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13 Abstract

14 The Tara Oceans Expedition has provided large, publicly-accessible microbial metagenomic 

15 datasets from a circumnavigation of the globe. Utilizing several size fractions from the samples 

16 originating in the Mediterranean Sea, we have used current assembly and binning techniques to 

17 reconstruct 290 putative high-quality metagenome-assembled bacterial and archaeal genomes, 

18 with an estimated completion of ≥50%, and an additional 2,786 bins, with estimated completion 

19 of 0-50%. We have submitted our results, including initial taxonomic and phylogenetic 

20 assignments, for the putative high-quality genomes to open-access repositories for the scientific 

21 community to use in ongoing research. 

22

23 Introduction

24 Microorganisms are a major constituent of the biology within the world’s oceans and act 

25 as the important linchpins in all major global biogeochemical cycles1. Marine microbiology is 

26 among the disciplines at the forefront of advancements in understanding how microorganisms 

27 respond to and impact the local and large-scale environments. An estimated 1029 Bacteria and 

28 Archaea2 reside in the oceans and represent an immense amount of poorly constrained, and ever 

29 evolving genetic diversity.

30 The Tara Oceans Expedition (2003-2010) encompassed a major endeavor to add to the 

31 body of knowledge collected during previous global ocean surveys to sample the genetic 

32 potential of microorganisms3. To accomplish this goal, Tara Oceans sampled planktonic 

33 organisms (viruses to fish larvae) at two major depths, the surface ocean and the mesopelagic. 

34 The amount of data collected was expansive and included 35,000 samples from 210 ecosystems3. 

35 The Tara Oceans Expedition generated and publically released 7.2 Tbp of metagenomic data 

36 from 243 ocean samples from throughout the global ocean, specifically targeting the smallest 

37 members of the ocean biosphere, the viruses, Bacteria and Archaea, and picoeukaryotes4. Initial 

38 work on these fractions produced a large protein database, totaling >40 million nonredundant 

39 protein sequences and identified >35,000 microbial operational taxonomic units (OTUs)4. 

40 Leveraging the publically available metagenomic sequences from the “girus” (giant virus; 

41 0.22-1.6 m), “bacteria” (0.22-1.6 m), and “protist” (0.8-5 m) size fractions, we have 

42 performed a new joint assembly of these samples using current sequence assemblers (Megahit5) 

43 and methods (combining assemblies from multiple sites using Minimus26). These metagenomic 

44 assemblies were binned using BinSanity7 in to 290 high-quality (low contamination) microbial 

45 genomes, ranging from 50-100% estimated completion. Environmentally derived genomes are 

46 imperative for a number of downstream applications, including comparative genomes, 
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47 metatranscriptomics, and metaproteomics. This series of genomic data can allow for the 

48 recruitment of environmental “-omic” data and provide linkages between functions and 

49 phylogenies. This method was initially performed on the seven sites from the Mediterranean Sea 

50 containing microbial metagenomic samples (TARA007, -009, -018, -023, -025 and -030), but 

51 will continue through the various Longhurst provinces8  sampled during the Tara Oceans project 

52 (Figure 1). All of the assembly data is publically available, including the initial Megahit 

53 assemblies for each site from the various size fractions and depths and putative (minimal quality 

54 control) genomes.

55

56 Materials and Methods

57

58 A generalized version of the following workflow is presented in Figure 2.

59

60 Sequence Retrieval and Assembly

61 All sequences for the reverse and forward reads from each sampled site and depth within 

62 the Mediterranean Sea were accessed from European Molecular Biology Laboratory (EMBL) 

63 utilizing their FTP service (Table 1). Paired-end reads from different filter sizes from each site 

64 and depth (e.g., TARA0007, girus filter fraction, sampled at the deep chlorophyll maximum) 

65 were assembled using Megahit5 (v1.0.3; parameters: --preset, meta-sensitive). To keep consistent 

66 with TARA sample nomenclature, “bacteria” or “BACT” will be used to encompass the size 

