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Egg clutch dehydration induces early hatching in red-eyed
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Terrestrial eggs have evolved repeatedly in tropical anurans exposing embryos to the new
threat of dehydration. Red-eyed treefrogs, Agalychnis callidryas, lay eggs on plants over
water. Maternally provided water allows shaded eggs in humid sites to develop to hatching
without rainfall, but unshaded eggs and those in less humid sites can die from
dehydration. Hatching responses of amphibian eggs to dry conditions are known from two
lineages with independent origins of terrestrial eggs. Here, we experimentally tested for
dehydration-induced early hatching in another lineage (Agalychnis callidryas,
Phyllomedusidae), representing a third independent origin of terrestrial eggs. We also
investigated how dehydration affected egg and clutch structure, and egg mortality. We
collected clutches from a pond in Gamboa, Panama, and randomly allocated them to wet
or dry treatments at age 1 day. Embryos hatched earlier from dry clutches than from wet
clutches, accelerating hatching by ~11%. Clutch thickness and egg diameter were
affected by dehydration, diverging between treatments over time. Meanwhile, mortality in
dry clutches was six-fold higher than in control clutches. With this study, early hatching
responses to escape mortality from egg dehydration are now known from three anuran
lineages with independent origins of terrestrial eggs, suggesting they may be widespread.
Further studies are needed to understand how terrestrial amphibian eggs can respond to,
or will be affected by, rapid changes in climate over the next decades.
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Abstract

Terrestrial eggs have evolved repeatedly in tropical anurans exposing embryos to the new
threat of dehydration. Red-eyed treefrogs, Agalychnis callidryas, lay eggs on plants over water.
Maternally provided water allows shaded eggs in humid sites to develop to hatching without
rainfall, but unshaded eggs and those in less humid sites can die from dehydration. Hatching
responses of amphibian eggs to dry conditions are known from two lineages with independent
origins of terrestrial eggs. Here, we experimentally tested for dehydration-induced early hatching
in another lineage (Agalychnis callidryas, Phyllomedusidae), representing a third independent
origin of terrestrial eggs. We also investigated how dehydration affected egg and clutch
structure, and egg mortality. We collected clutches from a pond in Gamboa, Panama, and
randomly allocated them to wet or dry treatments at age 1 day. Embryos hatched earlier from dry
clutches than from wet clutches, accelerating hatching by ~11%. Clutch thickness and egg
diameter were affected by dehydration, diverging between treatments over time. Meanwhile,
mortality in dry clutches was six-fold higher than in control clutches. With this study, early
hatching responses to escape mortality from egg dehydration are now known from three anuran
lineages with independent origins of terrestrial eggs, suggesting they may be widespread. Further
studies are needed to understand how terrestrial amphibian eggs can respond to, or will be

affected by, rapid changes in climate over the next decades.

Key words: climate change; hatching plasticity; Panama; Phyllomedusidae; tropical wet forest.
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INTRODUCTION

Terrestrial eggs have evolved repeatedly in many species of teleost fishes and amphibians
(Martin & Carter, 2013). In tropical anurans, Gomez-Mestre, Pyron & Wiens (2012) found 48
independent origins of terrestrial reproduction. The evolution of terrestrial breeding may be
driven by the risk of aquatic predation in early life stages (Duellman & Trueb, 1986; Touchon,
2012). However, nonaquatic reproduction also entails risks. Terrestrial eggs are exposed to
different threats than those affecting aquatic eggs, including terrestrial predators (Warkentin,
1995, 2000), pathogens (Warkentin, Currie & Rehner, 2001), and the novel threat of dehydration
(Mitchell, 2002, Touchon & Warkentin, 2009). The risk of egg dehydration most strongly affects
species without parental care, and this threat could be exacerbated by climate change (Donnelly
& Crump, 1998). As well as temperature, rainfall patterns are changing in the tropics.
Specifically, even if overall rainfall remains similar, in Neotropics rainfall events are becoming
less frequent, resulting in an increase in dry spells during the rainy season (Hulme & Viner,
1998, Christensen et al., 2007, Allan & Soden, 2008). Therefore, it is important to understand
the potential responses of vulnerable life stages to such climate variations.

