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Background. Type II diabetes is a chronic health condition which is associated with skin conditions

including chronic foot ulcers and an increased incidence of skin infections. The skin microbiome is

thought to play important roles in skin defence and immune functioning. Diabetes affects the skin

environment, and this may perturb skin microbiome with possible implications for skin infections and

wound healing. This study examines the skin and wound microbiome in type II diabetes.

Methods. Eight type II diabetic subjects with chronic foot ulcers were followed over a time course of 10

weeks, sampling from both foot skin (swabs) and wounds (swabs and debrided tissue) every two weeks.

A control group of 8 control subjects was also followed over 10 weeks, and skin swabs collected from the

foot skin every two weeks. Samples were processed for DNA and subject to 16S rRNA gene PCR and

sequencing of the V4 region.

Results. The diabetic skin microbiome was significantly less diverse than control skin. Community

composition was also significantly different between diabetic and control skin, however the most

abundant taxa were similar between groups, with differences driven by very low abundant members of

the skin communities. Chronic wounds tended to be dominated by the most abundant skin

Staphylococcus, while other abundant wound taxa differed by patient. No significant correlations were

found between wound duration or healing status and the abundance of any particular taxa.

Discussion. The major difference observed in this study of the skin microbiome associated with diabetes

was a significant reduction in diversity. The long-term effects of reduced diversity are not yet well

understood, but are often associated with disease conditions.
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15 Abstract

16 Background. Type II diabetes is a chronic health condition which is associated with skin 

17 conditions including chronic foot ulcers and an increased incidence of skin infections.  The skin 

18 microbiome is thought to play important roles in skin defence and immune functioning.  

19 Diabetes affects the skin environment, and this may perturb skin microbiome with possible 

20 implications for skin infections and wound healing.  This study examines the skin and wound 

21 microbiome in type II diabetes. 

22 Methods.  Eight type II diabetic subjects with chronic foot ulcers were followed over a time 

23 course of 10 weeks, sampling from both foot skin (swabs) and wounds (swabs and debrided 

24 tissue) every two weeks. A control group of eight subjects was also followed over 10 weeks, and 

25 skin swabs collected from the foot skin every two weeks.  Samples were processed for DNA and 

26 subject to 16S rRNA gene PCR and sequencing of the V4 region.

27 Results. The diabetic skin microbiome was significantly less diverse than control skin.  

28 Community composition was also significantly different between diabetic and control skin, 

29 however the most abundant taxa were similar between groups, with differences driven by very 

30 low abundant members of the skin communities. Chronic wounds tended to be dominated by the 

31 most abundant skin Staphylococcus, while other abundant wound taxa differed by patient. No 

32 significant correlations were found between wound duration or healing status and the abundance 

33 of any particular taxa.   

34 Discussion. The major difference observed in this study of the skin microbiome associated with 

35 diabetes was a significant reduction in diversity.  The long-term effects of reduced diversity are 

36 not yet well understood, but are often associated with disease conditions.  
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38

39 Introduction

40 Type II diabetes is one the fastest growing chronic diseases in the world today, predicted to rise 

41 from 382 million people in 2013 to 592 million in 2035 (Guariguata et al. 2014).  The disease is 

42 characterised by persistently elevated blood glucose levels as a result of insufficient insulin 

43 production or insulin resistance.  This leads to many serious complications affecting the heart, 

44 kidneys, eyes, blood vessels and nerves (World Health Organisation 2016).  The development of 

45 foot ulcers is the culmination of several of these complications, estimated to affect 15 % of 

46 diabetes sufferers (Reiber et al. 1995).  These wounds are often slow to heal, difficult to treat, 

47 and prone to infection. They have a severe impact on a patient’s quality of life, and are estimated 

48 to increase the risk of lower limb amputation by 15 fold (Australian Institute of Health and 

49 Welfare 2008).  The cost of treating these chronic wounds is estimated at up to $13 billion 

50 dollars annually in the US alone (Rice et al. 2014), and is set to rise with the increasing incidence 

51 of diabetes worldwide.

52

53 Diabetes is associated with shifts in the gut microbiota (Karlsson et al. 2013; Qin et al. 2012), 

54 and these shifts are thought to contribute to the onset of disease (Parekh et al. 2016; Zhang & 

55 Zhang 2013).  Dysbiosis of the human microbiome is increasingly recognised to play a role in 

56 many diseases, through mechanisms such as altered intestinal barrier function (Kelly et al. 2015), 

57 triggering or exacerbating inflammation (Strober 2013) and regulation of energy metabolism 

58 (Samuel et al. 2008).  Given the physical changes that occur in the skin as a result of diabetes, 

59 such as increased dryness and pH, and glycosylation of structural skin proteins (Behm et al. 