67 fraction 0.22-1.6 m. All of the Megahit assemblies were pooled in to two tranches based on 

68 assembly size, ≤1,999bp, and ≥2,000bp. Longer assemblies (≥2kb) with ≥99% semi-global 

69 identity were combined using CD-HIT-EST (v4.6; -T 90 -M 500000 -c 0.99 -n 10). The reduced 

70 set of contiguous DNA fragments (contigs) was then cross-assembled using Minimus26 (AMOS 

71 v3.1.0; parameters: -D OVERLAP=100 MINID=95). This assembly method is available on 

72 Protocols.io at https://dx.doi.org/10.17504/protocols.io.hfqb3mw. 

73

74 Metagenome-assembled Genomes

75 Sequence reads were recruited against a subset of contigs (≥7.5kb) constructed during the 

76 secondary assembly (Megahit + Minimus2) for each of the Tara samples using Bowtie29 (v4.1.2; 

77 default parameters). Utilizing the SAM file output, read counts for each contig were determined 

78 using featureCounts10 (v1.5.0; default parameters). Coverage was determined for all contigs by 

79 dividing the number of recruited reads by the length of the contig (reads/bp). Due to the low 

80 coverage nature of the samples, in order to effectively delineate between contig coverage 

81 patterns, the coverage values were transformed by multiplying by five (determined through 

82 manual tuning). Transformed coverage values were then utilized to cluster contigs in to bins 

83 utilizing BinSanity7 (parameters: -p -3, -m 4000, -v 400, -d 0.9). Bins were assessed for the 

84 presence of putative microbial genomes using CheckM11 (v1.0.3; parameters: lineage_wf). Bins 

85 were split in to three categories: (1) putative high quality genomes (≥50% complete and ≤10% 

86 cumulative redundancy [% contamination – (% contamination × % strain heterogeneity ÷ 100)]); 

87 (2) bins with “high” contamination (≥50% complete and ≥10% cumulative redundancy); and (3) 

88 low completion bins (<50% complete).

89 The high contamination bins containing approximately two genomes, three genomes, or 

90 ≥4 genomes used the BinSanity refinement method (Binsanity-refine; -m 2000, -v 200, -d 0.9) 

91 with variable preference values (-p) of -1000, -500, and -100, respectively. The resulting bins 

92 were added to one of the three categories: putative high quality genomes, high contamination 
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93 bins, and low completion bins. The high contamination bins were processed for a third time with 

94 the Binsanity-refine utilizing a preference of -100 (-p -100). These bins were given final 

95 assignments to either the putative high quality genomes (some putative genomes had >10% 

96 cumulative contamination, but have been designated) or low completion bins.

97 Any contigs not assigned to putative high-quality genomes were assessed using 

98 BinSanity using raw coverage values. Two additional rounds of refinement were performed with 

99 the first round of refinement using preference values based on the estimated number of 

100 contaminating genomes (as above) and the second round using a set preference of -10 (-p -10). 

101 Following this binning phase, contigs were assigned to high quality bins (e.g., Tara 

102 Mediterranean genome 1, referred to as TMED1, etc.), low completion bins with at least five 

103 contigs (0-50% complete; TMEDlc1, etc. lc, low completion), or were not placed in a bin 

104 (Supplemental Table 1 & 2).

105

106 Taxonomic and Phylogenetic Assignment of High Quality Genomes

107 The bins representing the high quality genomes were assessed for taxonomy and 

108 phylogeny using multiple methods to provide a quick reference for selecting genomes of interest. 

109 Taxonomy as assigned using the putative placement provided via CheckM during the pplacer12 

110 step of the analysis to the lowest taxonomic placement (parameters: tree_qa -o 2). This step was 

111 also performed for all low completion bins.

