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Understanding how proteins mutate is critical to solving a host of biological problems.

Mutations occur when an amino acid is substituted for another in a protein sequence. The

set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment

algorithms. The quality of the resulting alignment is used to assess the similarity of two or

more sequences and can vary according to assumptions modeled by the substitution

matrix. Substitution strategies with minor parameter variations are often grouped together

in families. For example, the BLOSUM and PAM matrix families are commonly used

because they provide a standard, predefined way of modeling substitutions. However,

researchers often do not know if a given matrix family or any individual matrix within a

family is the most suitable. Furthermore, predefined matrix families may inaccurately

reflect a particular hypothesis that a researcher wishes to model or otherwise result in

unsatisfactory alignments. In these cases, the ability to compare the effects of one or more

custom matrices may be needed. This laborious process is often performed manually

because the ability to simultaneously load multiple matrices and then compare their

effects on alignments is not readily available in current software tools. This paper presents

SubVis, an interactive R package for loading and applying multiple substitution matrices to

pairwise alignments. Users can simultaneously explore alignments resulting from multiple

predefined and custom substitution matrices. SubVis utilizes several of the alignment

functions found in R, a common language among protein scientists. Functions are tied

together with the Shiny platform which allows the modification of input parameters.

Information regarding alignment quality and individual amino acid substitutions is

displayed with the JavaScript language which provides interactive visualizations for

revealing both high-level and low-level alignment information.
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ABSTRACT11

Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur

when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid

substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment

is used to assess the similarity of two or more sequences and can vary according to assumptions modeled

by the substitution matrix. Substitution strategies with minor parameter variations are often grouped

together in families. For example, the BLOSUM and PAM matrix families are commonly used because

they provide a standard, predefined way of modeling substitutions. However, researchers often do not

know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore,

predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to

model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects

of one or more custom matrices may be needed. This laborious process is often performed manually

because the ability to simultaneously load multiple matrices and then compare their effects on alignments

is not readily available in current software tools. This paper presents SubVis, an interactive R package for

loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously

explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes

several of the alignment functions found in R, a common language among protein scientists. Functions

are tied together with the Shiny platform which allows the modification of input parameters. Information

regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript

language which provides interactive visualizations for revealing both high-level and low-level alignment

information.
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INTRODUCTION32

Prediction of protein similarity through sequence alignment is an important tool for a number of biological33

applications including the understanding of evolutionary divergence, identification of active/conserved34

regions in proteins, and identification of key structural motifs in proteins. Identification of similarities35

among protein families, individual proteins, or even short segments of a protein chain can give scientists36

insights as to how an amino acid insertion or mutation may alter the active regions within the putative37

protein. Accurate alignment of two or more proteins being compared is an important first step in evaluating38

similarity and many algorithms exist that use a wide range of criteria to find the best alignment (Ma and39

Wang, 2014; Haque et al., 2009; Gotoh, 1999; Li and Homer, 2010).40

Alignments are highly dependent on algorithm parameters, such as gap penalties and scoring type41

(local or global). One of the parameters influencing alignment scores is the chosen substitution matrix42

capturing the likelihood of amino acid substitutions (Altschul, 1991). Substitution matrices capture43

the likelihood of amino acid substitutions by reporting the log-odds ratio of each possible substitution44

calculated by45
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si j =

ln
qi j

pi p j

λ
(1)

where, for amino acid i and amino acid j, s is the substitution score, q is the set of observed frequencies,46

p is the probability of random appearance, and λ is a positive scaling constant allowing for the use of47

different logarithm bases without changing observed frequencies. Conservative substitutions have a48

positive score and non-conservative substitutions have a negative score (Pearson, 2013). Standard,49

predefined matrices offer a quick way to model substitutions and those matrices that differ only by50

variations of selected parameters can be grouped into families. Two well-known matrix families are51

the PAM (Dayhoff et al., 1978; Schwartz and Dayhoff, 1978) and BLOSUM (Henikoff and Henikoff,52

1992) matrices. A summary of both matrix families is given by Pearson (2013). Although both PAM and53

BLOSUM find the log-odds ratios for matrix values, each family has different methods to calculate the54

likelihood of substitution. PAM matrices are based on the mutation frequency of closely related proteins55

which is then extrapolated to more distant evolutionary lines. Instead of extrapolation of highly related56

proteins, BLOSUM matrices calculate frequencies by locating conserved blocks and then use a threshold57

to exclude closely and moderately related proteins (for a more detailed discussion on how PAM and58

