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The skyline plot is a graphical representation of historical effective population sizes as a

function of time. Past population sizes for these plots are estimated from genetic data,

without a priori assumptions on the mathematical function defining the shape of the

demographic trajectory. Because of this flexibility in shape, skyline plots can, in principle,

provide realistic descriptions of the complex demographic scenarios that occur in natural

populations. Currently, demographic estimates needed for skyline plot are estimated using

coalescent samplers or a composite likelihood approach. Here, we provide a way to

estimate historical effective population sizes using an Approximate Bayesian Computation

(ABC) framework. We assess its performance using simulated and actual microsatellite

datasets. Our method correctly retrieves the signal of contracting, constant and expanding

populations, although the graphical shape of the plot is not always an accurate

representation of the true demographic trajectory, particularly for recent changes in size

and contracting populations. Because of the flexibility of ABC, similar approaches can be

extended to other types of data, to multiple populations, or to other parameters that can

change through time, such as the migration rate.
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ABSTRACT11

The skyline plot is a graphical representation of historical effective population sizes as a function of time.

Past population sizes for these plots are estimated from genetic data, without a priori assumptions on

the mathematical function defining the shape of the demographic trajectory. Because of this flexibility in

shape, skyline plots can, in principle, provide realistic descriptions of the complex demographic scenarios

that occur in natural populations. Currently, demographic estimates needed for skyline plots are estimated

using coalescent samplers or a composite likelihood approach. Here, we provide a way to estimate

historical effective population sizes using an Approximate Bayesian Computation (ABC) framework. We

assess its performance using simulated and actual microsatellite datasets. Our method correctly retrieves

the signal of contracting, constant and expanding populations, although the graphical shape of the plot is

not always an accurate representation of the true demographic trajectory, particularly for recent changes

in size and contracting populations. Because of the flexibility of ABC, similar approaches can be extended

to other types of data, to multiple populations, or to other parameters that can change through time, such

as the migration rate.
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Inferring the historical demography of populations by means of genetic data is key to many studies25

addressing the ecological and evolutionary dynamics of natural populations. Population genetics infer-26

ence, with appropriate dating, can identify the likely factors (such as climatic events) determining the27

demography of a species. With enough research resources, this can be done with outstanding detail (e.g.28

in humans, reviewed in Nielsen et al., 2017). Demographic inference can also be used to generate null29

models for the detection of loci under selection (as discussed in Hoban et al., 2016).30

At present, most of the methods to estimate demography from genetic data are based on the coalescent.31

The coalescent (see Wakeley, 2008, for a review) is a mathematical model that describes the rate at which32

genetic lineages coalesce (i.e. join in a common ancestor) towards the past, forming the genealogy of the33

sample. The coalescence probability depends on the effective population size at each time in the past, that34

is, the demographic history of the population. Given a genealogy, the coalescent enables a calculation of35

the likelihood of the demographic model. Demographic inference is obtained by calculating the likelihood36

of the model given the data, which requires integrating over all possible genealogies for the data. This is37

approximated by means of Monte Carlo algorithms known as coalescent samplers (see review by Kuhner,38

2009).39

Alternatively, the coalescent can be used to calculate the likelihood of the number of genetic differences40

for a pair of gene copies under a given demographic model. The likelihood for all pairs in a sample41

can be combined to obtain a composite-likelihood (which is not a true likelihood because pairs are not42

independent and they are related by their genealogy). The composite-likelihood score can be used as43

a criterion to estimate the parameters of the model with faster algorithms than the coalescent samplers44

although with lower performance, particularly regarding confidence intervals (e.g. Navascués et al., 2009;45

Nikolic and Chevalet, 2014).46
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Coalescent models can also be used in the likelihood-free framework known as Approximate Bayesian47

Computation (ABC, Tavaré et al., 1997; Beaumont et al., 2002). In this approach, the likelihood is48

substituted by the similarity between the observed data and simulated data generated from a given model.49

Similarity is usually evaluated by means of a distance between observed and simulated summary statistics.50

This distance allows one to select the simulations close to the observed data and reject those too far51

away. Posterior probability distributions are estimated from the collection of parameter values used in the52

selected simulations (see Beaumont, 2010, for a review on ABC).53

A classical way to address the estimation of past population size changes by these methods is to54

assume simple parametric models, such as exponential, logistic or instantaneous demographic change.55

