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ABSTRACT
Understanding how proteins mutate is critical to solving a host of biological problems.
Mutations occur when an amino acid is substituted for another in a protein sequence.
The set of likelihoods for amino acid substitutions is stored in a matrix and input
to alignment algorithms. The quality of the resulting alignment is used to assess the
similarity of two or more sequences and can vary according to assumptions modeled
by the substitution matrix. Substitution strategies with minor parameter variations are
often grouped together in families. For example, the BLOSUMandPAMmatrix families
are commonly used because they provide a standard, predefined way of modeling
substitutions. However, researchers often do not know if a given matrix family or
any individual matrix within a family is the most suitable. Furthermore, predefined
matrix families may inaccurately reflect a particular hypothesis that a researcher
wishes to model or otherwise result in unsatisfactory alignments. In these cases, the
ability to compare the effects of one or more custom matrices may be needed. This
laborious process is often performed manually because the ability to simultaneously
load multiple matrices and then compare their effects on alignments is not readily
available in current software tools. This paper presents SubVis, an interactive R package
for loading and applying multiple substitution matrices to pairwise alignments. Users
can simultaneously explore alignments resulting frommultiple predefined and custom
substitution matrices. SubVis utilizes several of the alignment functions found in
R, a common language among protein scientists. Functions are tied together with
the Shiny platform which allows the modification of input parameters. Information
regarding alignment quality and individual amino acid substitutions is displayed with
the JavaScript language which provides interactive visualizations for revealing both
high-level and low-level alignment information.

Subjects Bioinformatics, Computational Biology, Human-Computer Interaction
Keywords Bioinformatics, Substitution matrix, Sequence alignment, R package, Visual analytics

INTRODUCTION
Prediction of protein similarity through sequence alignment is an important tool for a
number of biological applications including the understanding of evolutionary divergence,
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identification of active/conserved regions in proteins, and identification of key structural
motifs in proteins. Identification of similarities among protein families, individual proteins,
or even short segments of a protein chain can give scientists insights as to how an amino
acid insertion or mutation may alter the active regions within the putative protein.
Accurate alignment of two or more proteins being compared is an important first step in
evaluating similarity and many algorithms exist that use a wide range of criteria to find
the best alignment (Ma &Wang, 2014; Haque, Aravind & Reddy, 2009; Gotoh, 1999; Li &
Homer, 2010).

Alignments are highly dependent on algorithm parameters, such as gap penalties and
scoring type (local or global). One of the parameters influencing alignment scores is the
chosen substitution matrix capturing the likelihood of amino acid substitutions (Altschul,
1991). Substitutionmatrices capture the likelihood of amino acid substitutions by reporting
the log-odds ratio of each possible substitution calculated by

sij =
ln qij

pipj

λ
(1)

where, for amino acid i and amino acid j, s is the substitution score, q is the set of observed
frequencies, p is the probability of random appearance, and λ is a positive scaling constant
allowing for the use of different logarithm bases without changing observed frequencies.
Conservative substitutions have a positive score and non-conservative substitutions have
a negative score (Pearson, 2013). Standard, predefined matrices offer a quick way to model
substitutions and those matrices that differ only by variations of selected parameters
can be grouped into families. Two well-known matrix families are the PAM (Dayhoff,
Schwartz & Orcutt, 1978; Schwartz & Dayhoff, 1978) and BLOSUM (Henikoff & Henikoff,
1992) matrices. A summary of both matrix families is given by Pearson (2013). Although
both PAM and BLOSUM find the log-odds ratios for matrix values, each family has
different methods to calculate the likelihood of substitution. PAM matrices are based on
the mutation frequency of closely related proteins which is then extrapolated to more
distant evolutionary lines. Instead of extrapolation of highly related proteins, BLOSUM
matrices calculate frequencies by locating conserved blocks and then use a threshold to
exclude closely and moderately related proteins (for a more detailed discussion on how
PAM and BLOSUM matrices affect alignments we direct the reader to (Mount, 2008;
Altschul, 1991; Pearson, 2013). Other matrix families exist (Müller, Spang & Vingron, 2002;
Benner, Cohen & Gonnet, 1994) and the development and analysis of additional families is
a subject of ongoing research.