BLOSUM matrices affect alignments we direct the reader to (Mount, 2008; Altschul, 1991; Pearson,59

2013). Other matrix families exist (Müller et al., 2002; Benner et al., 1994) and the development and60

analysis of additional families is a subject of ongoing research.61

Predefined matrices may not adequately model substitutions for a variety of reasons. New substitution62

strategies may be required and result in the modification of existing matrices (Yu and Altschul, 2005)63

or the construction of entirely new ones. Reasons why predefined matrices may not accurately model64

substitutions include the following scenarios: application-specific alignments (States et al., 1991; Paila65

et al., 2008), matrix optimization (Saigo et al., 2006), compensating for non-conventional amino acid66

composition (Jimenez-Morales et al., 2008), aligning distantly related sequences (Prlić et al., 2000),67

accounting for site specific dynamics in phylogenetic models (Wang et al., 2008), and incorporating68

structural information (Vilim et al., 2004; Teodorescu et al., 2004; Goonesekere and Lee, 2008), [for69

another survey of custom substitution matrices see Yamada and Tomii (2014)]. There are several70

standardized matrices for phylogenetic inference models, such as JTT (Jones et al., 1992) and WAG71

(Whelan and Goldman, 2001), but these matrices rely on a single set of stationary frequencies to describe72

protein family evolution. It is evident that evolutionary heterogeneity exists across sites within proteins and73

must be taken into account (Wang et al., 2008; Rokas and Carroll, 2008; Dean et al., 2002; Echave et al.,74

2016). Wang and colleagues have introduced substitution-selection and class frequency mixture models75

to improve maximum likelihood estimation of phylogenies (Wang et al., 2008, 2014). Unfortunately,76

the capabilities of computational tools for protein sequence alignments using customizable matrices77

and visualization for structure/function prediction have not kept pace with the advances in phylogenetic78

models (Whelan and Goldman, 2001; Wang et al., 2008, 2014).79

Multiple substitution matrices can be compared to find the most appropriate one (Altschul, 1991). Rios80

et al. (2015) and Agrawal and Huang (2009) illustrate the importance of comparing pairwise alignments81

produced by varying substitution matrices. However, this can be a difficult task. Comparison often82

includes analysis of both alignment quality and behavior at individual amino acid positions. If using83

predefined matrices, it may not be known which matrix family most accurately reflects the likelihood of84

individual substitutions among the proteins being studied. Even within a family, one matrix may be more85

suitable than others given a specific application (Altschul, 1991). Furthermore, none of the predefined86

matrix families may adequately represent a scientist’s knowledge about a particular set of proteins. In the87

latter case, custom matrices are required to achieve accurate alignments which often need to be compared88

to other widely used or custom matrices.89

There are few tools for addressing the complex problem of choosing the most appropriate substitution90

matrix for protein sequence alignments. Because of these needs, we have developed SubVis, a highly91

interactive R (R Core Team, 2013) package that allows the simultaneous visual exploration of how varying92

substitution matrices affect alignment results. To address the shortcomings of previous tools, SubVis93

• Allows the uploading or text entry of FASTA (Pearson and Lipman, 1988) sequences.94

• Utilizes widely-known R functions from the Biostrings package (Pages et al., 2016).95

2/15

PeerJ reviewing PDF | (2017:03:16843:1:1:NEW 10 May 2017)

Manuscript to be reviewed



• Permits the application of several widely-used substitution matrices and multiple custom matrices.96

• Provides intuitive and interactive visualizations to facilitate simultaneous exploration of protein97

alignments produced by multiple substitution matrices. Detail information, such as the log-odds98

score for each substitution, is available through mouse interaction.99

• Employs the Shiny package (Chang et al., 2016) and JavaScript for web-based parameter loading100

and visualization, respectively.101

The remainder of this paper is organized as follows. First, we present background information includ-102

ing the difficulties associated with choosing a substitution matrix and previous attempts using visualization103

to help understand the effect of substitution matrices. Second, the organization and implementation of104

SubVis are discussed. Third, a case study illustrates the utility of the system. Fourth, we discuss where the105

system can be found, the help content available to users, and we conclude with avenues of future work.106

BACKGROUND107

Alignment Quality108

Performing quality pairwise sequence alignments is a critical first step in protein analyses such as the109

formation of multiple sequence alignments and phylogenic tree construction (Agrawal and Huang, 2009).110