112 Two separate attempts were made to assign the high quality genomes a phylogenetic 

113 assignment. High quality genomes were searched for the presence of the full-length 16S rRNA 

114 gene sequence using RNAmmer13 (v1.2; parameters: -S bac -m ssu). All full-length sequences 

115 were aligned to the SILVA SSU reference database (Ref123) using the SINA web portal 

116 aligner14 (https://www.arb-silva.de/aligner/). These alignments were loaded in to ARB15 (v6.0.3), 

117 manually assessed, and added to the non-redundant 16S rRNA gene database (SSURef123 

118 NR99) using ARB Parsimony (Quick) tool (parameters: default). A selection of the nearest 

119 neighbors to the Tara genome sequences were selected and used to construct a 16S rRNA 

120 phylogenetic tree. Genome-identified 16S rRNA sequences and SILVA reference sequences 

121 were aligned using MUSCLE16 (v3.8.31; parameters: -maxiters 8) and processed by the 

122 automated trimming program trimAL17 (v1.2rev59; parameters: -automated1). Automated 

123 trimming results were assessed manually in Geneious18 (v6.1.8) and trimmed where necessary 

124 (positions with >50% gaps) and re-aligned with MUSCLE (parameters: -maxiters 8). An 

125 approximate maximum likelihood (ML) tree with pseudo-bootstrapping was constructed using 

126 FastTree19 (v2.1.3; parameters: -nt -gtr -gamma; Figure 3).

127 High-quality genomes were assessed for the presence of the 16 ribosomal markers genes 

128 used in Hug, et al. (2016)20. Putative CDSs were determined using Prodigal (v2.6.3; parameters: 

129 -m -p meta) and were searched using HMMs for each marker using HMMER21 (v3.1b2; 

130 parameters: hmmsearch --cut_tc --notextw). If a genome had multiple copies of any single 

131 marker gene, neither was considered, and only genomes with ≥8 markers were used to construct 

132 a phylogenetic tree. Markers identified from the high quality genomes were combined with 

133 markers from 1,729 reference genomes that represent the major bacterial phylogenetic groups (as 

134 presented by IMG22). Archaeal reference sequences were not included; however, none of the 

135 putative archaeal environmental genomes had a sufficient number of markers for inclusion on the 

136 tree. Each marker gene was aligned using MUSCLE (parameters: -maxiters 8) and automatically 

137 trimmed using trimAL (parameters: -automated1). Automated trimming results were assessed (as 

138 above) and re-aligned with MUSCLE, as necessary. Final alignments were concatenated and 
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139 used to construct an approximate ML tree with pseudo-bootstrapping with FastTree (parameters: 

140 -gtr -gamma; Figure 4).

141  

142 Relative Abundance of High Quality Genomes

143 To set-up a baseline that could approximate the “microbial” community (Bacteria, Archaea and 

144 viruses) present in the various Tara metagenomes, which included filter sizes specifically 

145 targeting both protists and giruses, reads were recruited against all contigs generated from the 

146 Minimus2 and Megahit assemblies ≥2kb using Bowtie2 (default parameters). Some assumptions 

147 were made that contigs <2kb would include, low abundance bacteria and archaea, bacteria and 

148 archaea with high degrees of repeats/assembly poor regions, fragmented picoeukaryotic 

149 genomes, and problematic read sequences (low quality, sequencing artefacts, etc.). All relative 

150 abundance measures are relative to the number of reads recruited to the assemblies ≥2kb. Read 

151 counts were determined using featureCounts (as above). Length-normalized relative abundance 

152 values were determined for each high quality genome for each sample:

153

𝑅𝑒𝑎𝑑𝑠𝑏𝑝 𝑝𝑒𝑟 𝑔𝑒𝑛𝑜𝑚𝑒∑𝑅𝑒𝑎𝑑𝑠𝑏𝑝 𝑎𝑙𝑙 𝑔𝑒𝑛𝑜𝑚𝑒𝑠 × ∑𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑡𝑜 𝑔𝑒𝑛𝑜𝑚𝑒𝑠 ∑𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑖𝑔𝑠 ( ≥ 2𝑘𝑏) × 100
154

