sequence and our strain is typical

of intraspecific polymorphism levels in other nematodes but is approximately ten-fold less
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than we observe between the nuclear divergent copies in the M. floridensis genome. We

therefore do not consider that, even if our starting material had been contaminated with a

second M. floridensis strain, such intraspecific polymorphism could account for our much

more diverged genomic copies.

Ongoing individual gene duplication events—which we propose has generated the

M. hapla distribution—could not have produced these patterns. Instead, the distributions

are congruent with either a single major past event of genome duplication followed

by divergence, or else hybridization to bring together pre-diverged homeologous

chromosome copies that had been evolving independently since the last common ancestor

of the parental species. On top of these processes differences in the rates of evolution

of individual loci has resulted in variation in observed identity in the extant genomes,

producing a distribution around a single peak of divergence. While these two alternative

scenarios (endoduplication and homeologous chromosomes) cannot be distinguished

on the basis of duplicate divergence data alone, the analysis does suggest that the genome

content of both M. floridensis and M. incognita have been shaped in very similar ways by

major duplication or divergence events.

Integrating phylogenomic analyses
To distinguish between endoduplication and hybrid origins of these CDS divergences, we

examined the phylogenetic histories of sets of homologous loci from the three Meloidogyne

genomes. By selecting CDS clusters with only a single member from the M. hapla genome

we have likely restricted our analyses to loci that were single copy in the last common

ancestor of the three species, and thus do not show the complexities of turnover in large

multigene families.

We compared support on a gene-by-gene basis for tree topologies that would support

or refute the hybrid versus endoduplication scenarios (Fig. 2, Table 2, Fig. 4). Using this

approach we could robustly exclude scenario 1, endoduplication of the M. incognita

genome, as a source of duplicate CDS since we frequently observed that these M. incognita

sequences were not monophyletic with respect to M. floridensis. If M. incognita had

duplicated its own genome we would expect these duplicate CDS to share a recent origin

and be each other’s closest relatives. We could similarly exclude scenarios 2 and 3, since

intra-genomic comparisons of CDS in the M. floridensis genome revealed that it also

possesses divergent duplicates, and phylogenetic analyses indicated that these, just like the

M. incognita sequences, are not monophyletic by species.

Thus we suggest that the most parsimonious explanation of the duplicate divergence

and phylogenetic data is that both M. floridensis and M. incognita are hybrid species,

and the duplicate CDS are homeologues rather than within-species paralogues. We

can distinguish between scenario 4 (independent hybrid origins: the two species are

step-sisters) and scenario 5 (M. floridensis represents one of the parents of a triploid

hybrid M. incognita) by phylogenetic analyses of the clustered CDS. We observed an excess

of clusters where there were more M. incognita members than there were M. floridensis

members, as would be expected from a triploid species, whether or not it was now

losing duplicated genes stochastically. In these clusters, the extra M. incognita CDS was
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less likely to be sister to one of the other M. incognita CDS than it was to be a sister to

a M. incognita–M. floridensis pair. Based on these data we suggest that the triplicate loci

in M. incognita are the three homeologues that have resulted from a hybridization event

between the hybrid M. floridensis and an unidentified second, likely non-hybrid, parent

(scenario 5, Fig. 2D). For clusters containing two M. floridensis homeologues and two

M. incognita homeologues, the topology supporting shared hybrid ancestry was again

more frequently recovered than topologies supporting independent hybridization events.

Handoo et al. (2004) described the meiosis of M. floridensis as lacking a second

maturation division and being ‘intermediate’ between meiotic and mitotic forms of

reproduction. The division observed by Handoo et al. (2004) is in fact likely a long-known

form of purely meiotic automixis called “first division restitution”. Bell (1982, p. 40), in

his classic review of the evolution of mating systems, describes one of the three primary

types of automixis as involving the suppression of the second meiotic division, exactly as

described by Handoo et al. (2004) for M. floridensis. The maintenance of both homeologs

in the M. floridensis genome through meiotic divisions, as we report here, may seem

more challenging than in M. incognita, which reproduces only by mitosis. Automixis that

maintains the parental heterozygosity is however well described in other animals and we

assume a very similar mechanism occurs in M. floridensis (Bell, 1982, p. 40; Smith, 1978,

p. 44; Hood & Antonovics, 2004 and refs therein).