As described in detail by Landan and Graur (2008), alignments are subject to a host of errors, such as111

the lack of parameters accurately reflecting true conditions before analysis is performed. This lack of a112

priori information makes the seriousness of the error difficult to judge and contributes to uncertainty that113

obfuscates biological insight.114

Summary statistics can be useful for eliminating poor alignments from analysis during the initial115

investigation. However, summary statistics can be problematic if they are not supplemented by detailed116

exploration. For example, percent identity is a simple, popular metric but suffers from several deficiencies,117

including high uncertainty and important calculation variations that are mostly ignored (Raghava and118

Barton, 2006). Another aggregate quality metric is the alignment score which accounts for substitution119

scores and gap penalties (Henikoff, 1996). However, many different alignments can result in the same120

score (Landan and Graur, 2008). Furthermore, scoring functions can be suboptimal and result in an121

alignment with a higher error being assigned a higher score. Edgar and Sjölander (2004) illustrate some of122

the problems associated with assigning scores by analyzing three quality measures. Each presented score123

has drawbacks that include not compensating for over-alignment, under-alignment, alignments offset124

from the reference alignment, and a scoring function that itself requires decisions regarding parameter125

input. Statistical significance represented by a P-value is often used to judge assigned alignment scores126

(Mitrophanov and Borodovsky, 2006). However, this descriptor can suffer from assumptions about the127

model of randomness used and from the fact that multiple P-value methods may be needed when varying128

either the alignment parameters or the alignment algorithm. Further complicating quality assessment is129

that current methods for finding the statistical significance for alignments that allow gaps are particularly130

flawed (Agrawal et al., 2008).131

The choice of substitution matrix is critical to defining and producing a quality alignment. This132

choice becomes more important as alignment uncertainty increases (Henikoff, 1996). However, evaluating133

substitution matrices can be a difficult task. Complex relationships among variables that affect protein134

mutations are often simplified with model assumptions which may not be correct (Crooks et al., 2005).135

Furthermore, substitution matrix evaluation can depend on some of the same factors described above,136

including alignment scope (local or global) and whether gap penalties are applied (Henikoff, 1996).137

Agrawal and Huang (2009) illustrate the type of analysis that is made difficult with the range and138

variability of substitution matrix choice. Their work evaluates 15 substitution matrices with a range of139

parameter sets. For each of the matrices, several alignment quality measures are compared. Although140

substitution matrix evaluation is crucial in producing quality alignments, there is a shortage of tools that141

can accommodate variability in parameters, are able to scale to a large number of matrices, and allow142

exploration beyond summary quality measures.143

Visual Approaches144

Interactive visualization can be useful when comparing alignments resulting from the application of multi-145

ple substitution matrices and varying parameter sets. Furthermore, a tool that allows visual exploration146

3/15

PeerJ reviewing PDF | (2017:03:16843:1:1:NEW 10 May 2017)

Manuscript to be reviewed



can help uncover the details hidden in sometimes problematic summary statistics. However, there have147

been few approaches applying interactive visualization to the analysis of substitution matrices. Bulka et al.148

(2006) extends the work of Nakai et al. (1988) and the work of Tomii and Kanehisa (1996) to present a149

web-based tool. The tool uses a color-coded minimum spanning tree to visualize the similarities of amino150

acid indices to a substitution matrix. Although these provide insight into the substitution similarity, the151

visual display does not reflect the spatial context inherent in typical two- or three-dimensional alignment152

representations. Additionally, the tool is limited in the amount of detail available through interactions.153

Eyal et al. (2007) presents another web-based platform that performs multiple sequence alignment based154

on pair-to-pair substitution matrices. However, it is designed for a specific custom matrix type, does155

not provide standard matrices, and lacks features that facilitate comparison among different matrices.156

CRASP (Afonnikov and Kolchanov, 2004) is a web-accessible tool that takes protein family sequence157

alignments, a phylogenetic tree or other weights, physicochemical characteristics, and conservation filters158

as input. The output consists of a correlation matrix, hierarchical clustering diagram, positional frequency159

statistics, and physicochemical descriptors. Additional output includes statistical estimators of coordinated160

substitution contributions. Their approach is limited to cases where the substitutions are thought to be161

highly correlated with one another and using a matrix or proteins which do not reflect this assumption162

could lead to inaccurate alignments. Much of the output is visualized as text with limited interactions.163