60 2012), it is feasible that diabetes may also affect the microbiome of the skin.  
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61

62 As in the gut, the skin microbiome is thought to protect against infection via both competitive 

63 exclusion and direct inhibition (Bomar et al. 2016; Cogen et al. 2010b; Iwase et al. 2010; Shu et 

64 al. 2013), and have the potential to regulate skin immune function and wound healing (Kanno et 

65 al. 2011; Scales & Huffnagle 2013).  For example, the most common skin isolate, 

66 Staphylococcus epidermidis, has been shown to down-regulate inflammation following skin 

67 injury (Lai et al. 2009), and to up-regulate the production of antimicrobial peptides in the host 

68 (Lai et al. 2010), which work synergistically with antimicrobial peptides from S. epidermidis to 

69 inhibit pathogens such as Staphyloccocus aureus and Group A Streptococcus (Cogen et al. 

70 2010a).   Another skin commensal, Acinetobacter lwoffii, has been shown to protect against 

71 allergic sensitization and inflammation by promoting TH1 and anti-inflammatory responses in the 

72 skin (Fyhrquist et al. 2014). Given the importance of the skin microbiome in preventing 

73 infection, any shifts to these communities could affect their ability to protect against infection, 

74 and may have an effect on wound healing.  

75

76 The aim of this study was to determine whether there are differences in the skin microbiome 

77 between persons with diabetes and healthy controls, and whether any members of the skin 

78 microbiome in diabetes are associated with those microbes that colonise chronic wounds during 

79 wound healing.  We examined a cohort of eight diabetic and eight control individuals at six time 

80 points over a 10-week period, by swabbing the skin on the soles of both feet, and collecting 

81 swabs and debrided tissue from the chronic foot ulcers of the diabetic patients.  The microbial 

82 communities associated with these samples were assessed via high-throughput sequencing of the 

83 V4 region of the bacterial 16S rRNA gene. 
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84

85 Materials & Methods 

86 Study design, ethics approval, and sample collection 

87 Ethical approval for the study was obtained from both the University of Technology Sydney 

88 Human Research Ethics Committee (approval number 2013000170), and the Western Sydney 

89 Local Health District Human Research Ethics Committee (approval number 

90 HREC2013/9/5.3(3809) AU RED LNR/13/WMEAD/294). Diabetic individuals and control 

91 subjects provided written consent for sample collection and all subsequent analyses. 

92

93 Diabetic adults (n = 8) (Table 1) were selected for inclusion in the study based on medical 

94 diagnosis of type II diabetes, the presence of a chronic wound on one foot (chronic wound = 

95 present for six or more weeks) and no antibiotic therapy within the previous four weeks. Three 

96 swabs were collected for each diabetic subject every two weeks for a 10 week period using 

97 sterile rayon tipped swabs (Copan) that had been pre-moistened with a sterile solution of 0.15 M 

98 NaCl and 0.1% Tween 20. Two skin swabs were collected from intact foot skin 1) adjacent to the 

99 chronic wound (skin adjacent, SA) and 2) contralateral site to the chronic wound (skin 

100 contralateral, SC). Skin swabs were collected by firmly rubbing the moistened swab over the 

101 base of the foot skin surface for a period of 30 seconds.  The whole base of the foot was used to 

102 maximise the DNA yield.  Skin swab samples were taken prior to any cleaning of the skin 

103 surface that routinely took place before debridement of wound tissue.  Chronic wounds were 

104 cleaned by applying gauze soaked with Prontosan wound irrigation solution (B. Braun Medical, 

105 UK) for ten 10 mins prior to sharp debridement of tissue from the top of the wound (wound 

106 debridement, WD). Wound debridement samples were only taken where debridement was 
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107 deemed to be necessary for the standard wound care. Wound swabs were taken after irrigation of 

108 the wound with Prontosan to remove loose tissue, using a dry swab and the Z swab method 

109 (wound swab, WS).  The Z swab method was the routine method used in the clinic at the time of 

110 sampling. 

111 Control subjects (n = 8) (Table 1) were recruited from Sydney, Australia. The criteria for 

112 inclusion were not to have been diagnosed as diabetic, between 50-80 years of age, and without 

113 the use of antibiotics within the previous four weeks. Skin swabs were collected from the left and 

114 right feet of control subjects as described above.  Samples were taken from all participants every 

115 two weeks for a 10-week period (6 time points in total). All samples were processed for DNA on 

116 the day of collection, or stored at 4C until processing the next day.  These storage conditions 

117 have been shown to adequately preserve the microbial profile of skin swab samples (Lauber et al. 

118 2010).

119

120 Extraction of microbial DNA from skin and wound swabs and wound debridement tissue

121 Genomic DNA was extracted from all skin and wound samples using the BioStic DNA 

122 extraction kit (MO BIO Laboratories, USA). Swab heads were cut off the plastic applicator using 

123 sterile surgical scissors into the bead beating tube from the DNA extraction kit, before addition 

124 of buffer CB1.  For wound debridement tissue, the tissue was directly placed into the bead 

125 beating tube.  All subsequent steps were in accordance with the manufacturer’s instructions, and 

126 DNA was eluted in 50 µl of solution CB5 (10mM Tris pH 8).  The extracted DNA was 

127 quantified on a Qubit® 2.0 Fluorometer (Life Technologies, USA) with a Qubit® dsDNA HS 

128 Assay Kit (Life Technologies, USA).

129
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130 Preparation of 16S rRNA gene libraries for Illumina sequencing