However, these are sometimes considered too simple to describe the dynamics of real populations. In the56

skyline plot methods, the underlying demographic model is a piecewise constant population size model,57

i.e. the demographic history consists of several periods of constant size, with instantaneous changes of58

sizes between consecutive periods. The aim of this model is to provide a more flexible framework that59

could capture the complex demography expected in natural populations. Skyline plots were introduced60

by Pybus et al. (2000) who estimated the effective population size in the time intervals defined by the61

coalescent events of a given genealogy (which was considered as known) from the expected waiting time62

between coalescent events. The graphical representation of those estimates suggests the skyline of a city,63

giving the name to the method. Such models have been implemented in a Markov chain Monte Carlo64

coalescent sampler (BEAST software; Drummond et al., 2005; Minin et al., 2008; Heled and Drummond,65

2008), and in an importance sampling coalescent sampler (Ait Kaci Azzou et al., 2015) for the analysis of66

sequence data. The addition of microsatellite mutation models to BEAST (Wu and Drummond, 2011)67

made it possible to infer skyline plots from this type of data (e.g. Allen et al., 2012; Molfetti et al., 2013;68

Minhós et al., 2016). Also for microsatellite data, a composite-likelihood approach has been developed69

(R package VarEff Nikolic and Chevalet, 2014).70

Similar piecewise models to infer historical population sizes through time have been proposed in the71

context of population genomics (e.g. Li and Durbin, 2011; Terhorst et al., 2016). The methods discussed72

above assume a set of independent (unlinked) genetic markers. However, if a large proportion of the73

genome has been sequenced, the studied polymorphism are in linkage disequilibrium. Methods such74

as the Pairwise Sequentially Markovian Coalescent (PSMC, Li and Durbin, 2011) and its successors75

profit from the additional information of linkage disequilibrium for the inference. We will not further76

discuss this family of methods, as our focus here is on datasets of independent molecular markers, such as77

microsatellites, which remain reliable markers for low-budget projects. Note, however, the PSMC-like78

implementation on ABC by Boitard et al. (2016).79

The use of the skyline plot in the ABC framework was first proposed in Burgarella et al. (2012). Here,80

we provide a suite of R scripts (DIYABCskylineplot) to produce approximate-Bayesian-computation81

skyline plots from microsatellite data and evaluate its performance on simulated pseudo-data. We show82

the method to be useful for detecting population decline and expansion and discuss its limits. ABC skyline83

plots are then built for four study cases (whale shark, leatherback turtle, Western black-and-white colobus84

and Temminck’s red colobus) and compared with the demographic inference obtained by an alternative85

full likelihood method.86

METHODS87

ABC skyline plot88

For a demographic skyline plot analysis within the ABC framework, our model consisted of a single89

population with constant size that instantaneously changes to a new size n times through time. The90

parameters (from present to past, as in the coalescent model) are the present scaled population size91

θ0 = 4N0µ (where N0 is the effective population size in number of diploid individuals and µ is the92

mutation rate per generation) which changes to θ1 at time τ1 = T1µ (where T is the time measured in93

generations), remains at θ1 and then it changes to θ2 at τ2, and so on, until the last change to θn at τn.94

Note that other models and parametrization could have been used for our purpose, as in the alternative95

model that we present in the supplementary methods section S1.2.96

The objective of a standard ABC analysis would be to estimate the posterior distribution for each97

parameter of the model. In our case, the parameters {(θi,τi); i ∈ [0,n]} have been treated as nuisance98

parameters and we focused on inferring from them the trajectory of the scaled effective population size99

along time, θ(t), as in Drummond et al. (2005). In order to approximate θ(t) we select m times of100
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interest, {t j; j ∈ [1,m]}. Given a simulation k with parameters {(θk,i,τk,i); i ∈ [0,nk]}, derived parameters101

{θk(t j); j ∈ [1,m]} are obtained as follows: θk(t j) = θk,i for i satisfying the condition τk,i ≤ t j < τk,i+1102

(see Supplementary Figure S1 for some examples). For each t j, inference of the derived parameters θ(t j)103

were obtained following standard ABC procedures as described elsewhere (e.g. Beaumont et al., 2002).104