Despite these attempts, much of the comparison and other analysis is still either performed manually164

or with tools that lack the flexibility provided by combining standard substitution matrices, custom165

substitution matrices, visualization, and robust interactions. We are not aware of any tool explicitly166

designed for integrating alignment algorithms and interactive comparison across a range of substitution167

matrices.168

SubVis addresses many of the limitations to currently available platforms. SubVis allows scientists169

to load a pair of proteins to be aligned, choose basic parameters (such as alignment score type and170

gap penalties), and apply multiple substitution matrices. Applied matrices can include PAM matrices,171

BLOSUM matrices, or custom matrices. After performing the alignment, options exist for the high-level172

exploration of percent identities and alignment pair scores. Interactions also exist for the low-level173

exploration of individual amino acids across selected substitution matrices by position in the aligned174

sequence, properties (hydrophobic, physicochemical properties, volume, conserved or not, etc.), pattern175

matching, and locations of insertions and deletions (indels).176

IMPLEMENTATION177

SubVis consists of three functional units: interface and parameter management, alignment processing, and178

visualization. Interface and parameter management controls the capture of alignment parameters, including179

selected substitution matrices. It also allows the user to choose the visualization (overview, detail view,180

or search view) and options for selecting and searching displayed items. Alignment processing accepts181

alignment parameters captured from the interface and includes those in the construction of alignments.182

The visualization component displays the alignments after each of the selected parameters (including the183

substitution matrix) has been applied and provides detailed information with mouse interaction.184

Interface and Parameter Management with Shiny185

Shiny is a recently developed R package for building web applications and was chosen for this system186

because of the GUI widgets available and its integration with R. The first screen shown when starting187

SubVis is the parameter view under the “Options” tab which captures alignment input such as the proteins188

to be aligned, the predefined and custom matrices to be applied, gap penalties, and scoring type. Users are189

allowed to load (and change) the following parameters:190

• Protein sequences. Two protein sequences in FASTA (Pearson and Lipman, 1988) format can be191

loaded by selecting the sequence file from the local computer or entering the sequences into text192

boxes manually, including with copy and paste. If sequences are entered into the text boxes, FASTA193

files are created in the package directory structure for future reference. One sequence represents the194

pattern and the other represents the subject. (Sequences are referred to as the pattern or subject to195

be consistent with the Biostrings package where they are defined in context of the functions utilized196

in the SubVis implementation.)197
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• Predefined substitution matrices. Multiple PAM and BLOSUM matrices can be selected by198

checking the corresponding boxes. Individual gap penalties can be entered for each predefined199

matrix. Predefined PAM matrices included in SubVis are PAM30, PAM40, PAM70, PAM120,200

and PAM250. Predefined BLOSUM matrices included in SubVis are BLOSUM45, BLOSUM50,201

BLOSUM62, BLOSUM80, and BLOSUM100.202

Figure 1. Loading custom matrices. Multiple custom matrices can be loaded by creating a master file

listing the filenames and penalties associated with each matrix. In the master file, each line consists of the

filename followed by the gap and extension penalties associated with individual matrices. Specific

requirements for formatting the custom matrix master file can be found in the help contents. Several

example custom matrices and master files are included in the software package.

• Custom substitution matrices. Multiple space delimited text files each containing a custom matrix203

can be loaded. Users can load custom multiple matrices by selecting a master file that lists the204

filename of each matrix. In the master file listing the custom matrices, each filename is on a separate205

line. Following each filename on the same line are space delimited gap penalties for each custom206

matrix. In addition to exploring different matrices, users can explore the effects of penalties by207

repeating the same matrix file name with variations in gap and extension penalties. Figure 1 shows208

the relationship between the master file and the custom matrices.209

• Alignment score type. Users can choose from local, global, overlap, local-global, and global-local210

scoring.211

• View choice. Clicking the “GO” button in the parameter capture view performs the alignment and212

automatically switches to the “VIZ” tab where users can choose from three visualization views. The213

overview provides quality information by sorting and displaying four percent identity variations214

(May, 2004; Raghava and Barton, 2006) and the overall alignment score. Based on this information,215

matrices can be excluded or included in the detail view. The detail view shows individual amino216

acids as either color-coded boxes or the single letter abbreviation, the classification of amino acid217

properties, and the log-odds score for each substitution. This view also allows alignment navigation.218

The search view allows searching by amino acid position in the aligned sequence, matching sections219

in the alignment pair, indel location, and subsequence matching. The overview, detail view, and220

search view can provide information that aids in the analysis of which substitution model is the221

most suitable for a given scenario. Users can change views simply by clicking on the desired tab or222

selecting the appropriate visualization from a drop-down menu. Features available for each view223

are listed in Table 1 and will be discussed in detail later.224
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Table 1. Views available in SubVis. Beside each view is a list of interactions and information available

for capturing parameters and visualization (overview, detail view, and search view).