Hybrid speciation and adaptive novelty
Animal hybrids have been characterized as rare, unfit, and adversely affected by both

competition and gene flow from their parents (Mayr, 1963; Barton, 2001). There is now

an increasing awareness in the literature however of animal hybridization as both a

speciation mechanism and a route to the generation of novel phenotypic diversity on

which natural selection may act (Bullini, 1994; Arnold, 1997; Mavarez & Linares, 2008;

Soltis & Soltis, 2009; Abbott et al., 2013). There are a growing number of cases in which

animal species have a hybrid origin, i.e.: it is known that all vertebrate constitutive

parthenogens, and gynogenetic species have hybrid origins (Avise, 2008); the Italian

sparrow (Passer italiae) has been shown to be a nascent hybrid species (Hermansen et

al., 2011); hybridization between two species of Rhagoletis tephritid fruitflies has led to

expansion into a novel ecological niche (host plant) in the hybrid, and also reproductive

isolation from both parents since mating is confined to the host plant (Schwarz et al., 2005).

The genetic basis of hybridization in generating adaptive diversity has been revealed in a

number of studies: the Heliconius melpomene genome demonstrates that hybridization and

introgression has been important for the adaptive radiation of these butterflies, by sharing

protective colour-pattern genes among co-mimics (Heliconius Genome Consortium,

2012); the Northern European freshwater ‘invasive sculpin’ fish are hybrids between two

geographically isolated Cottus species and they have colonized a novel niche consisting of

the extensively human-altered lower reaches of the rivers Rhine and Scheldt (Czypionka

et al., 2012). The cichlid adaptive radiation in Lake Malawi involves the evolution of more

than 400 species, over a period of only 4.6 million years (Genner et al., 2007), which have

colonized and adapted to many diverse lacustrine habitats. Recent genetic studies indicate
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that this radiation, and cichlid diversification in general, has been strongly influenced by

interspecific hybridization (Joyce et al., 2011; Schwarzer et al., 2012; Loh et al., 2012; Genner

& Turner, 2012).

It has been suggested that hybrid animal taxa are most likely to succeed where new

habitats open up, and such events may have played a significant role in several classic

examples of adaptive radiation (Seehausen, 2006; Abbott et al., 2013; Seehausen, 2013;

Kearney, 2005). The tropical RKN are exceptionally successful globally-distributed

pathogens of diverse agricultural crops (Moens, Perry & Starr, 2009; Trudgill & Blok,

2001). These species have colonized a novel habitat, show extensive functional diversity,

and have adapted to crop host-plants in the very brief evolutionary timeframe that

agriculture has existed (a few thousand years). This is a situation similar to other animal

adaptive radiations where hybridization may also have played a significant role (Seehausen,

2006; Seehausen, 2013; Abbott et al., 2013).

Although the adaptive consequences of hybridization are being increasingly recognized

as important for biodiversity, ecology and evolution, the origin of novel traits, colonization

of new ecological niches, and adaptive evolution can lead to serious problems if the

organisms concerned are pathogens of humans, livestock, or crops (Bisharat et al., 2005;

Brasier, 2001; Stukenbrock et al., 2012; Inderbitzin et al., 2011; Goss et al., 2011). It is

particularly important therefore to understand the genetic basis of adaptive diversification

in relation to existing or emerging pathogens.

The tropical apomictic RKN, exemplified by M. incognita, M. arenaria and M. javanica,

possess host ranges that may include practically all agriculturally important species

overlapping their distribution, causing M. incognita to be described as the “single most

damaging crop pathogen in the world” (Trudgill & Blok, 2001). Such extreme polyphagy

is not typically encountered in Meloidogyne species outside of the radiation of tropical

apomicts, although some do exploit multiple hosts. The origins and mechanisms of

this greatly expanded host range are not only interesting from an evolutionary genomics

perspective but also important to our understanding of the mode of action of these globally

important crop pathogens. The demonstration of the hybrid origins of M. incognita and

M. floridensis, and by implication M. javanica and M. arenaria also, suggests transgressive

segregation of adaptive variation might have played an important role in determining

host range. Transgressive segregation is when the absolute values of traits in some hybrids

exceed the trait variation shown by either parental lineage. Such transgressive phenotypes

are common in hybrid offspring in both animals and plants, and particularly so where

the parents derive from inbred but divergent lineages (Rieseberg, Archer & Wayne, 1999).

Transgressive phenotypes have played a significant role in plant breeding, where crossing

of inbred parental lineages can lead to extreme offspring variation onto which artificial

selection is imposed, and similar processes are likely to act on hybrid swarms resulting

from natural selection acting on inter-species crosses in the wild (Rieseberg, Archer &

Wayne, 1999; Stelkens & Seehausen, 2009; Genner & Turner, 2012). We do not yet know

whether transgressive phenotypes in hybrid apomict RKN have been shaped by natural

selection, but given our increasing awareness of its importance in adaptive radiations, and
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the frequency with which hybrid plant pathogens are detected in other systems (Stuken-

brock et al., 2012; Stukenbrock & McDonald, 2008; Inderbitzin et al., 2011; Brasier, 2001),

it may be an important direction for future research allowing us to detect likely pathogens

at early stages.

