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ABSTRACT

Bioinformatics is currently faced with very large-scale data sets that lead to computa-
tional jobs, especially sequence similarity searches, that can take absurdly long times
to run. For example, the National Center for Biotechnology Information (NCBI) Basic
Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most
widely used tool for rapid similarity searching among nucleic acid or amino acid
sequences, is highly central processing unit (CPU) intensive. While the BLAST suite
of programs perform searches very rapidly, they have the potential to be accelerated. In
recent years, distributed computing environments have become more widely accessible
and used due to the increasing availability of high-performance computing (HPC)
systems. Therefore, simple solutions for data parallelization are needed to expedite
BLAST and other sequence analysis tools. However, existing software for parallel
sequence similarity searches often requires extensive computational experience and
skill on the part of the user. In order to accelerate BLAST and other sequence analysis
tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI
BLAST searches within a cluster, grid, or HPC environment by using a query sequence
distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant
improvements in processing speed. Thus, DCBLAST dramatically accelerates the
execution of BLAST searches using a simple, accessible, robust, and parallel approach.
DCBLAST works across multiple nodes automatically and it overcomes the speed
limitation of single-node BLAST programs. DCBLAST can be used on any HPC
system, can take advantage of hundreds of nodes, and has no output limitations. This
freely available tool simplifies distributed computation pipelines to facilitate the rapid
discovery of sequence similarities between very large data sets.

Subjects Agricultural Science, Bioinformatics, Computational Biology, Plant Science

Keywords BLAST, Sequence similarity, Parallel processing, Environment, Distributed computing,
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INTRODUCTION

Sequence-based homology searches are used widely for the analysis of nucleic acid
and amino acid sequence information. However, query-based searches, such as the
National Center for Biotechnology Information (NCBI) BLAST (Altschul et al., 1990)
and biosequence analysis using implementations of profile hidden Markov model
(HMM) methods (e.g., HMMER) (Eddy, 2011), are computationally intensive and were
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developed prior to the information explosion that has resulted from next-generation
sequencing (NGS) technologies. Timely processing of massive NGS data often require data
parallelization. BLAST+ improves BLAST speeds by breaking long sequences into shorter
ones for processing and leveraging the multicore architecture of modern microprocessors
(Camacho et al., 2009). Alternatively, the parallel local alignment search tool (PLAST)
exploits multithreading targeting multicore (2—8 cores) and many-core (dozens to hundreds
of cores) architectures and single instruction multiple data (SIMD) parallelism using
multicore microprocessors to speed up the processing of large datasets by three- to six-fold
(Nguyen & Lavenier, 2009). However, these parallelization programs use multicore or
multithread approaches within a single computer or node and report Expected (E)-values
that differ from those obtained using the NCBI BLAST+ algorithm.

The recent emergence of high-performance computing clusters and distributed
grid and cloud computing resources (Foster, 2003; Foster et al., 2008) and graphics
processing units (GPUs) (Owens et al., 2008) have significantly reduced the run times of
bioinformatics software. Cluster, grid or HPC environments with multiple nodes provide
large computational capacities that can significantly accelerate program execution speeds
through efficient job scheduling and parallelization across multiple nodes. Also, GPUs have
massively parallel programming unit architectures within a single hardware unit, which
allows them to perform more robustly than single-CPU processors (Owers et al., 2008).
However, developers must apply specialized single-instruction multiple thread (SIMT)
programming skills in order to take advantage of the massively parallel programming unit
architectures of GPU cores (Owens et al., 2008; Vouzis ¢ Sahinidis, 2011).

A number of parallel BLAST applications have been developed, including GridBLAST
(Krishnan, 2005), CloudBLAST (Matsunaga, Tsugawa & Fortes, 2008), mpiBLAST (Lin
etal, 2011), HPC-BLAST (Sawyer et al., 2015), PLAST (Nguyen ¢ Lavenier, 2009),
ScalaBLAST (Oehmen ¢ Baxter, 2013), a GPU-based BLAST (Ling ¢ Benkrid, 2010),
GPU-BLAST (Vouzis ¢ Sahinidis, 2011), and SCBI_MapReduce (Guerrero-Ferndndez,
Falgueras ¢ Claros, 2013). While these applications improve the execution time of BLAST,
their compilation and configuration are complicated to varying degrees depending up on
the libraries and platforms used.