Parameter Capture Overview

Input protein sequences Matrices sorted by percent identity

Select predefined matrices Matrices sorted by overall alignment score

Load custom matrices Individual matrix scores

Input penalties per matrix Individual matrix percent identity

Select scoring type

Detail View Search View

Pairwise alignments per matrix Search by amino acid position

Amino acid names and positions Search for indels

Amino acid substitution scores Search for matches in alignment pairs

Multiple amino acid classifications Search for input sequences

One letter amino acid abbreviations

Alignment navigation

Subject/pattern filtering

Sequence Processing with R225

After capturing input with Shiny, SubVis reports the parameters to the alignment processing component and226

utilizes functions from the Biostrings package to perform sequence alignment, calculate alignment scores,227

capture indel locations, perform any other necessary alignment/string manipulations, and communicates228

input changes to the visualization component. The primary functions used by SubVis are described below229

(more detailed information can be found in the Biostrings documentation):230

• pairwiseAlignment. Accepts the two protein sequences (pattern and subject), gap costs, alignment231

score type, and substitution matrices entered as parameters. Alignment choices include local232

alignments using the Smith-Waterman algorithm (Smith and Waterman, 1981), global alignments233

with the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970), and overlap algorithms234

with an ends free algorithm. There are also two mixed scoring types: local-global scoring and235

global-local scoring. All other parameters are left at default values. SubVis invokes this function236

once for each substitution matrix. Because SubVis is open source, users can implement other237

alignment algorithms or substitute alignments produced by other tools.238

• matchPattern. Finds all occurrences of an input pattern. The output is the starting and ending239

points of matches.240

• indel. Finds gaps in the alignment resulting from insertions and deletions in the aligned sequences.241

• pid. Calculates four percent identity types as reported by May (2004) and evaluated by Raghava and242

Barton (2006) where differences in denominator calculation reflect variations in defining sequence243

length. Parameters to this function indicate if the denominator should be defined as aligned positions244

plus internal gap positions (PID 1), aligned positions (PID 2), the length of the shorter sequence245

(PID 3), or the average of the two sequences (PID 4). For each selected matrix, SubVis sorts and246

then displays the four unique percent identities in a color-coded row.247

Before parameters are passed to alignment functions, they are checked for values and formats that may248

cause system errors. Tailored error messages include those for missing sequence files, missing penalties,249

and identical sequences. An error is also produced if the custom matrix option is enabled but a file listing250

the matrices has not been selected. SubVis generates a general error message if the pairwiseAlignment251

function defined by the Biostrings package fails. Possible causes of this error are poorly constructed252

sequences or custom matrices.253

Visualization with JavaScript254

After constructing alignments based on user input, the alignments and supporting information are dis-255

played. The interactive visualization component consists of an overview, a detail view, and a search view256

developed in JavaScript with information passed to it from R.257
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Figure 2. Overview. The overview provided by SubVis allows investigation of four unique percent

identity calculations and the alignment score per substitution matrix. The display before interaction is

shown in (A) and the highlighted substitution matrix selected with mouse movement is shown in (B).

Custom matrices begin with the prefix “CM” followed by their position in the master file. A legend in the

bottom-left corner lists how the maximum and minimum alignment score and PID correspond to color. In

this example, the PAM70 matrix has a relatively high alignment score and PID except for PID 1 for which

PAM70 is the lowest. The sequences used for this figure are G-protein coupled receptor 6 isoform b and

G-protein coupled receptor 12 from the rhodopsin family analyzed by Fredriksson et al. (2003). The

custom matrix file lists a single matrix with varying, user-defined penalties and was developed for

studying the transmembrane region of G protein-coupled receptors from the rhodopsin family (Rios et al.,

2015). The same sequences and parameters are used in Figure 3 and Figure 4.