Eonmentally cued variation in hatching time is widespread in many taxa (Warkentin, 2011a)
and serves as an important defense mechanism against egg-stage risks. Environmentally cued
hatching (ECH) is well documented in anurans (Warkentin, 2011b); much of this research
addresses biotic threats to eggs and larvae, and a substantial subset addresses responses of
embryos to hypoxia. The terrestrial eggs of red-eyed treefrogs, Agalychnis callidryas, one of the
most studied species, hatch early in response to multiple environmental threats, including
predator attack (snakes, Warkentin, 1995; wasps, Warkentin, 2000), fungal infection (Warkentin,

Currie & Rehner, 2001) and flooding, which can kill embryos too young to hatch (Warkentin,
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2002). Embryos presumably use some of the same mechanisms to respond to these different
risks. For instance, all responses require a means to exit from the egg and the ability to regulate
expression of this process (Cohen, Seid & Warkentin, 2016). Nonetheless, different types of
threat provide very different types of cues. Their detection requires different sensors, and
assessing different risks may require different cognitive mechanisms. Thus@bryos that respond
to one threat, using one type of cue, may be insensitive to other cues and unresponsive to other
threats.

Only a few studies of ECH have examined how amphibian eggs respond to dry conditions
(Warkentin, 2011b); thus, it is unclear how widespread hatching responses to egg dehydration
might be. To date, such responses are known from two lineages with independent origins of
terrestrial eggs. In the treefrog Dendropsophus ebraccatus (Hylidae: Dendropsophinae), eggs
exposed to dehydration hatch earlier and more synchronously than well-hydrated clutches
(Touchon & Warkentin, 2010, Touchon, Urbina & Warkentin, 2011). In the glassfrog
Hyalinobatrachium fleischmanni (Centrolenidae: Hyalinobatrachinae) fathers hydrate their
developing embryos during dry weather. When the carin@ren‘c is removed, increasing risk of
egg dehydration, the embryos also respond by hatching Earlier' And More!Synchronously (Delia,
Ramirez-Bautista & Summers, 2014). Here, we tested for dehydration-induced early hatching in
another lineage (Agalychnis callidryas, Phyllomedusidae), representing a third independent
origin of terrestrial eggs. We also investigated how dehydration affected egg and clutch

structure, and egg mortality.
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93 MATERIALS & METHODS
94  Study system
95 The recently redescribed family Phyllomedusidae (Amphibia: Anura: Arboranae, Duellman
96 Marion & Hedges, 2016) are uniformly terrestrial egg layers. They place eggs on vegetation over
97 water, into which tadpoles fall upon hatching. These treefrogs have evolved several strategies to
98 avoid egg dehydration. Females absorb water from their environment before oviposition and
99 deposit eggs surrounded by well hydrated jelly (Pyburn, 1970, 1980). In addition, some species
100  wrap eggs in a funnel-shaped nest of leaves, and surround their eggs with eggless jelly capsules
101  as water reservoirs (Faivovich et al., 2010). Nonetheless, after the eggs are deposited, embryos
102  must face dehydration and other risks with no further parental assistance. Agalychnis callidryas
103  inhabits lowland wet forest from the Yucatan through Panama (Frost, 2016), breeding in
104 seasonal ponds and swamps. This species lays their gelatinous egg masses exposed on
105 vegetation, without wrapping them in leaves. Maternally provided water allows shaded eggs in
106  humid sites to develop to hatching without rainfall. However, unshaded eggs and those in less
107  humid sites can die from dehydration. We studied them at the Smithsonian Tropical Research
108 Institute in Gamboa, Panama. At this locality egg mortality from dehydration has historically
109  been low but detectable (e.g., 3% in 1998, vs. zero at a pond in Corcovado Park, Costa Rica, in
110 1993 and 1994; Warkentin, 2000, Gomez-Mestre & Warkentin, 2007). However, in the
111  extremely dry El Nifio of 2015 many entire egg cohorts laid in Gamboa perished from
112 dehydration (K. Warkentin, pers. obs.).
113 Experimental Design
114  We collected 30 healthy egg clutches laid on the night of 24 July 2011 from the Experimental

