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ABSTRACT
Obtaining human population level estimates of the prevalence of foodborne pathogens
is critical for understanding outbreaks and ameliorating such threats to public health.
Estimates are difficult to obtain due to logistic and financial constraints, but citizen
science initiatives like that of the American Gut Project (AGP) represent a potential
source of information concerning enteric pathogens. With an emphasis on genera
Listeria and Salmonella, we sought to document the prevalence of those two taxa within
the AGP samples. The results provided by AGP suggest a surprising 14% and 2% of
samples contained Salmonella and Listeria, respectively. However, a reanalysis of those
AGP sequences described here indicated that results depend greatly on the algorithm
for assigning taxonomy and differences persisted across both a range of parameter
settings and different reference databases (i.e., Greengenes and HITdb). These results
are perhaps to be expected given that AGP sequenced the V4 region of 16S rRNA gene,
which may not provide good resolution at the lower taxonomic levels (e.g., species),
but it was surprising how often methods differ in classifying reads—even at higher
taxonomic ranks (e.g., family). This highlights the misleading conclusions that can be
reached when relying on a single method that is not a gold standard; this is the essence
of Segal’s Law: an individual with one watch knows what time it is but an individual
with two is never sure. Our results point to the need for an appropriate molecular
marker for the taxonomic resolution of interest, and calls for the development of more
conservative classification methods that are fit for purpose. Thus, with 16S rRNA gene
datasets, one must be cautious regarding the detection of taxonomic groups of public
health interest (e.g., culture independent identification of foodborne pathogens or taxa
associated with a given phenotype).

Subjects Food Science and Technology, Microbiology, Public Health
Keywords Listeriosis, Pathogen detection, Citizen science, Microbiome, Taxonomy,
Salmonellosis

INTRODUCTION
Obtaining estimates of the prevalence of foodborne pathogens is critical to public health
because the estimates affect policy, allocation of funding, and understanding of foodborne
outbreaks. Such figures are difficult to obtain but estimates do exist based on surveillance
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programs. Estimates by the US Center for Disease Control of the number of cases in 2013
of Salmonella and Listeria was 7,277 (incidence = 15.19) and 123 (incidence = 0.26),
respectively, per 100,000 individuals in the United States (http://www.cdc.gov/mmwr/
preview/mmwrhtml/mm6315a3.htm). These numbers are based on the active monitoring
done through FoodNet (Foodborne Diseases Active Surveillance Network) and come from
laboratory-confirmed infections in 10 US localities that account for about 15% of the
US population. Such monitoring has provided extremely valuable data to help evaluate
prevention measures, understand the causes and transmission of food-borne diseases, and
set targets for improving the domestic food supply (Centers for Disease and Prevention,
2000; Watstein & Jovanovic, 2003). However, monitoring of the type done by FoodNet is
not without caveats, chief among them are the underreporting of cases due to infected
individuals not visiting local health facilities when sickened with a foodborne pathogen.

A complementary approach to large-scale surveillance networks managed by state and
federal agencies is the solicitation of the general population to participate in a study or
data collection initiative; such information may provide an independent estimate of the
prevalence of enteric pathogens such as Listeria and Salmonella. One such initiative is
the American Gut Project (AGP; http://www.americangut.org), which describes itself as
‘‘. . . one of the world’s largest crowd sourced, citizen science projects in the country (USA).
We discover new information daily to shed light on the connection between the human
microbiome and health.’’ The AGP has performed sequencing of the V4 region of the 16S
rRNA gene from thousands of individual participant’s skin, mouth, and/or feces. Such
an approach is not without caveats, however. Chief among them are the potential bias
introduced by the non-random participation by citizens (i.e., convenience sampling), the
computational and bioinformatic challenges associated with analyzing the large amount
of DNA sequence data, and the potential for misinterpretation (Gonzalez et al., 2016).
Nevertheless, the data that is produced may be quite informative about public health
issues related to foodborne pathogens by detecting carriers and asymptomatic cases that
hospital-centric sampling schemes would miss.

Here we describe our efforts to use the data produced by the AGP to determine
the prevalence of Listeria and Salmonella—two genera with species of public health
interest as causative agents of gastroenteritidis (or worse such as death and spontaneous
abortion in women). Given the rich metadata associated with the human subjects
that participated in the AGP, we were particularly interested in determining life style
habits or other factors that correlate strongly with individuals that are positive for
particular pathogens; we were encouraged by the publicly available results provided
by the AGP that showed 14% and 2% of samples did contain either Salmonella
or Listeria, respectively (ftp://ftp.microbio.me/AmericanGut//ag-July-29-2016//07-
taxa/notrim/otu_table_fecal_L6.biom). However, in attempting to validate those results
we found that taxonomic classification of reads varied greatly depending on the algorithm
and reference database used. Our objective here is to describe those additional analyses and
discuss the implications of our results for using such data for public health surveillance.
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Table 1 Summary of the four different methods used to assign taxonomy to reads.Default parameter settings are provided and ‘‘additional’’ val-
ues represent those used to determine the influence of settings on the congruence between methods.