131 A library of the V4 region of the 16S rRNA gene was prepared for Illumina sequencing from the 

132 isolated microbial DNA samples. Samples were amplified using primers based on the Caporaso 

133 et al design (Caporaso et al. 2012), which were modified to include eight nt rather than 12 nt 

134 barcodes, and include a barcode on both the forward and reverse primer (V4_forward and 

135 V4_reverse; Table 2). Different barcoded primers were used for each sample. For skin samples, 

136 the V4 region was amplified from 500 pg template DNA; for wound samples template DNA 

137 started at 10 ng, but in some cases up to 50 ng was used where a PCR product was not obtained 

138 with lower amounts of template DNA. Each sample was subjected to 10 cycles of PCR with 0.5 

139 μM each of V4_forward and V4_reverse barcoded primers in a 50 μl PCR reaction that 

140 contained 1 x Taq core PCR buffer (Qiagen, Netherlands), 1 x Q solution, 250 μM dNTPs, and 

141 1.25 U Taq DNA polymerase. Thermal cycling was carried out at 95°C for two minutes, 

142 followed by 10 cycles of 95°C for 15 seconds, 50°C for 30 seconds and 72°C for 90 seconds, 

143 followed by a final extension at 72°C for five minutes. Excess primer was removed via a 

144 magnetic bead clean-up using 0.8 volume of Axygen® AxyPrep Mag beads (Corning, USA) and 

145 the eluted amplicons were subjected to a further 20 cycles of PCR with 0.25 μM enrichment 

146 primers (Illumina_E_1 and Illumina_E_2; Table 2). The PCR reaction and cycling was 

147 performed as described above, except that the annealing temperature was increased to 55°C and 

148 20 thermal cycles were performed. Following confirmation of the PCR product on a 1% agarose 

149 gel, the amplicons were purified using Axygen® AxyPrep Mag beads (Corning, USA) and 

150 quantified on a Qubit® 2.0 Fluorometer (Life Technologies, USA) with a Qubit® dsDNA HS 

151 Assay Kit (Life Technologies, USA). Equimolar (2 ng) amounts of the 16S amplicons obtained 

PeerJ reviewing PDF | (2017:03:17049:1:1:NEW 13 Jun 2017)

Manuscript to be reviewed



152 for each skin and wound sample were then pooled and the molarity of the pooled amplicons 

153 determined using a Bioanalyser High Sensitivity DNA chip (Agilent Technologies, USA). 

154 Illumina sequencing and data analysis

155 The PCR amplicons from 264 samples (including positive and negative controls) were sequenced 

156 over two separate runs on an Illumina Miseq using 500 cycle V2 kits.  Sequences were 

157 demultiplexed using phylosift (Darling et al. 2014) and read pairs merged using FLASH (Magoc 

158 & Salzberg 2011).  Sequences were quality filtered and processed into OTUs using USEARCH v 

159 1.8.1 (Edgar 2010) (fastq_filter command with the fastq_maxee option set to ‘2’ to remove all 

160 sequences with two or more expected errors). Further quality filtering and operational taxonomic 

161 unit (OTU) clustering was carried out in QIIME (Caporaso et al. 2010b) version 1.9.0. The 

162 split_libraries.py command was used with the –l and –L options set to 240 and 260 respectively, 

163 to remove sequences shorter than 240 and longer than 260 base pairs.  Sequences were clustered 

164 into OTUs at 97% similarity using the pick_open_reference_otus.py script using default settings 

165 except that singleton OTUs were removed, and the usearch61 method was used for chimera 

166 filtering.

167 Taxonomy was assigned to OTUs (assign_taxonomy.py) using the UCLUST method (Edgar 

168 2010) against the Greengenes (DeSantis et al. 2006) database pre-clustered at 97% similarity, 

169 accessed from the QIIME website 

170 (ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz).  

171 Representative sequences from each OTU were aligned against the Greengenes alignment using 

172 Pynast (Caporaso et al. 2010a) (align_seqs.py), OTUs which failed alignment were filtered from 

173 the final OTU table (filter_otus_from_otu_table.py).  A phylogenetic tree was built from aligned 

174 representative OTU sequences (make_phylogeny.py script) using Fasttree2 (Price et al. 2010), 
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175 with the –r option set to midpoint for tree rooting.  For comparison, quality filtered sequences 

176 were also clustered into OTUs using the UPARSE algorithm (Edgar 2013), with all downstream 

177 analyses as per the QIIME workflow.

178 Diabetic skin samples adjacent to wounds were found to be more similar to wound than 

179 contralateral skin samples (see Figure S1), and were removed so as not to confound comparisons 

180 between diabetic and non-diabetic skin.  To ensure more even sample sizes between the diabetic 

181 and non-diabetic groups, only the right foot samples were included from the non-diabetic group 

182 for all downstream analyses.  Alpha diversity was calculated using Phyloseq (McMurdie & 

183 Holmes 2013) for the observed number of OTUs, Chao 1 and Shannon diversity indices on data 

184 rarefied to 30000 sequences per sample.  Significance testing was carried out on alpha diversity 

185 estimates using the Wilcoxon rank sum test in R.  