Predefined matrices may not adequately model substitutions for a variety of reasons.
New substitution strategies may be required and result in the modification of existing
matrices (Yu & Altschul, 2005) or the construction of entirely new ones. Reasons why
predefined matrices may not accurately model substitutions include the following
scenarios: application-specific alignments (States, Gish & Altschul, 1991; Paila, Kondam
& Ranjan, 2008), matrix optimization (Saigo, Vert & Akutsu, 2006), compensating for
non-conventional amino acid composition (Jimenez-Morales, Adamian & Liang, 2008),
aligning distantly related sequences (Prlić, Domingues & Sippl, 2000), accounting for site
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specific dynamics in phylogenetic models (Wang et al., 2008), and incorporating structural
information (Vilim et al., 2004; Teodorescu et al., 2004; Goonesekere & Lee, 2008), (for
another survey of custom substitution matrices, see Yamada & Tomii (2014)). While
alignment of sequences is central to phylogenetic studies, these investigations are commonly
performed at the nucleotide or codon level. In the case of protein-level phylogenetic studies,
specialized, standardized matrices are vital for assessing evolutionary heterogeneity (Wang
et al., 2008; Wang, Susko & Roger, 2014; Rokas & Carroll, 2008; Dean et al., 2002; Echave,
Spielman &Wilke, 2016). Examples of phylogenetic-specific matrices include JTT (Jones,
Taylor & Thornton, 1992) andWAG(Whelan & Goldman, 2001). Despite the sophistication
of phylogenetic models, these matrices were not built for use in protein alignment with
customizable matrices and to visualize structure/function predictions (Whelan & Goldman,
2001;Wang et al., 2008;Wang, Susko & Roger, 2014).

Multiple substitution matrices can be compared to find the most appropriate one
(Altschul, 1991). Rios et al. (2015) and Agrawal & Huang (2009) illustrate the importance
of comparing pairwise alignments produced by varying substitution matrices. However,
this can be a difficult task. Comparison often includes analysis of both alignment quality
and behavior at individual amino acid positions. If using predefined matrices, it may
not be known which matrix family most accurately reflects the likelihood of individual
substitutions among the proteins being studied. Even within a family, one matrix may be
more suitable than others given a specific application (Altschul, 1991). Furthermore, none
of the predefined matrix families may adequately represent a scientist’s knowledge about a
particular set of proteins. In the latter case, custommatrices are required to achieve accurate
alignments which often need to be compared to other widely used or custom matrices.

There are few tools for addressing the complex problemof choosing themost appropriate
substitution matrix for protein sequence alignments. Because of these needs, we have
developed SubVis, a highly interactive R (R Core Team, 2013) package that allows the
simultaneous visual exploration of how varying substitution matrices affect alignment
results. To address the shortcomings of previous tools, SubVis

• Allows the uploading or text entry of FASTA (Pearson & Lipman, 1988) sequences.
• Utilizes widely-known R functions from the Biostrings package (Pages et al., 2016).
• Permits the application of several widely-used substitution matrices and multiple
custom matrices.
• Provides intuitive and interactive visualizations to facilitate simultaneous exploration
of protein alignments produced by multiple substitution matrices. Detail information,
such as the log-odds score for each substitution, is available through mouse interaction.
• Employs the Shiny package (Chang et al., 2016) and JavaScript for web-based parameter
loading and visualization, respectively.

In this paper, we present background information including the difficulties associated
with choosing a substitution matrix and previous attempts using visualization to help
understand the effect of substitution matrices. We describe the organization and
implementation of SubVis. Finally, we provide a case study illustrating the utility of SubVis.
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BACKGROUND
Alignment quality
Performing quality pairwise sequence alignments is a critical first step in protein
analyses such as the formation of multiple sequence alignments and phylogenic tree
construction (Agrawal & Huang, 2009). As described in detail by Landan & Graur (2008),
alignments are subject to a host of errors, such as the lack of parameters accurately reflecting
true conditions before analysis is performed. This lack of a priori information makes the
seriousness of the error difficult to judge and contributes to uncertainty that obfuscates
biological insight.