Here, Divide and Conquer BLAST (DCBLAST) is introduced as a rapid and easy-
to-use implementation wrapper for NCBI BLAST+ that enables execution of sequence
alignment-based searches in cluster, grid, or HPC environment using a simple command-
line interface. DCBLAST operates by automatically dividing the query sequences into
a user-defined number of subsequences (N), submitting the distributed job to the
computing environment, and then merging the returned NCBI BLAST+ results. This
approach dramatically reduces job run times and is amenable to all large-scale BLAST
or BLAST+ analyses. This method allows the processor to obtain each job independently
and to ensure that each job has equivalent query sizes. This query size balancing is critical
because BLAST search execution time depends upon the length of the sequence, not upon
the number of sequences (Matsunaga, Tsugawa ¢ Fortes, 2008; Oehmen ¢ Baxter, 2013).
Because DCBLAST can use as many CPUs as are available within a particular cluster or
HPC, improvements in its BLAST performance are dependent upon the number of CPUs
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available. Although only experiments with BLAST are described here, the proposed solution
can also be applied to other applications with similar execution profiles, such as HMMER
(Eddy, 2011). We demonstrate the performance of DCBLAST using a high-performance
computing system that has 27 high-end nodes with 16 core processors each.

MATERIALS AND METHODS

Description. DCBLAST is an NCBI BLAST/BLAST+ wrapper that enables straightforward
parallelization and is available as open source. Regardless of the number of sequences, the
BLAST job run time is affected by the total sequence length of a query. Thus, DCBLAST
applies query size balancing by dividing input sequences into equivalently sized files. This
technique reflects a distributed computing approach that uses the functional programming
philosophy of MapReduce (Dean & Ghemawat, 2008). DCBLAST was constructed using the
Perl scripting language (http://www.perl.org) and additional modules can be downloaded
to support the development of DCBLAST including Config::Tiny, Data::Dumper, and
Path::Tiny (http://www.cpan.org). DCBLAST runs on Linux- or Unix-based systems,
which allow jobs to be submitted through the Sun Grid Engine (SGE) to process parallelized
tasks. DCBLAST can be implemented using any version of NCBI BLAST+ (Camacho et
al., 2009). While NCBI BLAST+ settings can affect the results, any desired configuration
of non-default values can be provided by the user. Also, DCBLAST supports all NCBI
BLAST/BLAST+ suite variations including BLASTN, BLASTX, BLASTP, TBLASTN,
TBLASTX, and PSI-BLAST. Alternatively, the user can alter each option according to their
particular HPC system and needs. DCBLAST operates by automatically dividing the query
sequences into a user-defined number of subsequences (N ), submitting the distributed job
to the computing environment, and then merging the NCBI BLAST+ alignment results.
An overview of these process steps is illustrated in Fig. 1.

Data preprocessing. DCBLAST executes query subdivision to ensure that all the jobs have
more or less equivalent query sizes, and that the number of query subsequences (N) is
based upon the user-defined number of CPUs available for a particular job according to
queue status. Multi-FASTA format files are used to provide an initial estimate of the total
sequence length within the query file and these Multi-FASTA files are then divided by N.
This produces a query comprised of minimal and approximately equal-sized subdivided
FASTA files. The use of approximately equal-sized queries, instead of an equivalent number
of sequences, maximizes CPU utilization and facilitates more rapid and balanced processing
times. This balancing approach is critical because BLAST search execution time depends
upon the length of the sequence, not the number of sequences (Matsunaga, Tsugawa &
Fortes, 2008). This step is the key aspect of DCBLAST that reduces computational time.
DCBLAST pseudocode is presented in Fig. 2.

Job submission. After query subdivision, DCBLAST automatically passes the query
subsequences to the job submission processor. DCBLAST can run a user-defined number
of jobs (N), if sufficient numbers of CPUs are available within a particular cluster, grid, or
HPC environment. The performance improvements obtained by DCBLAST are dependent
upon the number of CPUs. The Sun Grid Engine (SGE) can be used for job queuing
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Figure 1 The workflow of DCBLAST. Sequence query involves submission of a single FASTA file con-
taining multiple sequences. The sequences are then subdivided into multiple sequence query FASTA files
to achieve load balancing across multiple computer nodes. After BLAST/BLAST+ searching has been com-
pleted, the results from each search are merged into a single output file.

1.