Classifier Description Parameter settings

blast_e_value
default: 0.001BLAST Assignment is based on the best hit from BLAST (Altschul

et al., 1990)
additional: 1e−20, 1e−50, 1e−65

confidence
default: 0.5RDP

Assignment via a Naïve Bayes Classifier under which reads
are parsed into 8-mers (Wang et al., 2007)

additional:0.6, 0.7, 0.8
min_consensus_fraction

default:0.51
additional: 0.75, 0.9

similarity: 0.9
sortmerna_e_value: 1.0
sortmerna_coverage: 0.9

SortMeRNA
Assignment is based on a variant of the Longest Increas-
ing Subsequence for string matching within which align-
ment quality is based on E-values (Kopylova et al., 2014)

sortmerna_best_N_alignments: 5
min_consensus_fraction

default: 0.51
additional: 0.68

similarity: 0.9

UCLUST
UCLUST clustering algorithm in conjunction with a ref-
erence database (Edgar, 2010)

uclust_max_accepts: 3

MATERIALS AND METHODS
American Gut Project data
American Gut Project data as of August 1, 2016 were analyzed. Given that our original
objective was to determine the percentage of samples that contained either Salmonella or
Listeria we queried the QIIME output files (i.e., ftp://ftp.microbio.me/AmericanGut//ag-
July-29-2016/07-taxa/notrim/ag-cleaned_L6.txt) provided byAGP for those taxa. The AGP
data contained 10,294 fecal, skin, or oral samples, and yielded 188 samples positive for Lis-
teria and 1,495 positive for Salmonella; 31 samples were positive for both. This yielded 1,652
samples that were carried forward and analyzed here to determine the robustness of these
classifications across multiple taxonomy assigners. The sequences from each of the 1,652
were extracted from the fasta file available from AGP (ftp://ftp.microbio.me/AmericanGut/
/ag-July-29-2016/02-filtered/sequences-notrim.fna), which resulted in a 48,312,131
sequences to be classified. No additional filtering of reads was done.

Taxonomic assigners
For each of the 1,652 samples, we classified the reads associated with them to taxonomy
using four different classifiers—RDP (Wang et al., 2007), UCLUST (Edgar, 2010), BLAST
(Altschul et al., 1990), and SortMeRNA (Kopylova et al., 2014) (Table 1). SortMeRNA was
the method used to produce the AGP results. The program QIIME v1.9.1 (Caporaso et
al., 2010) was used to run each of these classifiers. These assigners do not represent an
exhaustive list of those available and were chosen as they are among the most frequently
used; additional classifiers are likely to only increase the variability that we observe and,
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therefore, not change our findings. Additionally, wemake no statements about the accuracy
of the methods as we do not know the true taxonomy of the reads but rather are estimating
the variability in classification across the methods, which illustrates the degree to which
conclusions about pathogen presence is dependent on the classifier used.

Within each classifier a range of cutoffs were used for the parameter that measures
confidence of taxonomic assignment (Table 1). The cutoff settings for these parameters are
specific to each assigner and were determined through exploratory analyses that evaluated
which cutoff values result in a substantial difference in number of reads classified. An
example is UCLUST, which has a min_consensus_fraction parameter, which determines
the fraction of hits thatmust agree in the number of assignments considered (max_accepts).
Withmax_accepts set to 3 (the default), all that matters is whether min_consensus_fraction
is more or less than 2/3. Thus, we evaluated two settings (1) min_consensus_fraction =
0.51 (the default, at least 2/3 agreement is required) and (2) min_consensus_fraction =
0.68 (complete agreement is required). The latter threshold is more conservative (higher
specificity) but also runs the risk of a higher false-negative rate (lower sensitivity).

Reference databases
Analyses were performed against two different reference databases. The first database
was the Greengenes (gg_13_8) database (DeSantis et al., 2006). This database was used
to produce the AGP results and we primarily focus on the results using this database.
Within the Greengenes database there are 99,322 sequences of which four are classified to
Salmonella (one to only genus and three to species enterica) and five sequences classified to
Listeria (one to each of the following species monocytogenes, seeligeri, grayi, fleischmannii,
weihenstephanensis).