186 Initial beta-diversity analysis was carried out in QIIME on a rarefied OTU table (30K sequences 

187 per sample) using the weighted unifrac metric, and the generate_boxplots.py script used to 

188 compare unifrac distances between groups of samples.  Futher beta diversity analyses, were 

189 carried out in Phyloseq, using weighted unifrac distances calculated from an OTU table with raw 

190 counts subject to variance stabilising transformation implemented in DEseq2 (Love et al. 2014) 

191 as described here (McMurdie & Holmes 2014). Weighted unifrac distances matrices were also 

192 subject to principal coordinates analysis using the Phyloseq package, and significant differences 

193 in variance between groups (diabetic and control skin) were determined with PERMANOVA 

194 (adonis function) implemented in the Vegan package (Oksanen et al. 2015) in R, using a nested 

195 model formula (health/subject + subject) and the weighted unifrac distance matrix.
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196 The Wald test for differential abundance was used as implemented in the DESeq2 package in R.  

197 Multivariate correlation analysis was carried out against OTUs and wound duration and area 

198 using Pearson scores with Bonferroni correction, and p-values were determined via 

199 bootstrapping with 100 permutations (implemented in QIIME using the 

200 observation_metatdata_correlation.py command).  OTU tables were filtered to remove OTUs 

201 present in less than 10% of samples for both differential abundance and correlation tests.

202 A Random forest learning algorithm implemented in R (Liaw & Wiener 2002) was used to 

203 determine if diabetic status could be predicted from the foot skin microbiome.  Skin samples 

204 were randomly divided into two equal subsets (restricting samples from the same participant to 

205 the same subset) for training and testing of learning algorithms. The variance stabilizing 

206 transformed OTU table was filtered to include skin samples only, and to remove OTUs observed 

207 in less than 10% of samples, and used as the input matrix for the Random forest algorithm. The 

208 Random forest fitted on the training subset was created using bootstrapping of one third of the 

209 training samples with replacement. As a general practice the rest of the samples were used as a 

210 validation set in order to decrease the risk of over-fitting associated with classification 

211 algorithms. An optimisation to minimise the out of bag error (classification error on validation 

212 data) was used to obtain the optimal number of taxonomic units accessed at each iteration of 

213 decision tree creation. Two hundred decision trees consisting of 30 OTUs evaluated at each node 

214 of the tree were created. The Random forest model was then used to predict the health status of 

215 the subjects in the test subset. 

216

217 Analysis of the stability of skin microbial communities over time was carried out by comparing 

218 intrapersonal weighted unifrac distances between the diabetic and control skin samples, along 
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219 with intrapersonal distances for all samples.  Kruskal-Wallis tests were used to determine 

220 significant differences between groups.

221

222 Pearson’s Product Moment Correlation was used to test for correlations between wound size or 

223 duration and OTU abundance in wound samples as implemented in QIIME 

224 (observation_metadata_correlation.py).  P-values were calculated using bootstrapping with 100 

225 permutations, and Bonferroni correction for multiple testing.  Kruskal-Wallis tests for OTUs that 

226 were differentially abundant in healing vs non-healing wounds were implemented in QIIME 

227 (group_significance.py).  Wounds were classified as healing or non-healing based on a reduction 

228 in wound area since the last sampling time (healing) or no change or greater wound size area 

229 since the last sampling (non-healing).  OTU tables were filtered to remove OTUs present in less 

230 than 10% of samples prior to testing.

231

232 Inter-visit weighted unifrac distances were compared to the overall degree of healing (1 – (final 

233 wound area /initial wound area)) using the lm function of the stats package in R.

234

235 Quality filtered sequence data has been deposited in the European Nucleotide Archive under 

236 study accession number PRJEB17696.  A script containing the code used to process the data in R 

237 is provided as supplementary data, along with all the necessary input files, including OTU table 

238 and phylogenetic tree.

239 Results  

240 Cohort characteristics
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241 The diabetic cohort (n=8) consisted of 5 males and 3 females, with an average age of 68.9±8.2 

242 (range 58 - 81), average BMI of 35.4±5.9 (range 27.2 - 47.1), and all had at least one foot ulcer 

243 which had been present for a average time of 9.1±8.4 months (range 1.5-24 months).  All 

244 wounds were neuropathic, with the exception of Patient 6 where the wound was ischemic.  Two 

245 of the eight wounds healed during the course of sampling.  Wounds were dressed with either 

246 Allevyn foam (Smith and Nephew) to promote moist wound healing, Zetuvit dressing 

247 (Hartmann) to remove excess wound exudate, Inadine antimicrobial dressing (10% povidone-

248 iodine)(Johnson and Johnson), or Acticoat flex (antimicrobial silver coated) (Smith and 

249 Nephew), as deemed appropriate by the treating podiatrist or wound care nurse.  All wounds 

250 were located on the plantar aspect of the foot.  Details of the specific location of each wound, 

251 along with size and treatment over time and are provided in Table S3.

252 The control cohort (n=8) consisted of 2 males and 6 females, with an average age of 62.8±13.4 

253 (range 50-81), average BMI of 28.0±6.6 (range 20.4 – 37.9), and did not have wounds present on 

254 the feet. 