Median and 95% highest posterior density (HPD) intervals of derived parameters θ(t j) were used to draw105

ABC skyline plots.106

Simulations with different numbers of population size changes can be used for inference because of107

the use of derived parameters θ(t j), which are common to all models. We set the prior probability on108

the number of constant size periods to be Poisson distributed with λ = ln(2) as in Heled and Drummond109

(2008). This gives equal prior probability to stable populations (a single period of constant size) and110

changing populations (two or more periods). Thus, posterior probability on the number of periods may111

be used to discriminate between stable and changing demographies by estimating the Bayes factor of112

one period (constant population size) versus several demographic periods (variable population size).113

Posterior probabilities of contrasting models can be obtained by logistic regression as described elsewhere114

(Beaumont, 2008).115

We implemented this approach in a suite of R scripts (R Core Team, 2017) that we named DIYABCsky-116

lineplot (Navascués, 2017). For each simulation the number of population size changes is sampled using117

the prior probabilities. Via command line version of DIYABC (v2.0, Cornuet et al., 2014), parameter val-118

ues, {(θk,i,τk,i); i ∈ [0,nk]}, are sampled from the prior distribution, coalescent simulations are performed119

and summary statistics are calculated [mean across loci of the number of alleles, Na; heterozygosity, He;120

variance of allele size, Va, and Garza and Williamson (2001) statistic, M]. In addition, the Bottleneck121

statistic (∆H; Cornuet and Luikart, 1996), which compares the expected heterozygosity given the allele122

frequencies with the expected heterozygosity given the observed number of alleles, is calculated in R123

from the summary statistics provided by DIYABC. Derived parameter values, {θk(t j); j ∈ [1,m]}, are124

calculated from the reference table (i.e. table of original parameters and summary statistics values for all125

simulations) produced by DIYABC and their posterior probability distributions are estimated in R using126

the abc package (Csilléry et al., 2012).127

Simulations128

The method described above was evaluated on simulated data (pseudo observed data-set, POD) of129

contracting and expanding populations. Declining populations had a present effective size of N0 = 100130

diploid individuals that changed exponentially until time T , which had a value of 10, 50, 100 or 500131

generations in the past, reaching an ancestral population sizes of NA, which had a value of 1000, 10 000132

or 100 000 individuals. Expanding populations had a present population size of N0 with a value of 1000,133

10 000 or 100 000 diploid individuals, which changed exponentially until reaching the size of the ancestral134

population NA = 100 at time T , which had a value of 10, 50, 100 or 500 generations in the past. For135

times older than T , the population size is constant at NA for all scenarios. In addition, we simulated136

three constant population size scenarios with N taking a value of 1000, 10 000 or 100 000. Equivalent137

scenarios were also evaluated in Girod et al. (2011) and Leblois et al. (2014). PODs were generated for138

50 individuals genotyped at 30 microsatellite loci evolving under a generalised stepwise mutation model139

(GSM, Slatkin, 1995). Additional PODs varying in number of loci (7, 15 or 60 loci) and sample size140

(6, 12, 25 or 100 diploid individuals) were produced to evaluate the influence of the amount of data in141

the detection of demographic change. Mutation rate was set to µ = 10−3 and PGSM to 0, 0.22 or 0.74142

(PGSM is the parameter of a geometric distribution determining the mutation size in number of repeats).143

One hundred replicates (i.e. PODs) were run for each scenario. Therefore, the mutation scaled parameter144

values are for θ = 4Nµ: 0.4, 4, 40 or 400 and for τ = T µ: 0.01, 0.05, 0.1 or 0.5. PODs were obtained145

using the coalescent simulator fastsimcoal (Excoffier and Foll, 2011).146

Every POD was analysed with the same set of prior probability distributions that largely includes147

all parameter values of simulations. Scaled effective size parameters, θi, were taken from a log-uniform148

distribution in the range (10−3,104) and scaled times, τi, from a log-uniform distribution in the range149

(2.5× 10−4,4). A uniform prior in the range (0,1) was used for mutational parameter PGSM . For each150

replicate of each scenario, we obtained the skyline plot (median and 95%HPD intervals of the θ(t j)151

posterior distributions) and estimated the Bayes factor between constant size and variable demography152

by using logistic regression. Estimates of the mutational parameter PGSM were also obtained for each153