The second database was the human microbiome specific reference database HITdb
described in Ritari et al. (2015). HITdb includes many fewer sequences than Greengenes
(n= 2,472) of which a single sequence is classified to Salmonella enterica and zero are
classified to the genus Listeria. The fewer number of representatives at this taxonomic level
for these pathogens, and likely others, may be a desirable property as it could avoid false-
positives. However, such a smaller database relative to Greengenesmay run the risk of being
too restrictive where a read could be reliably classified at one of those taxa given a sufficient
algorithm. The taxonomy of within HITdb begins at the phylum level and, therefore, we
do not present congruence among assigners at that kingdom level when using HITdb.

Congruence between classifiers
The results from each of the classifiers with the various parameter settings were combined
in a pairwise fashion. To evaluate the congruence between the classifiers, we calculated the
percent of total reads within each of five different comparison categories (1) match: both
classifiers assigned the read to the same taxon, (2) mismatch: the classifiers differed in the
taxonomy assigned to a read, (3 & 4) method 1 unclassified and method 2 unclassified:
cases in which one classifier did not assign the read to a taxon but the other method did,
and (5) noMatch: not classified by either classifier. The small fraction of the reads in the
noMatch category (∼0.8% for the default parameter settings using Greengenes) were not
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analyzed. As these categories suggest, we include reads classified to the species level and
reads partially classified (e.g., the lowest taxonomic rank assigned to a read was only phylum
or family). We also explored more explicit methods for determining congruence between
classifiers (i.e., inter-rater agreement; e.g., Cohen’s κ (Cohen, 1960)). Such statistics attempt
to account for the fact that two classifiers could agree by chance, which percent of reads
that match (like that used here) does not. However, preliminary analyses showed these
statistics to be difficult to interpret as a result of the large number of observations and at
times uneven distribution of classifications across a small number of categories (e.g., at the
kingdom or phylum level). For example, at higher taxonomic ranks there is clearly better
agreement between the classifiers (see Results) but prevalence and bias adjusted Cohen’s
κ (PABAK) was substantially less than that observed at the species level (Supplemental
Information 1).

As an example of how the incongruence among classifiers impacts the detection of a
specific taxon, we focused on the number of reads under each method that were classified
to the genera Salmonella and Listeria and quantified differences between classifiers. This
was done for only the results produced with Greengenes. The congruence betweenmethods
in which reads were classified to Salmonella and Listeria was evaluated using the Jaccard
Similarity index (0 meaning two methods classified completely different reads to a given
taxon; 1 denotes complete overlap in the reads classified to a given taxon).

RESULTS
Default settings and Greengenes database
The initial investigation into taxonomy assignments provided by the AGP indicated
188 samples positive for Listeria, 1,495 samples positive for Salmonella, and 31 samples
positive for both, yielding 1,652 samples. Taxonomic resolution was only to genus so the
AGP results do not include whether pathogenic Listeria (e.g., Listeria monocytogenes) was
present. To determine the robustness of these classifications we analyzed the sequences
from those samples using default parameter settings and the Greengenes database (similar
to the AGP analyses) and found little congruence among the four classifiers investigated
in the assignment of reads to lower taxonomic ranks. For example, in all but the highest
taxonomic rank (kingdom), there was an average difference of approximately 30% in the
number of unique taxa detected (Fig. 1). The pattern of difference in number of taxa
detected was also not consistent across the ranks where, for instance, the RDP classifier
detected more taxa than SortMeRNA at the genus and species level but not at the phylum,
class, order or family level (Fig. 1).

Focusing on congruence in the taxonomic identity assigned to reads, we found that
congruence among the classifiers decreased with decreasing taxonomic rank (Fig. 2). This
suggests that it is more difficult and there is greater error associated with classifying reads
to lower taxonomic ranks, which has also been observed in other studies (Mizrahi-Man,
Davenport & Gilad, 2013; Wang et al., 2007). This incongruence was primarily driven by
a read being classified to a taxonomic group with one method but not the other rather
than each method classifying the same read to different taxonomic groups (Fig. 2). Certain
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Figure 1 The number of unique taxa to which reads were assigned by each classification method. The
results are grouped by taxonomic rank and represent those obtained using default parameter settings and
the Greengenes database.

methods also seemed to result in greater incongruence. For example, RDP classified many
more reads at the genus and species levels than the other methods (Fig. 2).