Although we have not yet identified the parental taxa of M. floridensis, or the second

parent of the tropical apomict RKN, it is likely that they were facultatively sexual meiotic

parthenogens, as this is the most common reproductive mode within Meloidogyne

(Triantaphyllou, 1982; Triantaphyllou, 1985; Chitwood & Perry, 2009). This breeding system

can fuse the products of a single meiotic division in order to regain diploidy, making

these taxa more similar to the inbred lineages of plants highlighted as frequent sources of

transgressive segregation and extreme phenotypes (Rieseberg, Whitton & Gardner, 1999)

than to the typical (amphimictic) species of hybridizing animals. If this “polyphagy as

transgressive segregation” hypothesis were correct then we would predict that the parents

of the polyphagous RKN would most likely be automicts with considerably smaller host

ranges.

Hybridization and molecular genetic approaches to Meloidogyne
diversity
Molecular approaches to understanding the diversity of apomictic RKN have a long

history and include studies of isozymes, mitochondrial DNA (mtDNA), ribosomal internal

transcribed spacer (ITS), ribosomal RNA genes (rDNA), random amplified polymorphic

DNA markers (RAPDs), amplified fragment length polymorphisms (AFLPs), and other

marker systems (see Blok & Powers, 2009 for a review). However, if some Meloidogyne

species are in fact hybrids, this presents particular problems for the standard molecular

approaches used to characterize diversity. These typically assume that species or isolates

have diverged following a bifurcating, tree-like, evolutionary pathway. Hybridization

violates this assumption and produces more complex evolutionary histories that can either

be misrepresented by single locus markers, or else produce intermediate or equivocal

signal from multi-locus approaches. For example, a major reason that mtDNA and rDNA

sequencing have been useful in evolutionary ecology is that they are effectively haploid,

and hybrid taxa, which often retain just one of their parental species’ genotypes at these

loci, present particular problems for these approaches (Seehausen, 2006; Hailer et al.,

2012; Meyer et al., 2012). While carefully benchmarked marker approaches may still have

utility in diagnostics, they will not be able to accurately reflect the complex evolutionary

pathway of hybrid Meloidogyne species where different loci are likely to have experienced

very different histories. Incongruence between markers is therefore to be expected as a true

reflection of history, rather than due to a lack of analytical power. We are currently in the

early stages of Meloidogyne comparative genomics and current estimates of the complex

phylogenetic relationships between hybrid taxa will need to be constantly refined as more

species are added.

Genomic approaches to the RKN system hold many advantages, including documenting

the genomic changes associated with host-specialization, extreme polyphagy, and
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interaction with plant defense systems. An interesting and important question now is

whether the main apomictic RKN species have a single origin, with species divergence

perhaps related to aneuploidy, or are instead the result of repeated hybridizations of the

same or similar parental lineages. Different patterns of origin may determine the extent to

which control strategies may be broadly or only locally applicable. Finally, if transgressive

segregation is a cause of extreme and unique diversity, including polyphagy and novel

resistance breaking isolates, then monitoring of new hybrid lineages may be an agricultural

necessity. We are now close to the time where RKN isolates can be characterized not only

with a trivial name (e.g., M. incognita race X) but instead a detailed list of genome wide

variants and their known association with the environment, response to nematicides,

and virulence against a range of plant host species and genotypes—an approach that will

surely be extremely valuable in optimizing agricultural success. We caution therefore

that although traditional genetic approaches may be valuable for rapid diagnostics,

population genomics must be embraced in order to really advance our understanding

of these important pathogens and maximize our ability to successfully intervene.

CONCLUSIONS
Here we have used whole genome sequencing and evolutionary comparative genomics

to demonstrate the complex hybrid origins of key Root Knot Nematode species.

Understanding the evolutionary history of Meloidogyne species is a priority since only

by this route can the evolution of pathogenicity and resistance, the emergence of new

pathogenic strains, horizontal transfer of genes, and geographic spread of one of the

world’s most important crop pathogens be properly understood. The importance of

animal hybridization to speciation and adaptation is being increasingly recognized, driven

by new insights from genome sequencing. Meloidogyne incognita is shown to be an unusual

double-hybrid, suggesting that hybridization may be a common and complex process in

the history of this group. The Meloidogyne system, with its very recent expansion to fill

numerous agricultural ecological niches, shows interesting parallels to natural adaptive

radiations that may also have been greatly influenced by hybridization. Further work

elucidating whether hybridization contributes adaptively to polyphagy will be important

not just in the context of root knot nematodes, but also in determining the interplay of

evolutionary forces generating organismal adaptive divergence more generally.
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