115 Pond in Gamboa, Panama (9°07'15" N, 79°42'14" W). All clutches were collected with the
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leaves on which they were laid, mounted on plastic cards for support and attached to the sides of
plastic cups in a vertical orientation. Each cup contained aged tap water to catch hatched
tadpoles. Eggs in each clutch were counted, and any dead or undeveloped eggs (possibly
unfertilized) were noted. Clutches were paired based on overall similarity of clutch structure and
size, and egg color and size, then one of each pair was randomly allocated to a wet treatment and
the other to a dry treatment. Treatments were imposed starting at age 1 day. Wet clutches were
heavily sprayed with aged tap water multiple times daily, taking care not to overspray onto dry
clutches. Dry clutches were unsprayed or minimally sprayed in some cases where eggs were
dying from del@draﬁon. Clutches were located on the same table in a laboratory with slightly
higher temperatures and less humidity than natural ponds, with a 12:12 light: dark photoperiod
based on local sunrise/sunset times. All clutches were checked for hatching at least 5 times daily.
Clutches were photographed daily with a ruler for egg size measurements, from age 1 to 4 days.
At each age, for each clutch, we measured two orthogonal diameters for each of 10 eggs from the
photographs, using ImageJ (NIH). We also measured the thickness of each clutch when it entered
the experiment at 1 day old and after two days in the treatments, at 3 days old, by inserting a fine
probe orthogonally through the thickest part of the clutch, between eggs, to the leaf surface. This
measurement included both eggs and associated jelly thickness.

Statistical Analysis

All statistical analyses were conducted in R version 2.13.1 (R Development Core Team 2011).
We used generalized linear models (GLM) with an un@ying binomial error distribution to
examine the influence of dehydration on time to hatching. To determine how dehydration

affected clutch thickness and egg diameter we used a two way ANOVA. To highlight the effect
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of dehydration on egg mortality, an ANOVA was performed on a generalized linear model

(family: quasibinomial).

RESULTS

Embryos in the dry treatment hatched earlier than embryos in the wet treatment, accelerating
hatching by approximately 11% (Fig. 1, Binomial GLM, treatment F; 445 =91.9, P <0.001). In
both treatments, hatching was gradual and asynchronous, but dry clutches started hatching
sooner and the entire hatching curve was shifted earlier (Fig. 1).

Clutch thickness was altered by the treatment (ANOVA, day x treatment /| ss = 6.33, P =
0.015). At the beginning of the experiment, at age 1 day, there was no difference in thickness
between clutches assigned to different treatments; the mean for dry treatment was 7.03+0.44 mm
(SE) while the mean for wet treatment was 6.73+0.40 mm (SE). However, two days later wet
clutches were much thicker than dry clutches, the mean for dry treatment was 5.67+0.42 mm
(SE), while the mean for wet treatment was 7.50+0.48 mm (SE).

The diameter of individual eggs was also affected by treatment, diverging over time (Fig. 2,
ANOVA, treatment x day, F; ;5 =15.9, P =0.0001). Initially, in both dry and wet clutches egg
diameters increased due to absorption of water from the egg jelly into the perivitelline space;
however, wet eggs swelled more rapidly. Eggs in wet clutches continued to swell, then stabilized
in diameter at age 3 days. By contrast, from 2 days eggs in dry clutches shrank, with the
difference between treatments increasing over time.

Egg mortality was also affect by treatment (Quasibinomial GLM, treatment F'; ,3 = 6.91, P =
0.013). Mortality in dry clutches was higher than in control clutches, 24 + 0.09 % (SE) of the

embryos in the dry treatment died due to dehydration, while egg mortality in the wet treatment
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was only 4 = 0.01 % (SE). However, mortality level varied substantially among clutches; two
clutches, with relatively little jelly, experienced 100% mortality in the dry treatment, whereas 3
clutches had no mortality at all. Mortality data did not include unfertilized or undeveloped eggs,

only eggs showing normal development. Therefore, all the mortality was due to dehydration.