Summary statistics can be useful for eliminating poor alignments from analysis during
the initial investigation. However, summary statistics can be problematic if they are
not supplemented by detailed exploration. For example, percent identity is a simple,
popular metric but suffers from several deficiencies, including high uncertainty and
important calculation variations that are mostly ignored (Raghava & Barton, 2006).
Another aggregate quality metric is the alignment score which accounts for substitution
scores and gap penalties (Henikoff, 1996). However, many different alignments can result in
the same score (Landan & Graur, 2008). Furthermore, scoring functions can be suboptimal
and result in an alignment with a higher error being assigned a higher score. Edgar
& Sjölander (2004) illustrate some of the problems associated with assigning scores by
analyzing three quality measures. Each presented score has drawbacks that include not
compensating for over-alignment, under-alignment, alignments offset from the reference
alignment, and a scoring function that itself requires decisions regarding parameter
input. Statistical significance represented by a P-value is often used to judge assigned
alignment scores (Mitrophanov & Borodovsky, 2006). However, this descriptor can suffer
from assumptions about the model of randomness used and from the fact that multiple
P-value methods may be needed when varying either the alignment parameters or the
alignment algorithm.

The choice of substitution matrix is critical to defining and producing a
quality alignment. This choice becomes more important as alignment uncertainty
increases (Henikoff, 1996). However, evaluating substitution matrices can be a difficult
task. Complex relationships among variables that affect protein mutations are often
simplified with model assumptions which may not be correct (Crooks, Green & Brenner,
2005). Furthermore, substitutionmatrix evaluation can depend on some of the same factors
described above, including alignment scope (local or global) and whether gap penalties
are applied (Henikoff, 1996). Agrawal & Huang (2009) illustrate the type of analysis that
is made difficult with the range and variability of substitution matrix choice. Their work
evaluates 15 substitution matrices with a range of parameter sets. For each of the matrices,
several alignment quality measures are compared. Although substitution matrix evaluation
is crucial in producing quality alignments, there is a shortage of tools that can accommodate
variability in parameters, are able to scale to a large number of matrices, and that allow
exploration beyond summary quality measures.
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Visual approaches
Interactive visualization can be useful when comparing alignments resulting from the
application of multiple substitution matrices and varying parameter sets. Furthermore,
a tool that allows visual exploration can help uncover the details hidden in summary
statistics. However, there have been few approaches applying interactive visualization
to the analysis of substitution matrices. Bulka, desJardins & Freeland (2006) extends the
work of Nakai, Kidera & Kanehisa (1988) and the work of Tomii & Kanehisa (1996) to
present a web-based tool. The tool uses a color-coded minimum spanning tree to visualize
the similarities of amino acid indices to a substitution matrix. Although these provide
insight into the substitution similarity, the visual display does not reflect the spatial context
inherent in typical two- or three-dimensional alignment representations. Additionally, the
tool is limited in the amount of detail available through interactions. Eyal, Pietrokovski
& Bahar (2007) presents another web-based platform that performs multiple sequence
alignment based on pair-to-pair substitution matrices. However, it is designed for a
specific custom matrix type, does not provide standard matrices, and lacks features that
facilitate comparison among different matrices. CRASP (Afonnikov & Kolchanov, 2004)
is a web-accessible tool that takes protein family sequence alignments, a phylogenetic
tree or other weights, physicochemical characteristics, and conservation filters as input.
The output consists of a correlation matrix, hierarchical clustering diagram, positional
frequency statistics, and physicochemical descriptors. Additional output includes statistical
estimators of coordinated substitution contributions. Their approach is limited to cases
where the substitutions are thought to be highly correlated with one another and using a
matrix or proteins which do not reflect this assumption could lead to inaccurate alignments.
Much of the output is visualized as text with limited interactions.

Despite these attempts, much of the comparison and other analysis is still either
performed manually or with tools that lack the flexibility provided by combining standard
substitution matrices, custom substitution matrices, visualization, and robust interactions.
We are not aware of any tool explicitly designed for integrating alignment algorithms and
interactive comparison across a range of substitution matrices.

SubVis addresses many of the limitations to currently available platforms. SubVis
allows scientists to load a pair of proteins to be aligned, choose basic parameters (such
as alignment score type and gap penalties), and apply multiple substitution matrices.
Applied matrices can include PAM matrices, BLOSUM matrices, or custom matrices.
After performing the alignment, options exist for the high-level exploration of percent
identities and alignment pair scores. Interactions also exist for the low-level exploration
of individual amino acids across selected substitution matrices by position in the aligned
sequence, properties (hydrophobic, physicochemical properties, volume, conserved or not,
etc.), pattern matching, and locations of insertions and deletions (indels).