Overview258

Despite the problems associated with summary statistics, they can be useful in preliminary analysis to259

help narrow the number of alignments being explored in detail. Percent identity is a commonly used260

measure in sequence alignment but variations in how it is calculated are not typically reported even though261

these differences can affect alignment assessment (Raghava and Barton, 2006). The overview in SubVis262

provides a high-level perspective of the alignments by sorting and then displaying the four variations of263
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Figure 3. Detail view. The detail view allows investigation of individual amino acids. Aligned

sequences are shown as pattern-subject pairs in the center using color-coded boxes (as shown) or one

letter abbreviations to represent individual amino acids. When the mouse moves over an individual amino

acid 1) the specific amino acid substitution occurring for that position in the aligned sequences and the

corresponding log-odds score are shown under the alignment score for each pair along the left side of the

display; 2) the top-left displays the gap cost, extension cost, and the score type; 3) a histogram is shown

above the set of alignment pairs displaying the frequency of each amino acid in the selected column for

all pairs; and 4) the log-odds score (“VAL”), the specific amino acid substitution (“SUB”), the current

amino acid (“AA”), and the position in the aligned sequence (“PO”) are displayed in the top-right.

percent identities provided by the pid function in the Biostrings package. The sorted percent identities for264

each matrix type are shown in a color-coded bar (Figure 2(A)) normalized and colored from blue (lowest265

percent identity) to red (highest percent identity). Under the set of PID rows is a normalized, color-coded266

bar of all matrix types sorted by alignment score. A legend in the bottom-left corner illustrates how colors267

correspond to the PID and score range. When the mouse moves over either a matrix’s percent identity268

or alignment score, the same matrix is selected in the other rows (Figure 2(B)) to ease comparison. At269

the same time, the numerical value of the percent identity and alignment score are displayed in the lower270

right corner. After exploring the overview, substitution matrices can be removed or added by revisiting271

the “Options” tab.272

Detail View273

After investigating alignments based on percent identities and alignment score, alignments and individual274

amino acids can be explored in the detail view (Figure 3). If the mouse is not over an amino acid,275

only basic information such as protein chain names, the matrix type per alignment pair, the score per276

alignment pair, and the amino acid position range after alignment is displayed. By default, amino acids277

are represented by colored boxes where an amino acid corresponds to a single color and gaps are black.278

If the mouse moves over a single amino acid, additional details appear. In the top-right corner,279

additional information includes the log-odds score, the substitution that occurred, the name of the selected280

amino acid, and the aligned position. (For amino acid - gap pairs, SubVis reports the log-odds score281

as undefined.) In the top-left corner, the gap penalties for that alignment are displayed along with the282

selected score type. Beneath the alignment score for each matrix type along the left side, the log-odds283

score and the substitution that occurred are displayed for amino acids appearing in the same column as284

the one selected. Above the set of alignments is a histogram that shows the type and number of the amino285

acids (and gaps) occurring in that column.286

Classifying amino acids according to their properties is an important part of protein research (Biro,287

2006; Koshi and Goldstein, 1997; Pommié et al., 2004; Bulka et al., 2006; Aftabuddin and Kundu, 2007).288
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Figure 4. Classification and searching. (A) Amino acids can be grouped according to the seven

classifications (Table 2) reported by Pommié et al. (2004). When a classification is selected, a legend

showing how amino acid colors correspond to classification groups is displayed in the top-center and the

histogram is recolored to match subgroups. Amino acids can also be grouped as conservative or

non-conservative. The physicochemical classification is shown here. (B) The same region in the search

view where matches to one of the search criteria are colored in red. This figure shows locations in the

view where the alignment pairs match.

SubVis allows amino acids in the aligned sequences to be classified into groups based on the physical289

and chemical properties of interest by selecting that group from a drop-down box (Figure 4). Groups290

are color-coded where a color corresponds to a single group. This simplifies alignment analysis by291

allowing groups of amino acids sharing common characteristics to be compared instead of individual292

amino acids. We use the classification scheme presented by Pommié et al. (2004). Table 2 shows the293

classes and subgroups. A legend of the grouping is shown at the top of the display and the histogram is294

also colored by group. Additionally, substitution pairs can be grouped as conservative (log-odds score295

> 0) or non-conservative (log-odds score < 0) (Pearson, 2013).296

Table 2. Amino acid classification groups per the scheme found in Pommié et al. (2004).

Hydrogen

Hydropathy Volume Chemical Charge Don/Acc Polarity Physicochemical

Hydrophobic Very Small Aliphatic Positive Donor Polar Aliphatic

Neutral Small Aromatic Negative Acceptor Nonpolar Basic

Hydrophilic Medium Sulfur Uncharged Both Sulfur

Large Hydroxyl None Hydroxyl

Very Large Basic Acidic

Acidic Amide

Amide G

F

P

W

Y
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There are many additional interactions to ease alignment navigation. Instead of colored boxes, the297

single letter amino acid abbreviation can be displayed. The default layout shows both the pattern and298

subject for each pair. Alignment sequences can be navigated forward and backward by clicking a button.299