DISCUSSION

Our results show that red-eyed treefrogs can accelerate hatching when exposed to the gradual
threat of dehydration over embryonic development. In this study, the acceleration in hatching
timing (11%) was less than that reported for other frogs (Dendrosophus ebraccatus: 17%,
Touchon & Warkentin 2010; Hyalinobatrachium fleishmanni: 59%, Delia, Ramirez-Bautista &
Summers, 2014). It may be that, compared with those species, A. callidryas has a relatively
limited capacity to accelerate hatching under the threat of drying. Indeed, based on field
monitoring of eggs, both D. ebraccatus and H. fleishmanni both appear at higher risk of
mortality from dehydration than does A. callidryas. Dehydration led to 98% mortality in
terrestrial eggs of D. ebraccatus exposed to lack of rainfall during the first 48 h post-oviposition
(Touchon & Warkentin, 2009). Similarly, in male removal experiments generating “orphan”
clutches of H. fleishmanni, 78% of total mortality was due to dehydration (Delia, Ramirez-
Bautista & Summer, 2013). Alternatively, because the mortality imposed by our drying treatment
was moderate (24%), compared with the possible risk of mortality under more extreme weather
conditions, it may not have tested the limits of 4. callidryas capacity to accelerate hatching.

The hatching pattern of drying clutches - accelerated but gradual hatching, over a period of days
- was very similar to the hatching pattern of clutches infected by a pathogenic fungus which

caused about 40% mortality and 17% acceleration of hatching (Warkentin, Currie & Rehner,
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2001, Warkentin, 2011b). Both fungus and dehydration are chronic threats, that affect egg
clutches gradually and potentially provide cues over extended periods of development. However,
what those cues are, or how embryos detect them, is in both cases unknown. Red-eyed treefrog
embryos use physical disturbance or vibrations to assess danger in predator attacks (Warkentin,
2005) and respond by hatching very rapidly, within seconds (Cohen, Seid & Warkentin, 2016;
Warkentin ef al., 2007). They also use hypoxia as a cue to hatch from eggs that are flooded,
responding to submergence in minutes (Warkentin, 2002). Like fungus infection, dehydration
does not move eggs, and neither threat has a sudden, acute onset. Either vibrational cues or
another sudden change in clutch conditions may be necessary to induce rapid or synchronous
hatching.

Both clutch thickness and egg diameter were affected by dehydration, diverging between
treatments over time. Dehydration began to affect these variables from age 3 days, when both
clutch thickness and egg diameter decreased in dry treatment eggs (Fig. 2). Our results suggest
that during early developmental stages water moves from the jelly layers into the perivitelline
space, enlarging the eggs (Salthe, 1965), as egg diameter increased even in the dry treatment.
Later in embryonic development (from 3 days), after available water from jelly layers has been
absorbed, the eggs can absorb additional water from external sources, such as rainfall. Without
external sources of water, egg diameter then begins to decrease, constricting the perivitelline
space. Egg diameter of terrestrial breeding frogs usually decreases when they are exposed to dry
conditions (e.g. Kurixalus eiffinger, Kam, Yen & Hsu, 1998a; Bryobatrachus nimbus, Mitchell,
2002), due to the semipermeable nature of their vitelline membrane (Salthe, 1965).

With this study, early hatching responses to escape mortality from egg dehydration are now