IMPLEMENTATION
SubVis consists of three functional units: interface and parameter management, alignment
processing, and visualization. Interface and parameter management controls the capture
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of alignment parameters, including selected substitution matrices. It also allows the user to
choose the visualization (overview, detail view, or search view) and options for selecting and
searching displayed items. Alignment processing accepts alignment parameters captured
from the interface and includes those in the construction of alignments. The visualization
component displays the alignments after each of the selected parameters (including the
substitution matrix) has been applied and provides detailed information with mouse
interaction.

Interface and parameter management with Shiny
Shiny is a recently developed R package for building web applications and was chosen for
this system because of the GUI widgets available and its integration with R. The first screen
shown when starting SubVis is the parameter view under the ‘‘Options’’ tab which captures
alignment input such as the proteins to be aligned, the predefined and custom matrices
to be applied, gap penalties, and scoring type. Users are allowed to load (and change) the
following parameters:

• Protein sequences. Two protein sequences in FASTA (Pearson & Lipman, 1988) format
can be loaded by selecting the sequence file from the local computer or entering the
sequences into text boxes manually, including with copy and paste. If sequences are
entered into the text boxes, FASTA files are created in the package directory structure
for future reference. One sequence represents the pattern and the other represents the
subject. (Sequences are referred to as the pattern or subject to be consistent with the
Biostrings package where they are defined in context of the functions utilized in the
SubVis implementation.)
• Predefined substitutionmatrices. Multiple PAM and BLOSUM matrices can be
selected by checking the corresponding boxes. Individual gap penalties can be entered
for each predefined matrix. Predefined PAM matrices included in SubVis are PAM30,
PAM40, PAM70, PAM120, and PAM250. Predefined BLOSUM matrices included in
SubVis are BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, and BLOSUM100.
• Custom substitutionmatrices. Multiple space delimited text files each containing a
custom matrix can be loaded. Users can load custom multiple matrices by selecting a
master file that lists the filename of each matrix. In the master file listing the custom
matrices, each filename is on a separate line. Following each filename on the same line are
space delimited gap penalties for each custom matrix. In addition to exploring different
matrices, users can explore the effects of penalties by repeating the samematrix file name
with variations in gap and extension penalties. Figure 1 shows the relationship between
the master file and the custom matrices.
• Alignment score type. Users can choose from local, global, overlap, local–global, and
global-local scoring.
• View choice. Clicking the ‘‘GO’’ button in the parameter capture view performs the
alignment and automatically switches to the ‘‘VIZ’’ tab where users can choose from
three visualization views. The overview provides quality information by sorting and
displaying four percent identity variations (May, 2004; Raghava & Barton, 2006) and the
overall alignment score. Based on this information, matrices can be excluded or included
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Figure 1 Loading custommatrices.Multiple custom matrices can be loaded by creating a master file list-
ing the filenames and penalties associated with each matrix. In the master file, each line consists of the file-
name followed by the gap and extension penalties associated with individual matrices. Specific require-
ments for formatting the custom matrix master file can be found in the help contents. Several example
custom matrices and master files are included in the software package.

in the detail view. The detail view shows individual amino acids as either color-coded
boxes or the single letter abbreviation, the classification of amino acid properties, and
the log-odds score for each substitution. This view also allows alignment navigation. The
search view allows searching by amino acid position in the aligned sequence, matching
sections in the alignment pair, indel location, and subsequence matching. The overview,
detail view, and search view can provide information that aids in the analysis of which
substitution model is the most suitable for a given scenario. Users can change views
simply by clicking on the desired tab or selecting the appropriate visualization from
a drop-down menu. Features available for each view are listed in Table 1 and will be
discussed in detail later.

Sequence processing with R
After capturing inputwith Shiny, SubVis reports the parameters to the alignment processing
component and utilizes functions from the Biostrings package to perform sequence
alignment, calculate alignment scores, capture indel locations, perform any other necessary
alignment/string manipulations, and communicates input changes to the visualization
component. The primary functions used by SubVis are described below (more detailed
information can be found in the Biostrings documentation):

• pairwiseAlignment. Accepts the two protein sequences (pattern and subject ), gap costs,
alignment score type, and substitutionmatrices entered as parameters. Alignment choices
include local alignments using the Smith–Waterman algorithm (Smith & Waterman,
1981), global alignments with the Needleman–Wunsch algorithm (Needleman &
Wunsch, 1970), and overlap algorithms with an ends free algorithm. There are also two
mixed scoring types: local–global scoring and global-local scoring. All other parameters
are left at default values. SubVis invokes this function once for each substitution matrix.
Because SubVis is open source, users can implement other alignment algorithms or
substitute alignments produced by other tools.
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Table 1 Views available in SubVis. Beside each view is a list of interactions and information available for
capturing parameters and visualization (overview, detail view, and search view).