POD. For each scenario, mean absolute error, bias and proportion of times the true value falls outside the154
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credibility interval were estimated.155

Data sets156

In addition to PODs, four real data-sets from the literature were re-analysed with the ABC skyline plot157

described above. The first data-set comes from the whale shark (Rhincodon typus), the largest extant fish.158

Whale sharks inhabit all tropical and warm temperate seas and are considered an endangered species with159

a global population decline of more than 50% in the last three generations (Pierce and Norman, 2016).160

We have re-analysed a data-set of 478 individuals genotyped at 14 microsatellite loci from Vignaud et al.161

(2014b). The second example is the leatherback turtle (Dermochelys coriacea), the most widely distributed162

sea turtle found from tropical to sub-polar waters. The global population has been reduced in about163

40% in the last three generations. As species, the leatherback turtle is classified as vulnerable, mainly164

because of the Northwest Atlantic population that shows an increase in number of nests. However, other165

populations are critically endangered (Wallace et al., 2013). The data-set re-analysed (215 individuals166

genotypes at 10 mocrosatellite loci; Molfetti et al., 2013) comes from the Northwest Atlantic population.167

Last, we re-analysed the data from the populations of two colobus monkeys at the Cantanhez National168

Park in Guinea Bissau (Minhós et al., 2016). The Western black-and-white colobus (Colobus polykomos,169

22 individuals genotypes at 14 loci) and the Temminck’s red colobus (Procolobus badius ssp. temminckii,170

23 individuals genotyped at 13 loci) are two sympatric species from the Western African rainforest171

considered to be vulnerable and endangered respectively (Oates et al., 2008; Galat-Luong et al., 2016).172

Data were analysed with the same prior distributions as PODs except for the colobus monkeys datasets,173

which consist of tetranucleotide markers. Previous evidence suggests that tetranucleotide microsatellite174

mutations are mainly of only one repeat unit (e.g. Leopoldino and Pena, 2003; Sun et al., 2012). In order175

to incorporate this prior knowledge, half of the simulations had PGSM = 0 (i.e. a strict stepwise mutation176

model, SMM) and the other half had the parameter sampled from a uniform distribution in the range (0,1).177

For comparison, demographic history of the four real data sets was also explored using the MIGRAINE178

software (Rousset and Leblois, 2016, http://kimura.univ-montp2.fr/˜rousset/ Migraine.htm) under the179

model of a single panmictic population with an exponential change in population size. To infer model180

parameters, MIGRAINE uses coalescence-based importance sampling algorithms under a maximum181

likelihood framework (Leblois et al., 2014) using OnePopVarSize model. In this model, MIGRAINE182

estimates present and ancestral scaled population sizes (θ0 = 4N0µ and θA = 4NAµ) and the scaled time of183

occurrence of the past change in population size (D = T/4N, going backward from sampling time, when184

the population size change began). The past change in population size is deterministic and modelled using185

an exponential growth or decline that starts at time D. Before time D, scaled population size is stable and186

equal to θA. MIGRAINE allows departure from the strict SMM by using a GSM with parameter PGSM for187

the geometric distribution of mutation sizes. Finally, detection of significant past change in population size188

is based on the ratio of population size (θratio = θ0/θA). θratio > 1 corresponds to a population expansion189

and θratio < 1 to a bottleneck. If no significant demographic change is obtained, MIGRAINE is run again190

under a model of stable demography (a single value of θ ) for parameter estimation. For the whale shark191

data set, MIGRAINE analysis was already done in Vignaud et al. (2014b). For the leatherback turtle,192

MIGRAINE was run using 20 000 trees, 200 points at each iteration and a total of 16 iterations. For the193

colobus monkeys, we considered 2 000 trees, 400 points at each iteration and a total of 8 iterations.194

RESULTS195

Simulations196

The general behavior of the method can be described from three example scenarios (contraction with197

θ0 = 0.4, θ1 = 40, τ = 0.1, expansion with θ0 = 40, θ1 = 0.4, τ = 0.1 and constant size with θ = 40;198

mutational model with PGSM = 0.22). These examples correspond to intermediate parameter values.199