Whenwe focused on the congruence across the classifiers in assigning reads to Salmonella
or Listeria, we found that 447 and 1,521 samples contained reads classified to Listeria or
Salmonella, respectively. The number of Listeria ‘positive’ samples reported by AGP was
188 and for Salmonella it was 1,495 (Table 2). However, the different methods varied
substantially in the number of reads classified to each genus with BLAST consistently being
the most liberal (i.e., classified the most reads) followed by UCLUST; RDP was the most
conservative (i.e., did not classify reads) (Table 2). Perhaps of more importance is that there
was little congruence between themethods in which reads were classified to each taxonomic
group as indicated by the low Jaccard similarity indices between the pairwise comparisons
of the methods (Fig. 3). The metric suggests there is little consistency among the methods
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Figure 2 The agreement between taxon assignments, grouped by taxonomic rank. Shown are the percentage of reads within each pairwise com-
parison among the classification methods that either matched, mismatched, or was not classified by one of the two methods at the default settings
and using the Greengenes reference database. For the unclassified designation method 1 refers to the first method listed in the comparison; the sec-
ond method is the second one listed (e.g., in the RDP/BLAST comparison method 1 is RDP and method 2 is BLAST). Results are shown for all con-
gruence categories (A) and, in order to better see the differences among the mismatch and unclassified categories, with match removed (B).

when classifying Listeria or Salmonella (genus or species) to the reads. For example, only
22% of the reads classified by UCLUST or BLAST to a species within Salmonella were
actually classified to the same species—some of those reads may not have been classified at
all by one method while others could have been classified to a different species (Fig. 3).

Some of these differences in classifications could likely be reconciled by changing the
confidence parameter. For example, with the default settings, read 10317.000001040_2356
was clustered by UCLUST and BLAST to the genus Salmonella, by RDP to the species
Salmonella enterica, and by SortMeRNA to the family Enterobacteriaceae. If one reduced
the confidence setting for UCLUST, BLAST and SortMeRNA then the methods might
converge on the classification of Salmonella enterica. Alternatively, the confidence settings
for UCLUST, BLAST, and RDP could be increased so the methods would converge on the
same classification at the family level. However, looking at read 10317.000001127_16840, it
was classified to the genus Enterococcuswithin the order Lactobacillales by SortMeRNA and
UCLUST, only to the class level (Bacilli) with RDP (even with the low default confidence
threshold of 0.5), and Listeria weihenstephanensis within the order Bacillales by BLAST.
This read, which is representative of many of the reads classified to Listeria by at least one
method, cannot be congruently classified below the rank of class. Although these examples
illustrate the ways in which differences in classification may be reconciled, this would be
problematic for an entire set of reads (e.g., each read may require its own threshold settings
and reads may be ‘under’ classified if one takes a lowest common ancestor approach).
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Figure 3 A heatmap of Jaccard Indices showing the low degree of congruence between the methods in
which reads were classified to (A) Salmonella and (B) Listeria. Values in the upper triangle are indices
for comparison at the genus level; values in the lower triangle are for comparisons at the species level. A
Jaccard Index of 1 indicates complete agreement in the reads classified to a given taxon for two methods; a
Jaccard index of 0 indicates no overlap in the reads classified to a given taxon for two methods.

Table 2 The number of reads assigned to species within the genera Salmonella and Listeria and the number of samples ‘positive’ for each.
Results are those obtained using default parameter settings and the Greengenes database.

Taxon Classifier Number of
reads classified

Number of
‘positive’ samples

BLAST 7 7
RDP 0 0
SORTMERNA 0 0

Listeria fleischmannii a

UCLUST 0 0
BLAST 85 39
RDP 0 0
SORTMERNA 4 4

Listeria grayi a

UCLUST 6 6
BLAST 1 1
RDP 0 0
SORTMERNA 0 0

Listeria monocytogenes

UCLUST 0 0
BLAST 3,753 426
RDP 80 54
SORTMERNA 14 12

Listeria weihenstephanensis a

UCLUST 9 8
BLAST 457 204
RDP 72 57
SORTMERNA 43 40

Salmonella enterica

UCLUST 2,090 522

Notes.
aNon-pathogenic and non-hemolytic.
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Figure 4 Comparison of UCLUST classification results to other classifier results across the different
parameter values and using both the Greengenes (A) and (C) and HITdb (B) and (D) databases.His-
tograms are shown for the comparison metrics between samples at the match and mismatch categories (A)
and (B) and for the unclassified by one method but not the other categories (C) and (D). In (C) and (D)
Method 1 unclassified are row labels and Method 2 unclassified are (continued on next page. . . )
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Figure 4 (. . .continued)
column labels. For illustrative purposes, the UCLUST Default and SortMeRNA 0.9 comparison between
unclassified reads and using the Greengenes database (D) resulted in virtually no reads assigned to a taxon
with UCLUST that were not also assigned with SortMeRNA (Method2Nulls) but some reads were as-
signed to a taxon with UCLUST but not with SortMeRNA (which is to be expected as SortMeRNA 0.9 is
very stringent). See Supplemental Information 1 for all comparisons.