Parameter capture Overview

Input protein sequences Matrices sorted by percent identity
Select predefined matrices Matrices sorted by overall alignment score
Load custom matrices Individual matrix scores
Input penalties per matrix Individual matrix percent identity
Select scoring type

Detail view Search view

Pairwise alignments per matrix Search by amino acid position
Amino acid names and positions Search for indels
Amino acid substitution scores Search for matches in alignment pairs
Multiple amino acid classifications Search for input sequences
One letter amino acid abbreviations
Alignment navigation
Subject/pattern filtering

• matchPattern. Finds all occurrences of an input pattern. The output is the starting and
ending points of matches.
• indel. Finds gaps in the alignment resulting from insertions and deletions in the aligned
sequences.
• pid. Calculates four percent identity types as reported by May (2004) and evaluated
by Raghava & Barton (2006) where differences in denominator calculation reflect
variations in defining sequence length. Parameters to this function indicate if the
denominator should be defined as aligned positions plus internal gap positions (PID 1),
aligned positions (PID 2), the length of the shorter sequence (PID 3), or the average of
the two sequences (PID 4). For each selected matrix, SubVis sorts and then displays the
four unique percent identities in a color-coded row.

Before parameters are passed to alignment functions, they are checked for values and
formats that may cause system errors. Tailored error messages include those for missing
sequence files, missing penalties, and identical sequences. An error is also produced if
the custom matrix option is enabled but a file listing the matrices has not been selected.
SubVis generates a general error message if the pairwiseAlignment function defined by the
Biostrings package fails. Possible causes of this error are poorly constructed sequences or
custom matrices.

Visualization with JavaScript
After constructing alignments based on user input, the alignments and supporting
information are displayed. The interactive visualization component consists of an overview,
a detail view, and a search view developed in JavaScript with information passed to it fromR.
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Overview
Despite the problems associated with summary statistics, they can be useful in preliminary
analysis to help narrow the number of alignments being explored in detail. Percent
identity is a commonly used measure in sequence alignment but variations in how it is
calculated are not typically reported even though these differences can affect alignment
assessment (Raghava & Barton, 2006). The overview in SubVis provides a high-level
perspective of the alignments by sorting and then displaying the four variations of percent
identities provided by the pid function in the Biostrings package. The sorted percent
identities for each matrix type are shown in a color-coded bar (Fig. 2A) normalized and
colored from blue (lowest percent identity) to red (highest percent identity). Under the set
of PID rows is a normalized, color-coded bar of all matrix types sorted by alignment score.
A legend in the bottom-left corner illustrates how colors correspond to the PID and score
range. When the mouse moves over either a matrix’s percent identity or alignment score,
the same matrix is selected in the other rows (Fig. 2B) to ease comparison. At the same
time, the numerical value of the percent identity and alignment score are displayed in the
lower right corner. After exploring the overview, substitution matrices can be removed or
added by revisiting the ‘‘Options’’ tab.

Detail view
After investigating alignments based on percent identities and alignment score, alignments
and individual amino acids can be explored in the detail view (Fig. 3). If the mouse is not
over an amino acid, only basic information such as protein chain names, the matrix type
per alignment pair, the score per alignment pair, and the amino acid position range after
alignment is displayed. By default, amino acids are represented by colored boxes where an
amino acid corresponds to a single color and gaps are black.

If the mouse moves over a single amino acid, additional details appear. In the top-right
corner, additional information includes the log-odds score, the substitution that occurred,
the name of the selected amino acid, and the aligned position. (For amino acid—gap pairs,
SubVis reports the log-odds score as undefined.) In the top-left corner, the gap penalties
for that alignment are displayed along with the selected score type. Beneath the alignment
score for each matrix type along the left side, the log-odds score and the substitution that
occurred are displayed for amino acids appearing in the same column as the one selected.
Above the set of alignments is a histogram that shows the type and number of the amino
acids (and gaps) occurring in that column.