Results for all simulations are available in the supplementary material.200

The main output of the analysis is the graphical representation (i.e. the skyline plot) of the inferred201

demographic trajectory. It consists of a plot with three curves, representing the point estimates (median)202

and 95%HPD intervals of θ through time. Skyline plots obtained from PODs are congruent with the true203

underlying demography simulated (Figure 1), except in the less favorable scenarios with very recent or204

very small changes in population size (Supplementary Figures S2–S8). Although the trajectory of the205

posterior median of θ and the true trajectory share the same trend (declining, increasing or constant), they206

sometimes differ in magnitude or time-scale. This disparity is more prominent for bottleneck scenarios.207
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For a quantitative criterion to assert demographic change we explored the value of posterior proba-208

bilities for constant and variable population size models, similar to the scheme proposed by Heled and209

Drummond (2008). These probabilities (summarised as Bayes factors in Figure 2) proved to be useful210

for distinguishing bottleneck and expansion scenarios from demographic stability, although with lower211

performance for less favorable scenarios (Supplementary Figures S9–S15). Constant size scenarios show212

no evidence for size change. The power to detect demographic change reduces with smaller sample size213

and lower number of loci (Figure 2) because summary statistics are estimated with lower precision.214

Changes in population size were co-estimated with the mutational model parameter PGSM . Mean215

absolute error, bias and proportion of replicates for which the true value was outside the 95%HPD interval216

are reported in Table 1 for the three example scenarios and in Table S1 for all simulations. Estimates217

from expanding and stable populations show a relatively low error and bias and a good coverage of the218

credibility interval (except in the strict SMM case). However, estimates from declining populations show219

higher error and bias.220

Real Data221

The ABC analyses show evidence of population expansion for the whale shark (BF=59.62) and the222

leatherback turtle (BF=16.65); no evidence for population size changes in the black-and-white colobus223

(BF=0.58) and some evidence for a bottleneck in the red colobus (BF=2.63). Respective skyline plots224

reflect such trends (Figure 3). Results from MIGRAINE support the same trends, with θratio significantly225

larger than one for the whale shark and the leatherback turtle, significantly smaller than one for the226

red colobus and not significantly different from one for the black-and-white colobus (Supplementary227

Table S3). Scaled population size estimates through time are also in agreement, except for the leatherback228

turtle, where the MIGRAINE result suggests a more ancestral expansion of much greater magnitude.229

Regarding the mutational model, a large proportion of multi-step mutations seems to be present in230

all datasets, with PGSM estimates: P̂GSM = 0.55 (95%HPD=0.46–0.62) for the whale shark; P̂GSM = 0.50231

(95%HPD=0.38–0.60) for the leatherback turtle; P̂GSM = 0.43 (95%HPD=4.05×10−3–0.53) for the black-232

and-white colobus; and P̂GSM = 0.18 (95%HPD=0.02–0.75) for the red colobus (see also Supplementary233

Figure S16). Although very small values of PGSM are included in the credibility interval from the234

colobus analyses, the GSM is favoured over the SMM when an ABC model choice analysis is performed235

(BF=57.50 for the black-and-white colobus and BF=10.01 for the red colobus). These results are congruent236

with estimates of PGSM by MIGRAINE (Supplementary Table S3).237

DISCUSSION238

The ability of the ABC skyline plot to detect changes in population size varies largely across the different239

scenarios evaluated. The evidence for demographic change was often strong (even very strong) in240

declining and expanding populations. However, demographic changes of small magnitude and close241

to the present were the hardest to detect. Recent or small magnitude events leave a weak signal in the242

genetic data and are also hard to identify for alternative methods (see Girod et al., 2011; Leblois et al.,243

2014; Nikolic and Chevalet, 2014). In any case, the method is conservative, since most analyses of stable244

populations yielded negative or little evidence for demographic change.245

The main appeal of skyline plots is to depict demographic trajectories not bounded by a mathematical246

function; thus, potentially reflecting more realistically the demography of natural populations. However,247

our results show that plotted trajectories only loosely reflect the true demography, particularly for248

contracting populations. The match between the true and inferred demographic trajectory was good for249

constant size populations and for some expanding populations. Ancestral and current population sizes250