© ® N o o kW DN

GetSplitFASTA(Multi-FASTA-File, Multi-FASTA-File-Length, N):

SplitSequencelLength=0
SeqCount=0

do

for all sequence in Multi-FASTA-File {
SplitSequencelength += Single-FASTA-Seqg-Length
SeqCount ++

last if SplitSequencelLength = (Multi-FASTA-File-Length / N) }

done

Figure 2 Pseudocode for the DCBLAST algorithm to perform query subdividing. The multiple query
sequences (in one FASTA file) are then subdivided into a set of query files until the subdivided lengths ex-
ceed that of the total length/N. Once subdivided, the program will then submit the individual subdivided
files to the HPC scheduler and BLAST/BLAST+ is carried out. Lastly, the BLAST/BLAST+ output files are
merged into a single report file that is returned to the user.
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on the master node. DCBLAST can handle the job submissions as an array. The SGE
supports the concept of an array job, which is submitted to the cluster once and can be
managed by a single job ID, rather than having to manage thousands of independent job
IDs. DCBLAST sets a variable called ‘SGE_TASK_ID’, which is based upon the number
of query subsequences, and which can be used within the job script to identify the correct
query file to be used for each job task.

Output. Standard output and standard errors are generated for array jobs submitted as
serial jobs. Upon job completion, DCBLAST generates a log file with an error log that
includes specific query names and error codes for each task. If no errors occur, then the
file remains empty. Also, the error log indicates whether an erroneous query file was used,
so that the user can check it and run the correct query file, rather than running the entire
DCBLAST job again. When complete, DCBLAST creates an output file in the ‘results’
output directory. DCBLAST merges all array jobs results into a single file, and this result
file is formatted using standard NCBI BLAST/BLAST+ parameters.

RESULTS AND DISCUSSION

Proof-of-concept and benchmarking experiments were conducted in order to determine
the relative efficiency of DCBLAST. The demonstration was done on the University
of Nevada (UNR) high-performance computing (HPC) cluster (nicknamed the
‘Grid’) using 27 high-end nodes with a dual eight (16)-core, 2.6 GHz CPU (Intel®
Xeon® Dual E5-2650 v2) processors and 256 Gb RAM that are managed by the SGE
(http://www.unr.edu/it/research-resources/the-grid). DCBLAST was tested using 1, 8,
16, 32, 64, 128, and 256 CPU cores across HPC nodes. The benchmark times included
subdivision of sequence queries, job submission, completion of BLAST searches, and
merging of the results.

DCBLAST performance metrics were collected after running a query of 35,386
Arabidopsis transcripts from The Arabidopsis Information Resource (TAIR) 10 database
(Lamesch et al., 2012) containing 43,546,761 bp on the UNR HPC cluster. All query
sequences were compared against the UniProtKB/Swiss-Prot protein database (release-
2014_07) (The UniProt Consortium, 2013) using the BLASTX option with max sequence
1, E-value cut off 1-e10, and print option 9. The UniProtKB/Swiss-Prot database (release-
2014_07) contained 546,000 proteins represented by 194,259,968 amino acid sequences.
Scaling performance of DCBLAST is shown in Fig. 3. DCBLAST showed accelerated
execution times that increased nonlinearly with an increasing number of CPU cores. Scaling
from one CPU core to 256 CPU cores resulted in more than a 143.51-fold improvement in
processing speed. However, there is not a clear correlation between the execution time and
the number of CPU cores because the run also includes the splitting of the query sequences
and merging of the results. DCBLAST displayed similar performance characteristics for
all programs within the NCBI suite of BLAST/BLAST+ programs and generated identical
E-value scores. Lastly, DCBLAST serves as an alternative solution to NCBI BLAST+ search
for faster analysis while guaranteeing identical results.

In order to showcase the relative utility of DCBLAST, we have summarized its features in
comparison to a set of widely used and parallelized variations of BLAST (Table 1). First, to
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Figure 3 Scaling performance of DCBLAST with Arabidopsis query transcripts versus the
UniProtKB/Swiss-Prot protein database. Speed benchmarks shown include processing times in
seconds and fold increases in performance when using 1, 8, 16, 32, 64, 128, and 256 CPU cores.

make DCBLAST easy to use, we sought to avoid cumbersome prerequisites such as the need
to create complex file structures associated with the database. However, the same is not true
for a number of other parallel BLAST programs that have been released that use libraries
such as Hadoop, Message Passing Interface (MPI), Open Message Passing (OpenMP), and
Remote Procedure Call (RPC) to facilitate distributed programming (Gropp ¢ Lusk, 1997;
Dagum & Menon, 1998; Sato, Boku & Takahashi, 2003; Shvachko et al., 2010). Typically,
these distributed programs are difficult to compile because many prerequisite libraries
must be installed. For example, an MPI-based approach requires a specific MPI library
style (e.g., MPICH, IntelMPI, BlueGene, MVAPICH, OpenMPI, or other styles), that
requires a particular type of network protocol and operating system. Although mpiBLAST
is the most highly recommended method for performing large-scale sequence similarity
searches (Lin et al., 2011), it does not currently support NCBI-BLAST+ and has limited
output formatting options (Table 1).