To maintain positional context, incrementally moving forward or backward only shifts the alignment300

one-half of the number of amino acids currently displayed. SubVis also has an option for showing only301

the pattern or only the subject.302

Search View303

The search view includes several options for locating a desired alignment region. Users can search304

alignments by amino acid position in the aligned sequence by entering the position number into a text305

box. Searches can also locate indels, regions where the pattern and subject of an alignment pair match,306

and sections that match an input sequence. Indel locations and areas that fulfill match criteria are shown307

as red with the remainder of the sequence in gray.308

CASE STUDY309

We now present an example of how SubVis can aid in the exploration of alignment sequences produced310

by multiple matrices and their associated penalties. Intrinsically disordered proteins (Wright and Dyson,311

1999; Dunker et al., 2002; Dyson and Wright, 2005) contain functional regions associated with ill-defined312

fold structures. Although intrinsically disordered proteins are thought to participate in important functions313

such as network signaling and regulation, their lack of a stable, predictable structure makes designing314

effective analysis tools difficult. For example, Radivojac et al. (2011) attempted to construct a substitution315

matrix for disordered proteins. They tested their matrix, called DISORDER, on a wide range of disordered316

proteins and found that it did not produce a notable cumulative score improvement over BLOSUM62.317

Radivojac et al. (2011) notes that evaluating the performance of new matrices is more difficult than318

their construction. SubVis allows detailed exploration of the effect of substitution matrices and eases the319

alignment analysis for a given set of proteins, especially for insights about specific regions that may be320

hidden in aggregate scores. For example, we desired to test the hypothesis that the DISORDER matrix321

would perform better than the BLOSUM62 matrix when applied to the disordered DDX4 human and322

Xenopus laevis proteins. The BLOSUM62 and DISORDER matrices were both loaded into SubVis as323

custom matrices using a subset of the associated gap/extension costs reported by Radivojac et al. (Note324

that although the entire set of matrices could have been loaded for any pair of proteins, a smaller set325

makes our example more concise.) Specifically, the subset included the following custom matrices listed326

by label and matrix type followed by (gap cost, extension cost):327

328

CM0: DISORDER (-3.2, -0.1)329

CM1: DISORDER (-10, -0.6)330

CM2: DISORDER (-7.5, -0.9)331

CM3: BLOSUM62 (-3.2, -0.1)332

CM4: BLOSUM62 (-10, -0.6)333

CM5: BLOSUM62 (-7.5, -0.9)334

335

The overview produced by SubVis (Figure 5(A)) shows that the BLOSUM62 matrix generally per-336

forms better. For instance, the top three alignment scores are BLOSUM62 matrices and the bottom three337

alignment scores are DISORDER (Radivojac et al., 2011) matrices. Furthermore, all percent identities338

except for PID 2 have BLOSUM62 matrices as three out of the four highest percent identities. Evident339

from the color distribution, PID 2 results in the highest percent identities (72 max, 64 min) but has a340

similar ordering as the others except for a shuffling at the lower end. The two consistently best PID341

performers are DISORDER (CM0) and BLOSUM62 (CM3), both of which were produced with gap and342

extension costs of -3.2 and -0.1, respectively. For these two matrices, the maximum difference across all343

PID types is only one percent. Because the PID for CM0 and CM3 are similar but their alignment scores344

are less similar, we decided to explore those alignments in more detail.345

The search view and detail view in SubVis allowed us to learn more about the similarities and346

differences between CM0 and CM3. In the search view, individual regions were visually scanned by347

incrementally advancing the alignments from beginning to end. The region outlined with solid black348

rectangles in Figure 5(B) shows aligned regions that have similar match patterns in CM0 and CM3.349
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Figure 5. Case study. (A) Overview of PID and alignment score calculations show that BLOSUM62

generally outperforms DISORDER (Radivojac et al., 2011) for the DDX4 human and Xenopus laevis

proteins. CM0 (DISORDER) and CM3 (BLOSUM62) have similar penalties and PID results but

relatively different alignment scores. (B) Browsing the alignments in the search view shows similar

patterns for CM0 and CM3 that are marked with black rectangles in the figure. Black arrows indicate the

location of the glutamic acid to glutamine substitution. (C) The single letter amino acid abbreviation with

the substitution and substitution score that appear when the mouse moves over the amino acid pair

marked with arrows. The figure above was produced with a local alignment but a global alignment

produced similar results for both the overview and for the outlined regions.