255 Sample processing, 16S PCR and sequencing

256 A total of 242 samples were collected from the diabetic and control cohorts, including 170 skin 

257 swabs (85 diabetic and 85 control), 40 wound swabs and 32 wound debridement samples.  Full 

258 details for samples collected at each time point for each participant can be found in 

259 supplementary Tables S1 (diabetic participants) and S2 (control participants). 

260 DNA yields obtained from diabetic skin swabs varied from 0.51 to 600 ng, with a median of 8.5 

261 ng.  Three skin samples did not yield enough DNA to be measured by the Qubit assay, however 

262 16S rRNA gene PCR products were still obtained. Control skin sample DNA yields ranged from 
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263 0.5 to 41.7 ng (median 5.55), with 20 samples falling below the detection limit of the Qubit assay 

264 (<5 pg/µl).  Of these 20 samples, PCR products were obtained for all but 3. DNA yields from 

265 wound swab samples ranged from 15 ng to 5.6 µg (median 760 ng) and for wound debridement 

266 samples ranged from 170 ng to 5.8 µg (median 1.2 µg).  One wound swab sample did not yield 

267 enough DNA to be detected.  Negative control swabs (n=4) did not yield enough DNA to be 

268 detected, and also did not yield detectable PCR products.

269 PCR products from the V4 region of the 16S rRNA gene were obtained for 257 of the 273 

270 samples collected.  Repeated attempts were made with increased amounts of template for those 

271 samples that did not initially yield a PCR product, however no PCR product was obtained 

272 (detailed in Tables S1 and S2).  Amplicons from the remaining 257 samples were pooled and 

273 paired-end sequenced over two separate MiSeq runs with V2-500 cycle kits.  Sample from four 

274 diabetic and four control subjects were sequenced in each run (Table S4).  A median coverage of 

275 73 599 sequences per sample was obtained (minimum 1683, maximum 297817).  Negative 

276 controls (two blank swab and 2 no DNA PCR controls) had between 1 508 and 27 840 sequences 

277 assigned. The final sequencing coverage obtained for each sample can be found in Table S4.  

278 Because negative control samples contained taxa that are similar to those found on skin (e.g. 

279 Staphylococcus, Corynebacterium and Acinetobacter) specific taxa were not removed from the 

280 data, rather samples with less than 30 000 sequences (n=5) were removed from the analysis, 

281 based on the highest level of sequencing reads obtained from negative controls.  A 

282 PERMANOVA test was run on a weighted unfrac distance matrix generated from variance 

283 stabilising transformed counts to assess the amount of variance attributable to the two different 

284 sequencing runs, (run + subject).  Sequencing run was a significant factor accounting for 3.0% of 

285 the variance (p<0.001), while inter-individual differences accounted for 34.5% (p<0.001).
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286 The microbiome of diabetic skin is less diverse than control skin 

287 Diversity in all three groups was significantly different for observed richness, Chao1 and 

288 Shannon diversity indices (likelihood ratio test, p< 0.01).  Diabetic skin was significantly less 

289 diverse than control skin for richness and Chao1 indices (Wilcoxon rank sum test, p < 0.01) 

290 (Figure 1).  Control skin had a median of 998.5 observed OTUs, compared to 435 for diabetic 

291 skin.  Wounds were also significantly less diverse than diabetic skin with a median of 145 

292 observed OTUs.  

293 The skin microbiome is significantly different between diabetic and control subjects

294 Skin microbial communities overall were significantly different between diabetic and control 

295 skin (Figure 2).  A clear distinction can be observed between the sample types, and this was 

296 confirmed by a PERMANOVA test (~health/subject), where health (diabetes vs control) was a 

297 significant factor accounting for 11.7% of the variance (R2=0.117, p=0.001). Subject (inter-

298 individual differences) was the most significant factor accounting for 34.6% of the observed 

299 variance (R2=0.346, p=0.001). 

300 Abundant taxa from skin are similar between persons with diabetes and healthy controls.

301 Despite the clear distinction between diabetic and control skin in the PCoA plot above, the most 

302 abundant taxa from both groups were similar.  Foot skin communities from diabetic skin were 

303 dominated by the genera Staphylococcus, followed by Acinetobacter and Corynebacterium, then 

304 unclassified Enterobacteriacea. Control skin was dominated by the genera Staphylococcus, 

305 followed by Acinetobacter, Kocuria, Corynebacterium and Micrococcus,(Figure 3). 
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306 To determine which OTUs were contributing to the significant difference detected in the 

307 PERMANOVA analysis, the Wald test as implemented in the DESeq2 package (Love et al. 

308 2014), was carried out. Sixty-nine OTUs were identified as significantly different in abundance 

309 (adjusted p <0.05), all with an average abundance of less than 1%.  A full list of the results can 

310 be found in Table S5.  Similar results were found when re-running the analysis at the Genera 

311 level, with 24 genera identified as significantly different, but all at an average relative abundance 

312 of less then 1% (Table S6).