155 Data Availability

156 This project has been deposited at DDBJ/ENA/GenBank under the BioProject accession 

157 no. #### and drafts of genomes are available with accession no. #####-#####. Additional files 

158 have been provided and are available through FigShare 

159 (https://dx.doi.org/10.6084/m9.figshare.3545330), such as: all contigs from Minimus2 + Megahit 

160 output used for binning and community assessment; contig read counts per sample; the putative 

161 genome contigs and Prodigal-predicted nucleotide and protein putative CDS FASTA files; the 

162 ribosomal marker HMM profiles; reference genome markers; high quality genome markers; low 

163 completion bins, and contigs without a bin. All contigs generated using Megahit from each 

164 sample are available through iMicrobe (http://data.imicrobe.us/project/view/261).

165

166 Results

167 Assembly

168 The initial Megahit assembly was performed on the publicly available reads for Tara 

169 stations 007, 009, 018, 023, 025, 030. Starting with 147-744 million reads per sample, the 

170 Megahit assembly process generated 1.2-4.6 million assemblies with a mean N50 and longest 

171 contig of 785bp and 537kb, respectively (Table 1).  In general, the assemblies generated from the 

172 Tara samples targeting the protist size fraction (0.8-5 m) had a shorter N50 value than the 

173 bacteria size fractions (mean: 554bp vs 892bp, respectively). Assemblies from the Megahit 

174 assembly process were pooled and separated by length. Of the 42.6 million assemblies generated 

175 during the first assembly, 1.5 million were ≥2kb in length (Table 2). Several attempts were made 

176 to assemble the shorter contigs, but publicly available overlap-consensus assemblers (Newbler 

177 [454 Life Sciences], cap323, and MIRA24) failed on multiple attempts. Processing the ≥2kb 

178 assemblies from all of the samples through CD-HIT-EST reduced the total to 1.1 million contigs 

179 ≥2kb. This group of contigs was subjected to the secondary assembly through Minimus2, 

180 generating 158,414 new contigs (all ≥2kb). The secondary contigs were combined with the 
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181 Megahit contigs that were not assembled by Minimus2. This provided a contig dataset consisting 

182 of 660,937 contigs, all ≥2kb in length (Table 2; further referred to as data-rich-contigs).

183

184 Binning

185 The set of data-rich-contigs was used to recruit the metagenomic reads from each sample 

186 using Bowtie2. The data-rich-contigs recruited 15-81% of the reads depending on the sample. In 

187 general, the protist size fraction recruited substantially fewer reads than the girus and bacteria 

188 size fractions (mean: 19.8% vs 75.0%, respectively) (Table 1). For the protist size fraction, the 

189 “missing” data for these recruitments likely results from the poor assembly of more complex and 

190 larger eukaryotic genomes. The fraction of the reads that do not recruit in the girus and bacterial 

191 size fraction samples could be accounted for by the large number of low quality assemblies (200-

192 500bp) and reads that could not be assembled due to low abundance or high complexity (Table 

193 2).

194 Unsupervised binning was performed using both transformed and raw coverage values 

195 for a subset of 95,506 contigs from the data-rich-contigs that were ≥7.5kb (referred to further as 

196 binned-contigs). Binning using the transformed coverage data generated 237 putative high-

197 quality genomes (12 putative genomes are of slightly lower quality with >10% redundancy and 

198 have been noted) containing 15,032 contigs (Supplemental Information S1). Contigs not in 

199 putative genomes were re-binned based on raw coverage values, generating 53 additional 

200 putative high-quality genomes encompassing 3,348 contigs. In total, 290 putative high-quality 

201 genomes were generated with 50-100% completion (mean: 69%) with a mean length and number 

202 of putative CDS of 1.7Mbp and 1,699, respectively (Supplemental Information S1). All other 

203 contigs were grouped in to bins with at least five contigs, but with estimated completion of 0-

204 50% (2,786 low completion bins; 74,358 contigs; Supplemental Information S2) or did not bin 

205 (2,732 contigs). Nearly a quarter of the low completion bins (24.7%) have an estimated 

206 completion of 0%.