(the extremes of the skyline plot) were also retrieved accurately for favourable scenarios. Nevertheless,251

the shape of the curve representing the transition between population sizes was a poor representation of252

the true demographic trajectory in many cases. While this conclusion is specific for the implementation253

presented in this work, it calls to caution for the interpretation of results from other methods yielding254

smooth skyline plots (e.g. Heled and Drummond, 2008; Gill et al., 2013; Nikolic and Chevalet, 2014).255

The key for a smooth skyline plot is the prior on the effective-size autocorrelation through time. The256

demographic history consists of several demographic periods. Within each period the effective size at257

consecutive generations is correlated through some mathematical function (often a constant). Between258

consecutive periods, population size can be independent (our approach) or correlated by different sets of259

priors. Drummond et al. (2005) proposed using an exponential prior for the effective size (θi) at period i260
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with mean equal to the previous period effective size (θi−1). In the Bayesian skyride and skygrid (Minin261

et al., 2008; Gill et al., 2013) the correlation of effective size through time is modelled with a Gaussian262

Markov random field that penalizes differences in effective size across periods in function of the temporal263

distance among them. A superficial comparison with the VarEff method (Nikolic and Chevalet, 2014) and264

the extended Bayesian skyline plot (Heled and Drummond, 2008) seems to indicate that their inferences265

suffer from problems of performance (see Supplementary Figure S19).266

Bottlenecked populations, which show the greatest discrepancy between the skyline plot and the267

true demographic curve, are also the scenarios for which the mutational parameter PGSM was inferred268

with largest bias. Similar patterns of summary statistics are produced with large PGSM values and with269

a bottleneck (e.g. large allele size variance, see Supplementary Table S2), which make accurate joint270

inference of demography and mutational models difficult. This difficulty of distinguishing between271

scenarios with frequent multi-step mutations and contracting populations also explains the low power272

to detect some bottleneck cases, such as those with large PGSM values and strong declines in population273

size (see Supplementary Figures S11). A negative effect on demographic inference due to mutational274

model misspecification has been also reported for alternative methods (see Girod et al., 2011; Leblois275

et al., 2014; Nikolic and Chevalet, 2014).276

Globally, our results highlight the interest of using complementary data and inference methods. In the277

four real-data populations, their demographies have been previously studied in the original publications.278

In addition to the MIGRAINE analysis of microsatellite data, Vignaud et al. (2014b) inferred a population279

expansion for the whale shark by using Bayesian skyline plot analysis on mitochondrial DNA sequence280

data, corroborating the signal of expansion for this species. In the case of the leatherback turtle, the281

previous analyses were less conclusive (Molfetti et al., 2013). An extended Bayesian skyline plot on282

microsatellite data suggested an expansion, but it was not significant, and the skyline plot on mitochondrial283

DNA data did not show any demographic change. In contrast, analysis of microsatellite data with284

MSVAR (a coalescent sampler approach, Beaumont, 1999; Storz and Beaumont, 2002) suggested a strong285

population decline. However, it must be noted that MSVAR assumes a strict SMM, which can lead to286

biases in the demographic estimates when microsatellite mutations include a substantial proportion of287

multi-step changes (Girod et al., 2011; Faurby and Pertoldi, 2012). Our estimates of the PGSM parameter288

and the two-phase model used in BEAST suggest a strong departure from the SMM and lead us to favour289

the hypothesis of population expansion. Finally, the original analysis of the two colobus species found290

significant evidence of population decline for both of them (Minhós et al., 2016). Again, this evidence291

was obtained from MSVAR and the extended Bayesian skyline plot implemented in BEAST assuming a292

SMM. Despite the prior results suggesting that tetranucleotide microsatellite mutations add or remove a293

single repeat, our analyses (ABC skyline plot and MIGRAINE) rejected the SMM for the black-and-white294

colobus. This explains the difference between their results and our demographic inference, which supports295

a constant size for this population.296

Results from demographic inferences have been reported in the form of the scaled parameters θ and τ297

throughout this work. This is because rescaling to natural parameters (effective population size in number298

of individuals and time in number of generations or years) requires independent knowledge of mutation299

rates, which is unavailable for most species (including our four study cases). If such knowledge exists,300

a prior can be used in DIYABC to incorporate this information in the analysis and make inferences on301

natural scale parameters. Otherwise, we advocate reporting coalescent scaled parameters as results of the302

analysis. This allows the discussion of the result considering different mutation rates and reinterpretation303

of results if information on mutation rates is obtained in the future for the focal species.304

