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ABSTRACT
Biotic resistance is the idea that native species negatively affect the invasion success
of introduced species, but whether this can occur at large spatial scales is poorly
understood. Here we re-evaluated the hypothesis that native large-bodied grouper
and other predators are controlling the abundance of exotic lionfish (Pterois voli-
tans/miles) on Caribbean coral reefs. We assessed the relationship between the
biomass of lionfish and native predators at 71 reefs in three biogeographic regions
while taking into consideration several cofactors that may affect fish abundance, in-
cluding among others, proxies for fishing pressure and habitat structural complexity.
Our results indicate that the abundance of lionfish, large-bodied grouper and other
predators were not negatively related. Lionfish abundance was instead controlled
by several physical site characteristics, and possibly by culling. Taken together, our
results suggest that managers cannot rely on current native grouper populations to
control the lionfish invasion.
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INTRODUCTION
Biotic resistance describes the capacity of native or resident species in a community to

constrain the success of invasive species (Elton, 1958). While there are several examples

of native species controlling invasive populations, especially invasive plants (Reusch &

Williams, 1999; Mazia et al., 2001; Magoulick & Lewis, 2002; Levine, Adler & Yelenik, 2004;

Mitchell et al., 2006), less clear are the ecological mechanisms that allow heterogeneous

communities to resist invasion (Lockwood, Cassey & Blackburn, 2005; Melbourne et al.,

2007), and whether these processes are strong enough to compromise invasion success on

a large scale (Byers & Noonburg, 2003; Davies et al., 2005). Especially elusive is whether

native predators or competitors can constrain the expansion of exotic predator species at

large spatial scales (but see, deRivera et al., 2005). Although biotic resistance substantially

reduces the establishment of invaders, there is little evidence that species interactions such

as predation completely prevent invasion (Levine, Adler & Yelenik, 2004; Bruno et al., 2005).

The invasion of Pacific lionfishes (Pterois volitans and Pterois miles) into the Caribbean

basin (Schofield, 2009) over the past ten years provides an example of biotic interactions
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within a system that have been unable to reduce exotic invasion at a regional scale

(Hackerott et al., 2013). Lionfish have spread to every shallow and deep habitat of the

Western North Atlantic and the Caribbean (Whitfield et al., 2007; Betancur-R et al., 2011)

including fore reef and patch reef environments (Green & Côté, 2009; Albins & Hixon,

2013), seagrass meadows (Claydon, Calosso & Traiger, 2012), mangrove root forests

(Barbour et al., 2010), estuarine habitats (Jud et al., 2011), and even depths of ∼90 m

(S Green, pers. obs., 2013). Lionfish dissemination in the region has added additional stress

(Albins & Hixon, 2013; Lesser & Slattery, 2011; Côté, Green & Hixon, 2013) to an already

disturbed coral reef ecosystem (Paddack et al., 2009; Schutte, Selig & Bruno, 2010). Their

voracious appetite threatens small reef fish and juveniles of depleted fish populations

including commercially important species such as groupers and snappers, and keystone

grazers such as parrotfishes (Albins & Hixon, 2008; Green et al., 2012; Green et al., 2013).

The failure of the system to constrain invasion success may be associated in part to the

lack of native predatory capacity due to overfishing (Carlsson, Sarnelle & Strayer, 2009;

Mumby, Harborne & Brumbaugh, 2011), or weak biotic resistance by the native predators

and competitors (Levine, Adler & Yelenik, 2004).

The first study to investigate the potential for biotic control of lionfish by native

predators found an inverse relationship between the biomass of native groupers and

lionfish on reefs at the Exuma Cays Land and Sea Park (ECLSP) in the Bahamas (Mumby,

Harborne & Brumbaugh, 2011). Specifically, Mumby, Harborne & Brumbaugh (2011)

found that grouper biomass could explain ∼56% of the variability in lionfish biomass,

and concluded that large-bodied groupers can constrain lionfish abundance if a series

of cofactors at the site level are kept constant (i.e., reef complexity, larval supply, habitat

characteristics). To examine whether this relationship holds true at a scale that reflects

the heterogeneity of Caribbean reefs, Hackerott et al. (2013) gathered data on lionfish

and grouper abundance from 71 sites across multiple regions in the Caribbean. When

accounting for several site-specific covariates, Hackerott et al. (2013) did not find a

relationship between the abundance of lionfish and native predators/competitors at a

broad spatial scale in the Caribbean.