207

208 Taxonomy, Phylogeny, & Potential Organisms of Interest

209 The 290 putative high-quality genomes had a taxonomy assigned to it via CheckM during 

210 the pplacer step. All of the genomes, except for 20, had an assignment to at least the Phylum 

211 level, and 83% of the genomes had an assignment to at least the Class level (Supplemental 

212 Information S1).

213 Phylogenetic information was determined for as many genomes as possible. Genomes 

214 were assessed for the presence of full-length 16S rRNA genes. In total, 37 16S rRNA genes were 

215 detected in 35 genomes. 16S rRNA genes can prove to be problematic during the assembly steps 

216 due the high level of conservation that can break contigs25 (Figure 3). Additionally, the 

217 conserved regions of the 16S rRNA, depending on the situation, can over- or under-recruit reads, 

218 resulting in coverage variations that can misplace contigs in to the incorrect genome. As such, 

219 several of the 16S rRNA phylogenetic placements support the taxonomic assignments, while 

220 some are contradictory. Further analysis should allow for the determination of the most 

221 parsimonious result.

222 Beyond the 16S rRNA gene, genomes were searched for 16 conserved, syntenic 

223 ribosomal markers. Sufficient markers (≥8) were identified in 193 of the genomes (67%) and 

224 placed on a tree with 1,729 reference sequences (Figure 4). Phylogenies were then assigned to 

225 the lowest taxonomic level that could be confidently determined. These putative results reveal a 

226 number of genomes were generated that represent multiple clades for which environmental 
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227 genomic information remains limited, including: Planctomycetes, Verrucomicrobia, 

228 Marinimicrobia, Cyanobacteria, and uncultured groups within the Alpha- and 

229 Gammaproteobacteria.

230

231 Relative Abundance

232 A length-normalized relative abundance value was determined for each genome in each 

233 sample based on the number of reads recruited to the data-rich-contigs. The relative abundance 

234 for the individual genomes was determined based on this portion of the dataset (Supplemental 

235 Information S3). In general, the genomes had low relative abundance (maximum relative 

236 abundance = 1.9% for TMED155 a putative Cyanobacteria at site TARA023 from the protistan 

237 size fraction sampled at the surface; Supplemental Table 1). The high-quality genomes 

238 accounted for 1.57-25.16% of the approximate microbial community as determined by the data-

239 rich-contigs (mean = 13.69%), with the ten most abundant genomes in a sample representing 

240 0.61-10.31% (Table 1).

241

242 Concluding Statement

243 The goal of this project was to provided preliminary putative genomes from the Tara 

244 Oceans microbial metagenomic datasets. The 290 putative high-quality genomes and 2,786 low 

245 completion bins were created using the 20 samples and six stations from the Mediterranean Sea. 

246 Initial assessment of the phylogeny of these metagenomic-assembled genomes indicates 

247 several new genomes from environmentally relevant organisms, including, approximately 14 

248 new Cyanobacteria genomes within the genera Prochlorococcus and Synechococcus and 33 new 

249 SAR11 genomes. Additionally, there are putative genomes from the marine Euryarchaeota (n = 

250 11), Verrucomicrobia (n = 17), Planctomycetes (n = 14), and Marinimicrobia (n ≈ 5). 

251 Additionally, the low completion bins may house distinct viral genomes. Of particular interest 

252 may be the 40 bins with 0% completion (based on single-copy marker genes), but that contain 

253 >500kb of genetic material (including 3 bins with >1Mb). These large bins lacking markers may 

254 be good candidates for research in to the marine “giant viruses” and episomal DNA sources 

255 (plasmids, etc.).