Classifying amino acids according to their properties is an important part of protein
research (Biro, 2006; Koshi & Goldstein, 1997; Pommié et al., 2004; Bulka, desJardins &
Freeland, 2006; Aftabuddin & Kundu, 2007). SubVis allows amino acids in the aligned
sequences to be classified into groups based on the physical and chemical properties of
interest by selecting that group from a drop-down box (Fig. 4). Groups are color-coded
where a color corresponds to a single group. This simplifies alignment analysis by allowing
groups of amino acids sharing common characteristics to be compared instead of individual
amino acids. We use the classification scheme presented by Pommié et al. (2004). Table 2
shows the classes and subgroups. A legend of the grouping is shown at the top of the
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Figure 2 Overview. The overview provided by SubVis allows investigation of four unique percent iden-
tity calculations and the alignment score per substitution matrix. The display before interaction is shown
in (A) and the highlighted substitution matrix selected with mouse movement is shown in (B). Custom
matrices begin with the prefix ‘‘CM’’ followed by their position in the master file. A legend in the bottom-
left corner lists how the maximum and minimum alignment score and PID correspond to color. In this
example, the PAM70 matrix has a relatively high alignment score and PID except for PID 1 for which
PAM70 is the lowest. The sequences used for this figure are G-protein coupled receptor 6 isoform b and G-
protein coupled receptor 12 from the rhodopsin family analyzed by Fredriksson et al. (2003). The custom
matrix file lists a single matrix with varying, user-defined penalties and was developed for studying the
transmembrane region of G protein-coupled receptors from the rhodopsin family (Rios et al., 2015). The
same sequences and parameters are used in Figs. 3 and 4.

display and the histogram is also colored by group. Additionally, substitution pairs can be
grouped as conservative (log-odds score > 0) or non-conservative (log-odds score < 0)
(Pearson, 2013).

There are many additional interactions to ease alignment navigation. Instead of colored
boxes, the single letter amino acid abbreviation can be displayed. The default layout
shows both the pattern and subject for each pair. Alignment sequences can be navigated
forward and backward by clicking a button. To maintain positional context, incrementally
moving forward or backward only shifts the alignment one-half of the number of amino
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Figure 3 Detail view. The detail view allows investigation of individual amino acids. Aligned sequences
are shown as pattern-subject pairs in the center using color-coded boxes (as shown) or one letter abbrevi-
ations to represent individual amino acids. When the mouse moves over an individual amino acid (1) the
specific amino acid substitution occurring for that position in the aligned sequences and the correspond-
ing log-odds score are shown under the alignment score for each pair along the left side of the display;
(2) the top-left displays the gap cost, extension cost, and the score type; (3) a histogram is shown above
the set of alignment pairs displaying the frequency of each amino acid in the selected column for all pairs;
and (4) the log-odds score (‘‘VAL’’), the specific amino acid substitution (‘‘SUB’’), the current amino acid
(‘‘AA’’), and the position in the aligned sequence (‘‘PO’’) are displayed in the top-right.

acids currently displayed. SubVis also has an option for showing only the pattern or only
the subject.

Search view
The search view includes several options for locating a desired alignment region. Users
can search alignments by amino acid position in the aligned sequence by entering the
position number into a text box. Searches can also locate indels, regions where the pattern
and subject of an alignment pair match, and sections that match an input sequence. Indel
locations and areas that fulfill match criteria are shown as red with the remainder of the
sequence in gray.

CASE STUDY
We now present an example of how SubVis can aid in the exploration of alignment
sequences produced by multiple matrices and their associated penalties. Intrinsically
disordered proteins (Wright & Dyson, 1999; Dunker et al., 2002; Dyson & Wright, 2005)
contain functional regions associated with ill-defined fold structures. Although intrinsically
disordered proteins are thought to participate in important functions such as network
signaling and regulation, their lack of a stable, predictable structure makes designing
effective analysis tools difficult. For example, Radivojac et al. (2002) attempted to construct
a substitution matrix for disordered proteins. They tested their matrix, called DISORDER,
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Figure 4 Classification and searching. (A) Amino acids can be grouped according to the seven classifi-
cations (Table 2) reported by Pommié et al. (2004). When a classification is selected, a legend showing how
amino acid colors correspond to classification groups is displayed in the top-center and the histogram is
recolored to match subgroups. Amino acids can also be grouped as conservative or non-conservative. The
physicochemical classification is shown here. (B) The same region in the search view where matches to
one of the search criteria are colored in red. This figure shows locations in the view where the alignment
pairs match.