313 The foot skin microbiome may predict diabetic status

314 Despite only low abundance OTUs showing significant differences between diabetic and non-

315 diabetic skin, a Random Forrest classifier was able to predict diabetic status from the foot skin 

316 microbiome.  The model achieved an overall accuracy of 85.0%, with a sensitivity of 79.2%, and 

317 specificity of 93.8%. The negative predictive value (75.0%) was lower than the positive 

318 predictive value (95.0%).  The classifier’s Gini index provided a list of 106 OTUs that were 

319 important in the classification task (Table S7); the majority were low abundance OTUs (103 

320 OTUs < 1% average relative abundance), and the majority of these were more abundant in 

321 control than diabetic skin (75 OTUs).

322

323 Stability of the diabetic skin microbiome over time

324

325 Longitudinal analysis of the skin microbiome over time showed a trend of lower stability for 

326 diabetic skin than non-diabetic skin (Figure 4), however this difference did not reach significance 

327 (p=0.09), while both control and diabetic skin intrapersonal differences over time were 

328 significantly smaller (i.e. more stable) than inter-individual differences (p<0.05).
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329   

330 Microbiota of chronic diabetic wounds overlap with skin and differ between patient

331 Wound swab and debridement samples were similar in taxonomic composition, and the top ten 

332 OTUs from all wounds per patient are shown in Figure 5. The most abundant OTU detected in 

333 wounds was also the most abundant OTU found on skin, Staphylococcus sp. (OTU 1084865), 

334 and was present in the wounds of all eight patients.  Other skin associated OTUs found in 

335 wounds included Corynebacterium (OTU 1011712), which was in the top 10 OTUs in six out of 

336 eight patient’s wounds. 

337

338 The Wald test for differential abundance between diabetic skin and wounds identified four OTUs 

339 that were significantly more abundant across all wounds (two classified as Enterobactericaeae, 

340 one as Serratia and one as Finegoldia). The complete list of results can be found in Table S8.

341

342 The top 10 OTUs in wounds per patient over time are shown in Figure 6.  Of the eight wounds, 

343 six are dominated by the most abundant skin OTU, at the majority of time points measured 

344 (Staphylococcus OTU 1084865).  Only Patients 6 and 10 showed wound profiles dominated by 

345 non-skin associated taxa across the time period surveyed.  No significant correlations were found 

346 between any abundant OTUs (average abundance > 1%) and wound duration or healing status.  

347 No significant correlation was found between the overall degree of wound healing, and inter-visit 

348 weighted unifrac distances in individual wounds (Figure S2, p=0.29).  However, some 

349 interesting observations were made that correlated to clinical events.  For example, the wound of 

350 Patient 6 had been present for 24 months at the start of the study. It was dominated by 

351 Enterobacteriacaea and showed little healing until time point 3, which coincided with an 
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352 angioplasty procedure to improve blood flow to the foot.  This was followed by resolution of the 

353 wound within two weeks.    When Patient 7 presented to the clinic, the wound had been present 

354 for 12 months, and was dominated by an OTU from the Neisseriaceae family.  Following the 

355 standard treatment of debridement and wound dressing, rapid healing was observed, as well as a 

356 shift to a community dominated by the most abundant skin OTU.

357

358 Discussion

359 This study aimed to compare the skin microbiome between persons with diabetes and healthy 

360 control individuals over time.  We additionally sought to characterise the wound microbiota in 

361 diabetic foot ulcers over time and determine if any members of the skin microbiome were 

362 correlated to the wound microbiome or wound healing.

363 The microbiome from diabetic skin was significantly different to that of control skin, however 

364 this difference was not driven by the most abundant members of the skin community.  The top 10 

365 most abundant OTUs per person were similar in abundance and not significantly different 

366 between groups.  Many low abundance OTUs were identified as significantly different, with the 

367 vast majority of these being more abundant in control skin.  One limitation of this study is that, 

368 although commonly used in microbiome studies (Cope et al. 2017; David et al. 2014; Halfvarson 

369 et al. 2017; Smith et al. 2016), the V4 region of the 16S rRNA gene does not allow 

370 differentiation between Staphylococcus aureus and other Staphylococcus species found on skin, 

371 such as Staphylococcus epidermidis (Conlan et al. 2012).  Additionally, the V4 primers have 

372 mismatches that prevent detection of Propionibacterium, an important genera in the skin 

373 microbiome (Kuczynski et al. 2011).  The clinical consequences of these organisms may be 
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374 important, and this should be taken into consideration for the experimental design of future 

375 studies (Gohl et al. 2016; Meisel et al. 2016).

376 We observed a significant reduction in alpha diversity and a trend of decreased stability (non-

377 significant) of diabetic skin microbiomes compared to non-diabetic skin.  This is in contrast to a 

378 previous study of diabetic skin (Redel et al. 2013) where the opposite result was observed.  It is 

379 possible that changes to the skin environment associated with diabetes, such as increased pH 

380 (Yosipovitch et al. 1993) advanced glycation end products in the skin matrix (Gkogkolou & 

381 Bohm 2012), or increased levels of skin inflammation (Tellechea et al. 2013) could drive a 

382 decrease in diversity.  It is also possible that activities associated with diabetes, such as increased 

383 exposure to antibiotics (Mor et al. 2016), contribute to the observed effect despite our attempts to 

384 control for recent antibiotic exposure as a confounding variable.  Another limitation of the 

385 current study is the small sample size, and as such this result should be confirmed on a larger 

386 cohort.