256 It should be noted, researchers using this dataset should be aware that all of the genomes 

257 generated from these samples should be used as a resource with some skepticism towards the 

258 results being an absolute. Like all results for metagenome-assembled genomes, these genomes 

259 represent a best-guess approximation of a taxon from the environment26. Researchers are 

260 encouraged to confirm all claims through various genomic analyses and accuracy may require 

261 the removal of conflicting sequences.
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276 Legends

277

278 Table 1. Statistics for Megahit assemblies,  recruitment to data-rich-contigs, and relative 

279 abundance of high-quality genome results for each sample

280

281 Table 2. Assembly statistics at various steps during processing

282

283 Figure 1. Map illustrating the locations and size fractions sampled for the Tara Oceans 

284 Mediterranean Sea datasets. Girus, ‘giant virus’ size fraction (0.22-1.6 μm). Bact, ‘bacteria’ size 

285 fraction (0.22-1.6 μm). Prot, ‘protist’ size fraction (0.8-5.0 μm).
286

287 Figure 2. Workflow used to process Tara Oceans Mediterranean Sea metagenomic datasets.

288

289 Figure 3. FastTree approximate maximum-likelihood phylogenetic tree constructed with 37 and 

290 785 16S rRNA genes from putative high-quality genomes and references, respectively.

291

292 Figure 4. Cladogram of a FastTree approximate maximum-likelihood phylogenetic tree 

293 constructed using 16 syntenic, single-copy marker genes for 193 high-quality genomes and 1,729 

294 reference genomes. Leaves denoting the position of the TMED genomes have been indicated by 

295 extending beyond the edge of the tree. Sequence alignment is available in Supplemental 

296 Information S4. Phylogenetic tree newick file is available in Supplemental Information S5.

297

298 Supplemental Information

299

300 Supplemental Information S1. Statistics, taxonomic and phylogenetic assignments for the 

301 putative high-quality genomes.

302

303 Supplemental Information S2. Statistics and CheckM taxonomy for low completion bins.

304

305 Supplemental Information S3. Relative abundance values determined for each genome based the 

306 length-normalized fraction of reads recruited to the genome relative to reads recruited for the 

307 data-rich-contigs.

308

309 Supplemental Information S4. Concatenated MUSCLE alignment file of 16 ribosomal marker 

310 proteins used to construct Figure 4.

311

312 Supplemental Information S5. Newick file of concatenated 16 ribosomal marker proteins, 

313 including FastTree determined local support values using the Shimodaira-Hasegawa test.

314
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Figure 1. Map illustrating the locations and size fractions sampled for the Tara Oceans 
Mediterranean Sea datasets. Girus, ‘giant virus’ size fraction (0.22-1.6 μm). Bact, ‘bacteria’ size 
fraction (0.22-1.6 μm). Prot, ‘protist’ size fraction (0.8-5.0 μm)
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Figure 2. Workflow used to process Tara Oceans Mediterranean Sea metagenomic datasets.
Black hash boxes, program or tool used with parameters.
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Figure 3. FastTree approximate 
maximum-likelihood phylogenetic 
tree constructed with 37 and 785 
16S rRNA genes from putative 
high-quality genomes and 
references, respectively.
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Figure 4. Cladogram of a FastTree approximate maximum-likelihood phylogenetic tree constructed using 16 
syntenic, single-copy marker genes for 193 high-quality genomes and 1,729 reference genomes. Leaves 
denoting the position of the TMED genomes have been indicated by extending beyond the edge of the tree. 
Sequence alignment is available in Supplemental Information S4. Phylogenetic tree newick file is available 
in Supplemental Information S5.