known from three anuran lineages with independent origins of terrestrial eggs (Hylidae:
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Dendropsophinae; Centrolenidae; Phyllomedusidae). Other responses to, and effects of,
dehydration on terrestrial frog eggs have been explored in other lineages. For example, Kam,
Yen & Hsu (1998a) found the opposite response in Kurixalus eiffinger (Rhacophoridae:
Rhacophorinae); well-hydrated eggs hatched earlier than drier eggs. In this species, accelerating
the time of hatching under wetter conditions has a clear adaptive significance. Tadpoles of K.
eiffinger are oophagous. Females lay their first batch of trophic eggs before all the fertilized eggs
have hatched, then return eight days later to feed the tadpoles again (Kam et al. 1998b). Tadpoles
that hatch earlier obtain more trophic eggs, grow faster and reach metamorphosis earlier. Other
studies have been conducted on terrestrial anuran embryos with a similar approach. Most of this
research has focused on effects of different moisture conditions on phenotypic traits (Taigen,
Pough & Stewart, 1984; Bradford & Seymour, 1988; Seymour, Geiser & Bradford, 1991a,
1991b; Kam, Yen & Hsu, 1998a, Mitchell, 2002). Anuran embryos exposed to dry conditions
grow more slowly (Pseudophryne bibroni, Bradford & Seymour, 1988), have lower hatching
success (e.g. Kurixalus eiffingeri, Kam, Yen & Hsu, 1998a; Bryobatrachus nimbus, Mitchell,
2002), produce smaller hatchlings (e.g. Eleutherodactylus coqui, Taigen, Pough & Stewart,
1984; Kam, Yen & Hsu, 1998a; Mitchell, 2002) and generate stunted and asymmetric
morphologies at hatching (Mitchell, 2002). In A. callidryas, we observed no effects of drying on
embryo development rate or morphology. Early-induced hatchlings are generally smaller and
less developed than full term hatchlings (Warkentin 1995, 1999; Gomez-Mestre et al. 2008).
Such differences, however, appear simply to be caused by differences in the period of embryonic
development, not by differences in embryonic developmental trajectories. There is no evidence
that hatching plasticity in this species occurs by altering the rate of embryo development

(Warkentin, 2011a).
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The anuran lineages now demonstrated to hatch early in response to drying vary in their degree
of egg and clutch adaptation to terrestrial development. Dendropsophus ebraccatus egg size and
clutch morphology are much like those of aquatic breeding congeners; they appear not to be
strongly adapted to terrestrial development, and indeed can also develop aquatically (Touchon &
Warkentin, 2008). In contrast, phyllomedusines have a long (34 to 50 million years) evolutionary
history of terrestrial eggs (Gomez-Mestre, Pyron & Wiens, 2012) and A. callidryas eggs do not
survive prolonged submergence (Pyburn, 1970). Considering that these highly adapted terrestrial
eggs, which typically do not suffer high dehydration mortality, can show adaptive plastic
responses to reduce mortality from this occasional threat, drying-induced early hatching may be
a more general, broadly distributed phenomenon.

The risk of dehydration as a source of mortality for terrestrial-breeding frogs is particularly
important in the context of global climate change. Local changes in weather and climate can
affect the hydration of terrestrial embryos. In D. ebraccatus living in sympatry with A.
callidryas, the survival of terrestrial eggs is affected both directly and indirectly by the amount of
rainfall (Touchon & Warkentin, 2009). Directly, rain hydrates eggs and prevents mortality from
drying. Indirectly, because the jelly surrounding eggs swells with hydration, rain decreases the
risk of predation; dehydrated eggs are more susceptible to predation by ants and wasps. In
Phyllomedusa hypochondrialis, which normally wraps its eggs in leaves, the mortality of
embryos exposed directly to the air decreased during rainy periods (Pyburn, 1980). The tropics,
where the highest biodiversity of amphibians is concentrated, are expected to become warmer
and drier, and many tropical anuran lineages have evolved terrestrial eggs. Therefore, to
understand how these terrestrial eggs can respond to, or will be affected by, rapid changes in

climate over the next decades is relevant for conservation planning.
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FIGURE 1. Embryos hatched ~11% earlier from drying vs. wet clutches (Binomial GLM,
treatment '} 445=91.9, P <0.001). Data are mean proportiotched at each age (+ SE across
clutches), of all that eventually hatched. Dark and light shading along the x-axis indicates

photoperiod.
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FIGURE 2. Effect of development and hydration treatment on A. callidryas egg diameter. Data
are mean + SE across clutches. Egg diameters diverged over time (ANOVA, treatment x day, /|,

115 = 15.9, P= 00001)
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