387 If skin microbiome diversity is depleted in people with diabetes, what are the implications for the 

388 health of diabetic skin?  While in some body sites an increase is microbial diversity is associated 

389 with disease states, particularly the vagina (van de Wijgert et al. 2014), decreased diversity of the 

390 microbiome has frequently been correlated with disease and inflammation in the skin 

391 (Alekseyenko et al. 2013; Ellebrecht et al. 2016; Seite et al. 2014; Williams & Gallo 2015), gut 

392 (Giloteaux et al. 2016; Sze & Schloss 2016) and airways (Yu et al. 2015). However it is not 

393 known whether decreased diversity in these sites is a cause or merely an indicator of 

394 inflammation. Diversity is commonly used as an indicator of ecosystem health, with decreased 

395 diversity typically signalling a disturbed and less resilient state (Oliver et al. 2015).  In the 

396 context of the human skin microbiome, decreased diversity could allow potential pathogens to 
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397 overgrow, and these may be capable of triggering inflammation and triggering or exacerbating a 

398 disease state.  Alternatively, inflammation could be triggered by genetic and environmental 

399 factors, and the inflammation itself could drive down bacterial diversity by creating an 

400 inhospitable growth environment.

401 Patients with diabetes enrolled in this study had no exposure to antibiotics within the previous 4 

402 weeks, so as not to confound the comparison between diabetic and control skin.  This meant that 

403 the foot ulcers analysed in this study were considered to be clinically non-infected wounds.  No 

404 significant correlations were found between any OTU in diabetic skin or wounds with wound 

405 size, duration or healing status.  This is possibly due to the small sample size, as a previous study 

406 found correlations between the relative abundance of specific bacterial taxa and ulcer duration 

407 and depth (e.g. Staphylococcus was negatively correlated with wound duration) (Gardner et al. 

408 2013).  Another possible limitation of this study is the use of the z-swab method which samples 

409 across the entire wound base regardless of size, as this will possibly increase heterogeneity with 

410 increasing wound size.

411 A recent longitudinal study of wounds found a negative correlation between wound microbiota 

412 stability and time to heal (Loesche et al. 2017).  We did not find any such correlation here when 

413 comparing degree of healing to between visit weighted unifrac distances (Figure S2), although 

414 again our sample size was smaller, as was the length of time patients were followed.  

415 The overall composition of the diabetic wound microbiota described here is in agreement with a 

416 survey of 910 chronic diabetic foot ulcers, where a dominance of Staphylococcus, as well as 

417 Pseudomonas, Corynebacterium, Streptococcus and Finegoldia (among others) was found 

418 (Wolcott et al. 2016).  Gardiner et al. (2013) found that diabetic ulcers clustered into three types, 
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419 depending on the dominant taxa in the wounds, which were Staphylococcus, Streptococcus, or a 

420 mixture of anaerobic bacteria or Proteobacteria.  Similar results were found in a later study 

421 where 2 wound clusters were dominated by either Staphylococcus or Streptococcus, and genera 

422 such as Corynebacterium and Finegoldia were frequently observed (Loesche et al. 2017).  These 

423 same genera were observed in most wounds here, while other genera such as Serratia and 

424 Proteus were specific to individuals. 

425 Other studies of diabetic foot ulcers have reported contrasting results, such as a dominance of 

426 Corynebacterium (Dowd et al. 2008), while a recent study found that Staphylococcus were 

427 common in new ulcers, but not in recurring ulcers (Smith et al. 2016). One trend that was 

428 consistent across several studies was that the microbial profile from diabetic ulcers was variable, 

429 with no one typical diabetic ulcer microbiota apparent.   

430 Conclusions 

431 The major effect associated with diabetes observed here was a significant reduction in the 

432 diversity of the skin microbiome.  The cohort of this study was small, and these observations 

433 should be verified in a larger study.  The long-term effects of reduced diversity are not yet well 

434 understood, but low diversity continues to be linked to disease and poor health outcomes (Hua et 

435 al. 2016; Miller et al. 2016; Rook 2013).  One possible effect is increased infection susceptibility 

436 (Seto et al. 2014), and it is intriguing to consider whether decreased skin microbiome diversity 

437 could be contributing to the high incidence of skin and wound infections associated with this 

438 disease (Peleg et al. 2007).  There are of course many other well-documented factors such as 

439 immune dysfunction that can contribute to an increased rate of infections (Geerlings & 
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440 Hoepelman 1999), however the skin microbiome may be an as yet unconsidered contributor to 

441 this phenomenon.
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Figure 1(on next page)

Alpha diversity of skin and wounds

Box plots of 3 different alpha diversity measures, A) observed number of OTUs or richness, B)

the Chao I estimator, and C) the Shannon index, based on OTUs clustered at 97% similarity

for control skin, diabetic skin and diabetic wounds. Significant differences are indicated by

asterix * = p<0.05, **=p<0.01 ***=p<0.001.
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Figure 2(on next page)

Principal coordinates analysis of diabetic and control skin samples

Distances are based on the weighted unifrac metric, calculated using raw counts subjected to

a variance stabilising transformation.
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Figure 3(on next page)

The top 10 most abundant OTUs in diabetic and control skin per subject

The top 10 most abundant OTUs in A) control and B) diabetic skin per subject. Average

abundances per person were calculated from data rarefied to 30000 sequences per sample.