Table 2 Amino acid classification groups per the scheme found in Pommié et al. (2004).

Hydrogen
Hydropathy Volume Chemical Charge Don/Acc Polarity Physicochemical

Hydrophobic Very small Aliphatic Positive Donor Polar Aliphatic
Neutral Small Aromatic Negative Acceptor Nonpolar Basic
Hydrophilic Medium Sulfur Uncharged Both Sulfur

Large Hydroxyl None Hydroxyl
Very large Basic Acidic

Acidic Amide
Amide G

F
P
W
Y
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on a wide range of disordered proteins and found that it did not produce a notable
cumulative score improvement over BLOSUM62.

Radivojac et al. (2002) notes that evaluating the performance of new matrices is more
difficult than their construction. SubVis allows detailed exploration of the effect of
substitution matrices and eases the alignment analysis for a given set of proteins, especially
for insights about specific regions that may be hidden in aggregate scores. For example,
we desired to test the hypothesis that the DISORDER matrix would perform better than
the BLOSUM62 matrix when applied to the disordered DDX4 human and Xenopus laevis
proteins. The BLOSUM62 and DISORDER matrices were both loaded into SubVis as
custom matrices using a subset of the associated gap/extension costs reported by Radivojac
et al. (Note that although the entire set of matrices could have been loaded for any pair of
proteins, a smaller set makes our example more concise.) Specifically, the subset included
the following custommatrices listed by label andmatrix type followed by (gap cost, extension
cost):
CM0: DISORDER (−3.2, −0.1)
CM1: DISORDER (−10, −0.6)
CM2: DISORDER (−7.5, −0.9)
CM3: BLOSUM62 (−3.2, −0.1)
CM4: BLOSUM62 (−10, −0.6)
CM5: BLOSUM62 (−7.5, −0.9)

The overview produced by SubVis (Fig. 5A) shows that the BLOSUM62matrix generally
performs better. For instance, the top three alignment scores are BLOSUM62 matrices
and the bottom three alignment scores are DISORDER (Radivojac et al., 2002) matrices.
Furthermore, all percent identities except for PID 2 have BLOSUM62 matrices as three out
of the four highest percent identities. Evident from the color distribution, PID 2 results
in the highest percent identities (72 max, 64 min) but has a similar ordering as the others
except for a shuffling at the lower end. The two consistently best PID performers are
DISORDER (CM0) and BLOSUM62 (CM3), both of which were produced with gap and
extension costs of −3.2 and −0.1, respectively. For these two matrices, the maximum
difference across all PID types is only one percent. Because the PID for CM0 and CM3 are
similar but their alignment scores are less similar, we decided to explore those alignments
in more detail.

The search view and detail view in SubVis allowed us to learn more about the similarities
and differences between CM0 and CM3. In the search view, individual regions were visually
scanned by incrementally advancing the alignments from beginning to end. The region
outlined with solid black rectangles in Fig. 5B shows aligned regions that have similar
match patterns in CM0 and CM3. Examining the single letter abbreviations in the detail
view shows that the alignments are identical except for a single column offset (Fig. 5C).
The percent identity is the same for both regions but we wanted to find more detail about
the substitution scores. Simple mouse interaction in SubVis allowed us to find where there
are substitution scores in that region that differ between matrices. For example, CM0
scores the substitution of glutamic acid (E) to glutamine (Q) as 0. However, CM3 scores
this substitution as 2 (Fig. 5C). Classifying the properties of the amino acids indicates
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Figure 5 Case study. (A) Overview of PID and alignment score calculations show that BLOSUM62 gen-
erally outperforms DISORDER (Radivojac et al., 2002) for the DDX4 human and Xenopus laevis proteins.
CM0 (DISORDER) and CM3 (BLOSUM62) have similar penalties and PID results but relatively differ-
ent alignment scores. (B) Browsing the alignments in the search view shows similar patterns for CM0 and
CM3 that are marked with black rectangles in the figure. Black arrows indicate the location of the glutamic
acid to glutamine substitution. (C) The single letter amino acid abbreviation with the substitution and
substitution score that appear when the mouse moves over the amino acid pair marked with arrows. The
figure above was produced with a local alignment but a global alignment produced similar results for both
the overview and for the outlined regions.