PeerJ reviewing PDF | (2017:05:17890:0:0:REVIEW 6 May 2017)

Manuscript to be reviewed



Table 1(on next page)

biorxiv069484-file005.pdf

PeerJ reviewing PDF | (2017:05:17890:0:0:REVIEW 6 May 2017)

Manuscript to be reviewed



Table	1.	Statistics	for	Megahit	assemblies,		recruitment	to	data-rich-contigs,	and	relative	abundance	of	high-quality	genome	results	for	each	sample

TARA	Sample	

Site

Size	Fraction	(Girus,	

Bacteria,	or	Protist)

Depth	(Surface	

or	DCM*) No.	of	reads

No.	of	initial	Megahit	

assembly

N50ª	(bp;	initial	

Megahit	

assembly)

Longest	initial	Megahit	

assembly	(bp)

Recruitment	(%	data-

rich-contigs)

Relative	abundanceº	

of	high-quality	

genomes	(%	)

Relative	abundanceº	

of	ten	most	abundant	

genomes	(%	)

TARA007 Girus DCM 178,519,830 1,318,470 828 220,754 72.84 14.64 6.35

TARA007 Girus Surface 221,166,612 1,308,847 861 211,946 81.74 14.83 6.12

TARA007 Protist DCM 744,458,992 4,667,618 654 188,635 19.45 8.60 3.18

TARA007 Protist Surface 265,432,098 2,590,120 564 18,444 25.58 1.57 0.61

TARA009 Girus DCM 416,553,274 2,796,841 831 1,643,839 69.48 14.16 6.32

TARA009 Girus Surface 489,617,426 1,787,467 929 1,142,851 68.85 12.29 4.76

TARA009 Protist DCM 329,036,110 1,938,636 613 95,724 22.07 13.35 4.20

TARA009 Protist Surface 370,813,078 1,700,350 588 292,050 22.53 15.97 6.17

TARA018 Bacteria DCM 408,021,182 2,520,645 840 1,573,060 76.22 11.49 3.18

TARA018 Bacteria Surface 414,976,308 2,604,031 816 2,086,508 75.80 11.03 3.02

TARA023 Bacteria DCM 147,400,552 1,273,576 830 213,456 76.08 13.29 4.09

TARA023 Bacteria Surface 149,566,010 1,237,617 825 134,179 75.98 13.82 4.01

TARA023 Protist DCM 508,610,652 2,707,801 734 336,689 28.23 25.07 7.83

TARA023 Protist Surface 397,044,232 2,246,571 593 397,140 23.00 25.16 10.31

TARA025 Bacteria DCM 386,627,816 2,516,865 806 388,546 69.77 14.55 5.35

TARA025 Bacteria Surface 457,560,422 2,326,838 857 330,773 75.57 10.99 3.18

TARA030 Bacteria DCM 346,837,034 1,968,945 1097 508,775 80.16 10.31 2.57

TARA030 Bacteria Surface 478,785,582 1,639,697 1194 204,976 77.70 7.26 2.64

TARA030 Protist DCM 426,896,616 1,620,343 616 478,892 15.12 17.83 5.13

TARA030 Protist Surface 430,029,974 1,838,588 628 287,782 22.36 17.60 6.73

*DCM	-	deep	chlorophyll	maximum

ªN50	-	length	of	DNA	sequence	above	which	50%	of	the	total	is	contained

ºrelative	abundance	-	determined	using	the	reads	recruited	data-rich-contigs
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Table	2.	Assembly	statistics	at	various	steps	during	processing

Contig	Grouping No.	of	contigs N50* Total	sequence	(bp)

Megahit	assemblies	200-499bp 24,999,285 n.d. 9,293,098,676

Megahit	assemblies	500-1,999bp 16,103,221 n.d. 13,382,057,993

Megahit	assemblies	≥2kb 1,517,360 4,658 6,691,877,664

Megahit	assemblies	≥2kb	(post-CD-HIT-EST) 1,126,975 4,520 4,894,479,496

Minimus2	contigs 158,414 15,394 1,727,079,865

Minimus2	+	unassembled	Megahit	contigs	≥2kb	

(data-rich-contigs) 660,937 5,466 3,612,405,904

Minimus2	+	unassembled	Megahit	contigs	≥7.5kb	

(binned-contigs) 95,506 20,556 1,725,063,313

*N50	-	length	of	DNA	sequence	above	which	50%	of	the	total	is	contained
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