The Environment Modules package (Furlani, 1991; Furlani ¢ Osel, 1996) is a software
environment that can help simplify shell initialization for various software packages, such
as MPI, without requiring familiarity with the entire software package. Most compilers used
in parallel computing cannot generate high-performance code without significant guidance
from the developer (Bacon, Graham & Sharp, 1994; Oehmen ¢ Baxter, 2013). In addition,
HPC cluster computing environments tend to employ a heterogeneous environment and
libraries supporting a wide variety of applications. Thus, their use can be challenging for
the novice user. In contrast, DCBLAST is more accessible to the novice user because it
does not require extensive time, effort to compile the source code, preformat queries and
associated databases.
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Table 1 Comparison of the features of DCBLAST with those of existing parallel bioinformatics software for the performance of BLAST/BLAST+ searches.

Features DCBLAST HPC-BLAST GPU-BLAST PLAST mpiBLAST ScalaBLAST
Parallelize MapReduce MPT* SIMT" Ordered Index MPI MPI
algorithm Seed
Hardware HPC* environ- HPC environ- NVIDIA® GPU* SIMD! instruc- HPC environ- HPC environ-
requirement ment ment (Xeon & platform tions set (SSE? ment ment
Xeon phi) 2+ ) supported
CPU
Prerequisites Sun Grid Intel MPI CUDA" 2.3+, GCC v4.4+ , mvapich2 v1.4.1 Intel
Engine, Perl C/C++ compiler, GCC' v4.8.2+ cmake 2.8+ or mvapich2 C/C++ com-
(any version xild (Intel v1.4.1 2 or mva- piler, OpenMPI
5), Path::Tiny linker), xiar pich v1.2.0 3
(Perl module), (Intel archiving) or OpenMPI
Data::Dumper v1.4.1 or In-
(Perl module), tel MPI C/C++
Config: Tiny compiler
(Perl module)
Scalable across Yes Yes Yes (GPU) Yes Yes No
multithreads
Scalable across Yes Yes Not applicable No Yes Yes
multinodes
Support All version of All version of Not applicable Not applicable NCBI-BLAST NCBI-BLAST
BLAST version NCBI-BLAST+ NCBI-BLAST+ 2.2.20 1.1.1.1
Bibliography This report Sawyer et al. Vouzis & Sahini- Nguyen & Lave- Lin et al. (2011) Oehmen &
reference (2015) dis (2011) nier (2009) Baxter (2013)
Last update 4/18/17 08/25/16 02/09/16 04/21/16 11/28/2012 08/12/13
Limitations None Only BLASTN Only BLASTP Use only single Limited output Older version
and BLASTP node/similar re- format/Older of BLAST
sult to NCBI- version of
BLAST BLAST
Notes.

*MPI, Message Passing Interface.

SIMT, Single-Instruction Multiple-Thread.
°HPC, High Performance Computing.
dNVIDIA, Nvidia corporation.

¢GPU, Graphics Processing Units.

fSIMD, Single Instruction Multiple Data.
8SSE, Streaming SIMD Extensions.

hCUDA, Compute Unified Device Architecture.

IGCC, GNU Compiler Collection.
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Other BLAST options, such as HPC-BLAST, provide heterogeneous and adaptive
performance on any number of Xeon Phi and Xeon clusters (Sawyer et al., 2015). HPC-
BLAST provides an excellent reference manual and explains the best way to compile
NCBI-BLAST+ and mpiBLAST as well as HPC-BLAST. However, HPC-BLAST only
supports BLASTN and BLASTP, but not the complete NCBI-BLAST+ suite (Table 1).
Without the BLASTX option, HPC-BLAST has limited utility because it does not allow
cross comparisons to be made between nucleotide and protein datasets.

Several other state-of-the-art software algorithms related to BLAST include PLAST
and ScalaBLAST (Nguyen ¢ Lavenier, 2009; Oehmen ¢ Baxter, 2013). PLAST was designed
to use processor cache memory, Single Instruction Multiple Data (SIMD) Supplemental
Streaming SIMD Extensions 3 (SSE3) instruction set, multithreading, and a double-
indexing scheme, but it can only be used within a single node containing multiple processor
cores. Thus, PLAST is unable to take advantage of HPC systems with multiple nodes
(Table 1). Similarly, BLAST+ supports the SSE3 instruction set as well as multithreading.
ScalaBLAST was designed to run a large number of queries against either large or small
databases based upon an MPI library. To improve upon BLAST, which is already highly
efficient, ScalaBLAST uses a static load-balancing method centered on query sequence
length. As a result, all the MPI cores will have the same query lengths and share a target
database across virtually shared memory. This reduces the I/O bottleneck, takes advantage
of the increased memory bandwidth, and has minimal latency. However, ScalaBLAST
is limited because it supports only an older version of BLAST (BLAST revision 1.1.1.1
07/21/2006) and can suffer from memory management issues (Table 1).