why this substitution score is low for both matrices by showing that they share the same
group for only hydropathy, volume, and polarity. Furthermore, CM3 has substitution
scores that are greater than or equal to the corresponding substitution in CM0, except for
the single tyrosine (Y) match. In that case, the substitution has a higher value in CM0. In
cases where the region of interest is longer and expands across a larger, more varied range
of substitution matrices, manually comparing the substitution values for even a limited
set of substitutions can become cumbersome. SubVis can aid analysis even in these more
complex cases by making the classification of amino acids and the score for a substitution
quickly available.
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RESULTS AND DISCUSSION
SubVis allows scientists to load protein sequences and visually explore alignment differences
that result from varying predefined and custom substitution matrices. This platform allows
scientists to view coarse-grain and fine-grain information ranging from summary alignment
scoring to specific amino acid substitution details. Additional interactions include searching
multiple alignment pairs and classifying amino acids according to a selected property. The
ability to load sequences, apply desired alignment parameters (including substitution
matrices), search alignments, classify amino acids, and access detailed substitution scores
facilitate the comparison of established substitutionmatrices and the evaluation of matrices
being developed for specific purposes.

SubVis utilizes general R programming constructs and the Biostrings package, both
of which are well-known in the bioinformatics community. SubVis is available as an
R package on CRAN. The package contains the data sets and custom matrices used to
produce the presented figures. There is also a detailed vignette included in the package and
demonstration videos located on GitHub. The SubVis package allows users to access the
vignette through a ‘‘Help’’ tab persistent in all views. The help content includes (but is not
limited to) descriptions of interactions, specific error messages, and the specific format of
the file listing custommatrices and their associated penalties. The help section also explains
the location of created files (sequence files created by text box entry and custom matrices)
and when read/write permissions for those locations may be needed. The help content is
organized by subject and can be accessed quickly by clicking on corresponding links at the
top of the page.

CONCLUSIONS AND FUTURE WORK
Substitution matrices are crucial to alignment algorithms but current tools do not allow
the simultaneous exploration of alignments resulting from multiple matrices. This work
presents SubVis, an interactive R package for visually exploring the effects of substitution
matrices on protein sequence alignment. Widely used matrices and multiple user-defined
custom matrices can be applied to alignments. SubVis utilizes Shiny for capturing
parameters, R to process alignments, and JavaScript to visualize overview and detail
results. Users can easily transition from overall metrics, such as percent identity and
alignment score, to detailed information for individual amino acids and vice versa. Many
interactions allow the display of desired information including log-odds ratios, pattern
matches, and amino acid classification by property.

There are many opportunities for future work. For example, we plan to extend SubVis
from pairwise sequence alignments to multiple sequence alignments and include more
descriptors of alignment quality. We would also like to include the ability to dynamically
build or modify individual substitution matrices and then immediately investigate the
effects of changes on the alignment. Other avenues include the addition of automatic
recommendation of substitution matrices so that the researcher can quickly narrow the
number of matrices to be evaluated and the incorporation of visual alignment clustering
to make comparison more intuitive to users.
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AVAILABILITY OF DATA AND MATERIALS
Project name: SubVis
Project home page - Package: https://cran.r-project.org/web/packages/SubVis/
Project home page - Demo videos: https://github.com/sabarlowe/SubVis
Operating system(s): Platform independent
Tested browsers:Mozilla Firefox and Google Chrome
Programming languages: R and JavaScript
Other requirements: R (> 3.3.0), Shiny (R package), Biostrings (R package), and a web
browser
License: GNU GPL > 3
Data: The FASTA sequences for G-protein coupled receptor 6 isoform b (NP_005275.1),
G-protein coupled receptor 12 (NP_005279.1), DDX4 Homo sapiens (AAH47455.1), DDX4
Xenopus laevis (NP_001081728.1), and supplemental sequences were downloaded from the
Protein database at the National Center for Biotechnology Information (NCBI Resource
Coordinators, 2016). The data used in the manuscript, supplemental sequences, and
supplemental custom matrices are provided as part of the software package.
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