A common problem for the inference of population size changes is the presence of population structure305

or gene flow. Most methods aiming to detect population size change often assume the analysis of a single,306

independent population, but violation of this assumption usually leads to false detection of bottlenecks307

(e.g. Heller et al., 2013; Nikolic and Chevalet, 2014, for skyline plot approaches). We expect the same308

effect in the implementation of the skyline plot analysis we present here. However, distinguishing between309

population structure and population decline in the ABC framework is possible under some circumstances310

with the appropriate summary statistics (Peter et al., 2010) that can be included in future implementations311

of the ABC skyline plot.312

Indeed, the ease of incorporating new summary statistics and models is of prime interest for imple-313

menting the skyline plot in the ABC framework. Multiple samples of the same population at different314

times (as in experimental or monitored populations and ancient DNA studies) can easily be simulated315
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allowing for better estimates of the effective population size (Waples, 1989; Navascués et al., 2010).316

Models with multiple populations can also be simulated and skyline plots for each of the populations317

estimated. Extensions to other molecular markers will be straightforward to develop and already exist for318

genomic data (e.g. Boitard et al., 2016). Finally, other demographic parameters, such as the migration319

rate (Pool and Nielsen, 2009), could be subject to variation with time and they, too, could be inferred with320

a similar scheme. To sum up, there is potential to develop this approach in different directions, to address321

new questions in future research.322

In this work we presented a detailed description of how to compute an approximate-Bayesian-323

computation skyline plot and assessed its performance on stable and changing simulated populations324

characterized with microsatellite markers. Its power to detect the signal of demographic change is similar325

to alternative methods. However, its potential ability to depict the demography of natural populations326

more realistically must not be overrated. Still it offers an analysis complementary to other methods and327

there is great potential to develop it to cover other models and types of genetic data.328
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Table 1. Estimation of mutational parameter PGSM

model θ0 θ1 τ PGSM MAE bias out of CI

contraction 0.4 40 0.1 0.22 0.14 0.13 0.01

expansion 40 0.4 0.1 0.22 0.05 -0.04 0.05

constant size 40 0.22 0.06 -0.03 0.00

MAE: mean absolute error; out of CI: proportion outside credibility interval (95%HPD). Estimates from

100 replicates.

Figure 1. ABC Skyline plots: simulations. Superimposed skyline plots (median in black, and

95%HPD interval in grey of the posterior probability distribution for θ(t)) from 100 replicates for

example (A) contraction (θ0 = 0.4, θ1 = 40, τ = 0.1), (B) expansion (θ0 = 40, θ1 = 0.4, τ = 0.1) and

(C) constant size (θ = 40) scenarios with mutational model PGSM = 0.22. Simulation of 30 loci sampled

at 50 diploid individuals. True demography is shown in orange. Note that present is at τ = 0 (left).
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Figure 2. Evidence for variable population size. Distribution of Bayes factor values (boxplot) from

100 replicates for example (A,D) contraction (θ0 = 0.4, θ1 = 40, τ = 0.1), (B,E) expansion (θ0 = 40,

θ1 = 0.4, τ = 0.1) and (C,F) constant size (θ = 40) scenarios with mutational model PGSM = 0.22.

Different sized data sets (number of individuals and loci) are presented, with simulation of 30 loci

(A,B,C) and simulation with 50 diploid individuals (D,E,F). For reference, Jeffreys (1961) scale is given

for the evidence against constant size.
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Figure 3. ABC Skyline plots: real data. Skyline plots (median in black, and 95%HPD interval in grey

of the posterior probability distribution for θ(t)) for whale shark (A), leatherback turtle (B), Western

black-and-white colobus (C) and Temminck’s red colobus (D). Bayes Factors (BF) are reported for the

variable versus constant size model. Demographic trajectories based on parameters point estimates from

MIGRAINE analysis are shown with a green line for reference. Note that present is τ = 0 (left).
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