Impact of varying confidence threshold and reference database
The level of congruence among the classifiers varied substantially depending on the param-
eter settings that each used to determine whether a read was classified to a taxon. However,
no parameter combinations produced complete congruence between two classifiers and,
in general, the default settings resulted in the highest congruence among the classifiers
(fewest number of reads classified by one method but not the other and highest number
of reads being classified to the same taxon (i.e., match; Figs. 2 and 4; Supplemental
Information 1). An example of classification at the family rank with the RDP classifier
and the Greengenes database illustrates this. As the cutoff for the confidence parameter
for RDP is increased from the default, a greater number of reads were not classified; thus,
fewer reads were classified to the same taxon (Figs. 4A & 4B). This suggests that a higher
threshold setting within RDP has the unwanted consequence of producing many false
negative assignments (a read is not classified to a taxon when it should be).

The pattern that different threshold parameter cutoffs affected the degree of congruence
among the assigners and that no combination of threshold settings resulted in complete
congruence was also observed when classifying reads based on the HITdb database (Fig. 4;
Supplemental Information 1).

CONCLUSIONS
Citizen science projects, like the American Gut Project, represent a great opportunity to
further public health. We had initially thought to use the publicly available data, specifically
the assignment of reads to known foodborne pathogens and the rich metadata about each
sample, to generate hypotheses about the prevalence of such pathogens within the general
population and examine potential lifestyle and demographic correlates with carrier status.
The results of taxonomic assignment to each of the reads within the AGP showed this
to be a promising avenue to pursue, as ∼15% of the samples were ‘positive’ for Listeria
or Salmonella. Before making claims about these pathogens that would be relevant to
public health we sought to evaluate the robustness of those classifications by re-analyzing
the positive data and evaluating the taxonomy assignments using additional classifiers.
Although we do not know the true taxonomy of the reads being classified, the results
of those additional analyses that showed many reads being classified differently by the
classifiers raise questions about how reliable those classifications are. Those results also
caused us to forego any analyses looking into correlates in the metadata that may explain
the presence of Listeria or Salmonella within an individual’s skin, mouth, and/or fecal
microbiome. The incongruence we observed among the methods (i.e., Segal’s Law) is due,
in part, to the different underlying assumptions and algorithms employed in each classifier.
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It is also partly due to the V4 16S rRNAmarker potentially lacking the information content
(especially at lower taxonomic ranks like species) to be robust to those differences in
algorithms and assumptions. Interestingly, the disagreement between methods cannot be
removed or made insignificant by adjustments to the confidence threshold or by using a
database designed for human enterobacteria; we explored this possibility, and there were
always an appreciable number of reads with either mismatched taxon classification or no
classification for one of the methods (Fig. 4).

Our results are in agreement with those published elsewhere on the negative relationship
between accuracy in classifying V4 reads and decreasing taxonomic rank (Clarridge 3rd,
2004; Liu et al., 2008; Srinivasan et al., 2015). However, the V4 region has been shown
to best capture the information content contained in the full 16S rRNA gene and to
have the best sensitivity for bacterial and phylogenetic analyses (Wang et al., 2007; Yang,
Wang & Qian, 2016). Our results are reassuring in that read classification matches greatly
outnumber mismatches (Figs. 2 and 4). However, there are a large number of instances in
which a read is classified by one method but not another (Figs. 2 and 4); at the family level,
5% of reads were classified by one method but not the other and this increases to 16% and
40% at the genus and species levels, respectively. These problemsmake it difficult to use this
data for research in Salmonella and Listeria, and certainly detract from its use in a regulatory
setting. Additionally, the results presented here showing that even at the family level there
can be 5% of reads classified by one method and not the other show that conclusions
within 16S rRNA gene studies and, likely, metagenome-wide association studies (Wang &
Jia, 2016) health policy should be set based on good empirical information, and misleading
pathogen detection is problematic. This highlights the difficulty of associating pathogens
with a given phenotype (e.g., obesity; Sze & Schloss, 2016) with the 16S rRNA gene V4
region using current taxonomic assigners, and points toward problems that have been
remarked upon elsewhere regarding the publication of results obtained with a method
that is not fit for purpose (e.g., Gonzalez et al., 2016). There is a clear need for improved
methods that provide measures of taxonomic assignment uncertainty and can support
good public health policy decision making.
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