In contrast, GPU-based BLAST software takes full advantage of large numbers
of parallelized GPU cores (Vouzis ¢ Sahinidis, 2011). However, running this type of
parallelization on highly specialized GPUs has some inherent limitations. For example,
the global memory of GPUs can limit the size of the dataset that can be analyzed, which
means that running comparisons against large databases, such as the NCBI non-redundant
database, might be problematic. Furthermore, GPU-BLAST is limited to only BLASTP
(Table 1). One additional issue related to parallelization software for BLAST/BLAST+ is
the utility of maintaining consistent E-values across the various implementations of
BLAST/BLAST+ , which have become the sequence similarity standards for database
searches. BLAST and BLAST+ E-values are calculated from three parameters: (1) the bit
score, (2) the length of the query, and (3) the size of the database (Karlin & Altschul, 1990).
Some parallelized implementations of BLAST, such as PLAST, do not maintain traditional
E-values and bit scores and thus the results obtained cannot be compared directly to NCBI
BLAST/BLAST+ outputs.

To overcome many of the obstacles outlined above, DCBLAST was designed to encourage
the use of HPC computing systems to execute large sequence analysis jobs. Analysis of
extremely large genomic and transcriptomic datasets for sequence similarities using NCBI
BLAST/BLAST+ on a single node can be slow and delay downstream analyses. This is
particularly true of transcriptome assembly files generated as descending-length, sorted
transcript FASTA file outputs generated by algorithms such as Trinity (Haas et al., 2013),
SOAPdenovo-Trans (Xie et al., 2014), and rnaSPAdes (Bankevich et al., 2012). Even if the
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user can split the query sequences into equal-sized query files, such as in SCBI_MapReduce
(Guerrero-Ferndndez, Falgueras ¢ Claros, 2013) or multiple random-sized query files,

the job execution time for split BLAST will not be optimized due to length variations
across the split files. Thus, the ability of DCBLAST to perform query balancing sets it
apart from all other distributed approaches. Furthermore, DCBLAST is much easier to
implement by a novice user than SCBI_MapReduce because it does not require users to
directly access the Transmission Control Protocol/Internet Protocol (TCP/IP) to send jobs
to specific computing nodes, a process which is not normally allowed in modern HPC
systems that utilize job schedulers. SCBI_MapReduce users must also define the number
of sequence subdivisions and the number of cores used for job processing. In contrast,
DCBLAST fully automates these steps, which makes job execution easier to optimize than
in SCBI_MapReduce, especially for extremely large datasets.

CONCLUSION

We have used the Perl scripting language to develop the open-source software program
DCBLAST as a powerful and simple implementation of BLAST to accelerate database
searches. DCBLAST is an easy-to-use HPC computing wrapper for BLAST with a simple
command-line interface that facilitates the processing of distributed sequence similarity
searches for the novice user. DCBLAST dramatically reduces BLAST database search times
for extremely large datasets by allowing distributed BLAST searches to be performed

on HPC clusters. DCBLAST achieved this improved speed through simple, balanced, and
automatic query splitting across the available cluster, grid, and cloud-based HPC resources,
such as Amazon EC2 (Juve et al., 2009). This precise load balancing minimizes the run time
for each available CPU, resulting in rapid job completion. Moreover, DCBLAST can be used
with any type of DNA and protein sequence file, affording maximal flexibility to the user
for de novo transcriptome or genome assemblies and more extensive genome-to-genome
or multi-genome sequence analyses. Experiments with BLASTX suggest that the proposed
DCBLAST will allow researchers to accelerate the execution of any program within the
NCBI BLAST/BLAST+ suites as well as other sequence analysis programs such as HMMER
(Eddy, 2011), BLAT (Kent, 2002), PLAST (Nguyen ¢ Lavenier, 2009), and GPU-BLAST
(Vouzis & Sahinidis, 2011). In summary, DCBLAST provides a simple, rapid, flexible, and
easy method for the bioinformatics community to accelerate large-scale database sequence
analysis tasks.
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