Genus assigned taxonomy is indicated in the legend, individual OTUs of the same genera are

indicated with black lines.
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Figure 4(on next page)

Boxplots of intra-individual differences over time in diabetic and non-diabetic skin

microbial communities.

Inter-individual distances are also shown for comparison. The stability of non-diabetic skin

was higher (i.e. lower distances over time) than for diabetic skin, however this difference did

not reach significance. (Kolmogorov-Smirnov test, p=0.09).
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Figure 5(on next page)

The top 10 abundant OTUs in wounds per subject.

The top 10 abundant OTUs per subject in diabetic A) wound debridement and B) wound swab

samples. Average abundances per group were calculated from data rarefied to 30 000

sequences per sample. Genus assigned taxonomy is indicated in the legend, or family level

where genus was unassigned. Individual OTUs of the same genera are indicated with black

lines.
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Figure 6(on next page)

Relative abundance of the top 10 OTUs per patient over time

Patients 1-10 are represented individually in panels A-H. Wound area is overlaid as a red line

and is represented as a percentage of the largest wound area measured over time. Relative

abundances were calculated from data rarefied to 30000 sequences per sample. Genus

assigned taxonomy is indicated in the legend, or family level where genus was unassigned.

Individual OTUs of the same genera are indicated with black lines.
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Table 1(on next page)

Characteristics of diabetic and control cohorts.

Characteristics are shown for the diabetic and control subjects in the study. Average values

with standard deviations are reported, including the range in brackets.
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1

2 Table 1: Characteristics of diabetic and control cohorts.  

3

Diabetic Control

Age (years) 68.9±8.2 (58-81) 62.8±13.4 (50-81)

BMI 35.4±5.9(27.2 – 47.1) 28.0±6.6 (20.4-37.9)

Males:Females 5:3 2:6

4

5 Characteristics are shown for the diabetic and control subjects in the study. Average values with standard deviations 

6 are reported, including the range in brackets.

7
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Table 2(on next page)

Primer sequences used in this study
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1 Table 2: Primer sequences used in this study

Primer name Sequence 5’-3’

V4_forward_1 AATGATACGGCGACCACCGAGATCTACACAACCAGTCTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_2 AATGATACGGCGACCACCGAGATCTACACAACGCTAATATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_3 AATGATACGGCGACCACCGAGATCTACACAAGACTACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_4 AATGATACGGCGACCACCGAGATCTACACAATCGATATATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_5 AATGATACGGCGACCACCGAGATCTACACACCAATTGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_6 AATGATACGGCGACCACCGAGATCTACACACTGAAGTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_7 AATGATACGGCGACCACCGAGATCTACACATTGCCGCTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_8 AATGATACGGCGACCACCGAGATCTACACCAACCTTATATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_9 AATGATACGGCGACCACCGAGATCTACACCCTAATAATATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_10 AATGATACGGCGACCACCGAGATCTACACCCTCTGATTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_14 AATGATACGGCGACCACCGAGATCTACACGAACGGAGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_16 AATGATACGGCGACCACCGAGATCTACACGCGTTACCTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_18 AATGATACGGCGACCACCGAGATCTACACGGATGCCATATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_20 AATGATACGGCGACCACCGAGATCTACACGTTGGCCGTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_22 AATGATACGGCGACCACCGAGATCTACACTGACTGCTTATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_forward_24 AATGATACGGCGACCACCGAGATCTACACTTCAGCGATATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_reverse_1 CAAGCAGAAGACGGCATACGAGATAACCAGTCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_7 CAAGCAGAAGACGGCATACGAGATATTGCCGCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_8 CAAGCAGAAGACGGCATACGAGATCAACCTTAAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_9 CAAGCAGAAGACGGCATACGAGATCCTAATAAAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT
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V4_reverse_15 CAAGCAGAAGACGGCATACGAGATGCCTACGCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_16 CAAGCAGAAGACGGCATACGAGATGCGTTACCAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_17 CAAGCAGAAGACGGCATACGAGATGGAGGCTGAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_23 CAAGCAGAAGACGGCATACGAGATTGGCGATTAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_24 CAAGCAGAAGACGGCATACGAGATTTCAGCGAAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_reverse_25 CAAGCAGAAGACGGCATACGAGATTTGGCTATAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

Illumina_E_1 AATGATACGGCGACCACCGA

Illumina_E_2 CAAGCAGAAGACGGCATACGA

V4_read_1 TATGGTAATTGTGTGCCAGCMGCCGCGGTAA

V4_read_2 AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT

V4_index_read ATTAGAWACCCBDGTAGTCCGGCTGACTGACT

2
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