Examining the single letter abbreviations in the detail view shows that the alignments are identical except350

for a single column offset (Figure 5(C)). The percent identity is the same for both regions but we wanted351

to find more detail about the substitution scores. Simple mouse interaction in SubVis allowed us to find352

where there are substitution scores in that region that differ between matrices. For example, CM0 scores353

the substitution of glutamic acid (E) to glutamine (Q) as 0. However, CM3 scores this substitution as 2354

(Figure 5(C)). Classifying the properties of the amino acids indicates why this substitution score is low355

for both matrices by showing that they share the same group for only hydropathy, volume, and polarity.356

Furthermore, CM3 has substitution scores that are greater than or equal to the corresponding substitution357

in CM0, except for the single tyrosine (Y) match. In that case, the substitution has a higher value in358

CM0. In cases where the region of interest is longer and expands across a larger, more varied range of359

substitution matrices, manually comparing the substitution values for even a limited set of substitutions360

can become cumbersome. SubVis can aid analysis even in these more complex cases by making the361

classification of amino acids and the score for a substitution quickly available.362
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RESULTS AND DISCUSSION363

SubVis allows scientists to load protein sequences and visually explore alignment differences that result364

from varying predefined and custom substitution matrices. This platform allows scientists to view365

coarse-grain and fine-grain information ranging from summary alignment scoring to specific amino acid366

substitution details. Additional interactions include searching multiple alignment pairs and classifying367

amino acids according to a selected property. The ability to load sequences, apply desired alignment368

parameters (including substitution matrices), search alignments, classify amino acids, and access detailed369

substitution scores facilitate the comparison of established substitution matrices and the evaluation of370

matrices being developed for specific purposes.371

SubVis utilizes general R programming constructs and the Biostrings package, both of which are372

well-known in the bioinformatics community. SubVis is available as an R package on CRAN. The373

package contains the data sets and custom matrices used to produce the presented figures. There is also374

a detailed vignette included in the package and demonstration videos located on GitHub. The SubVis375

package allows users to access the vignette through a “Help” tab persistent in all views. The help content376

includes (but is not limited to) descriptions of interactions, specific error messages, and the specific377

format of the file listing custom matrices and their associated penalties. The help section also explains378

the location of created files (sequence files created by text box entry and custom matrices) and when379

read/write permissions for those locations may be needed. The help content is organized by subject and380

can be accessed quickly by clicking on corresponding links at the top of the page.381

CONCLUSIONS AND FUTURE WORK382

Substitution matrices are crucial to alignment algorithms but current tools do not allow the simultaneous383

exploration of alignments resulting from multiple matrices. This work presents SubVis, an interactive R384

package for visually exploring the effects of substitution matrices on protein sequence alignment. Widely385

used matrices and multiple user-defined custom matrices can be applied to alignments. SubVis utilizes386

Shiny for capturing parameters, R to process alignments, and JavaScript to visualize overview and detail387

results. Users can easily transition from overall metrics, such as percent identity and alignment score, to388

detailed information for individual amino acids and vice versa. Many interactions allow the display of389

desired information including log-odds ratios, pattern matches, and amino acid classification by property.390

There are many opportunities for future work. For example, we plan to extend SubVis from pairwise391

sequence alignments to multiple sequence alignments and include more descriptors of alignment quality.392

We would also like to include the ability to dynamically build or modify individual substitution matrices393

and then immediately investigate the effects of changes on the alignment. Other avenues include the394

addition of automatic recommendation of substitution matrices so that the researcher can quickly narrow395

the number of matrices to be evaluated and the incorporation of visual alignment clustering to make396

comparison more intuitive to users.397

AVAILABILITY OF DATA AND MATERIALS398

Project name: SubVis399

Project home page - Package: https://cran.r-project.org/web/packages/SubVis/400

Project home page - Demo videos: https://github.com/sabarlowe/SubVis401

Operating system(s): Platform independent402

Tested browsers: Mozilla Firefox and Google Chrome403

Programming languages: R and JavaScript404

Other requirements: R ( > 3.3.0), Shiny (R package), Biostrings (R package), and a web browser405

License: GNU GPL > 3406

Data: The FASTA sequences for G-protein coupled receptor 6 isoform b (NP 005275.1), G-protein407

coupled receptor 12 (NP 005279.1), DDX4 Homo sapiens (AAH47455.1), DDX4 Xenopus laevis408

(NP 001081728.1), and supplemental sequences were downloaded from the Protein database at the409

National Center for Biotechnology Information (Coordinators, 2016). The data used in the manuscript,410

supplemental sequences, and supplemental custom matrices are provided as part of the software package.411
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