Aside from the suite of variables considered by Hackerott et al. (2013), several other

covariates that are known to affect fish community structure, but vary across the region,

could mask the effect that native predators have on lionfish abundance. Accounting for

spatial scale and potential cofactors is essential when evaluating the importance of any

single variable in a spatial comparative study (MacNeil et al., 2009). In particular, fishing

mortality, larval dispersal, habitat quality, connectivity, reef structural complexity, depth,

ecological interactions, and a myriad of other factors control the population dynamics of

reef fish species (Sale, 2002). Here we re-evaluated the relationship between large-bodied

grouper and other predators and lionfish abundance, accounting for a broader set of

covariates than those included by Hackerott et al. (2013) that may mediate the interaction

between predators and the invader (Mumby et al., 2013). We also evaluated the grouper

bio-control hypothesis proposed by Mumby, Harborne & Brumbaugh (2011) and provide

new insights into how such biotic resistance is unlikely at the scale of the Caribbean reef
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system. The issue still remains how to best manage and/or reduce numbers of lionfish

where they are currently found, and the only effective solution to date is direct removal by

fishermen and divers (Barbour et al., 2011; Frazer et al., 2012; Green et al., in press).

MATERIALS AND METHODS
Sites and fish surveys
Survey methods are explained in detail in Hackerott et al. (2013). In summary, we surveyed

71 coral reefs (3–15 m deep) across three distinct reef habitats (spur-and-grove, slope, and

patch reef) in three regions of the Caribbean: The Bahamas, Cuba, and the Mesoamerican

Barrier Reef (Belize and Mexico) from 2009 to 2012 (Fig. S1, Table S1). All these habitats

were once dominated by the coral complex Montastraea/Orbicella (Edmunds & Elahi,

2007). Reef sites were selected to cover a wide range of reef fish abundance. To survey fish

abundance, we conducted underwater visual censuses at each site using belt transects (for

spur-and-grove and slopes) or roving survey dives (for patch reef) (see details in Hackerott

et al., 2013). Fish biomass was calculated through the allometric length-weight conversion

formula (Froese & Pauly, 2013) and scaling parameters for lionfish were obtained elsewhere

(Green, Akins & Côté, 2011). Grouper was defined as the combined biomass of relatively

large-bodied species such as Nassau (Epinephelus striatus), tiger (Mycteroperca tigris), black

(Mycteroperca bonaci), and yellowfin grouper (Epinephelus intersticialis) as defined also by

Mumby, Harborne & Brumbaugh (2011). These species could potentially prey on lionfish

(Maljković, van Leeuwen & Cove, 2008; Mumby, Harborne & Brumbaugh, 2011) and are

relatively more abundant than other potential predators in the region (Hackerott et al.,

2013). Other predators considered in this study included any species that could potentially

prey on lionfish (see Table S2 in Hackerott et al., 2013). To directly compare our study with

the generality of the results by Mumby, Harborne & Brumbaugh (2011), we overlaid their

values of fish biomass on our main biomass plot and added boxplots that described the

distribution of both data sets.

Covariates
The site-specific parameters included as covariates in our statistical model were wind

exposure, habitat type, protection status, depth, and time since invasion which are

described in detail in Hackerott et al. (2013). We added two new variables to the models that

are hypothesized to strongly modulate lionfish abundance (Mumby et al., 2013): human

population density/reef area (humans/reef) which is a proxy for fishing effects (Newton et

al., 2007; Mora, 2008), and is predicted to be negatively correlated with lionfish density;

and reef complexity, which is a proxy for habitat heterogeneity within sites, predicted to

have a positive effect on lionfish density (Green et al., 2012; Green et al., 2013). Human

population density was calculated as the number of humans within 50 km (maximum

number of people living within 50 km radius of each site). We chose 50 km because it

is a reasonable range of human influence on Caribbean reefs (Mora, 2008). Estimates of

human population counts for the year 2010 were obtained from the Gridded Population

of the World V.3 at 0.25 degree resolution (SEDAC, 2010). Reef area was calculated within
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10 km radius of each site, well below the average home range for certain predator species

(Farmer & Ault, 2011). Reef area was calculated from the Global Distribution of Coral

Reefs (2010) database as available at the Ocean Data Viewer (http://data.unep-wcmc.

org/datasets/13). This database represents the global distribution of warm-water coral

reefs compiled mostly from the Millennium Coral Reef Mapping Project (UNEP-WCMC

et al., 2010). All spatial calculations were done in ArcGIS v10.0. Humans/Reef Area

(humans/km2 of reef) was defined as:

Number of humans within 50 km/Reef area within 10 km/(π102) (km2)

To estimate reef complexity we used a rugosity index (0–5) estimated at the transect

level, where “0” was a flat substrate with no vertical relief and “5” was an exceptionally

complex substrate with numerous caves and overhangs (Polunin & Roberts, 1993). Relief

complexity for Eleuthera and New Providence sub-regions was estimated by averaging

measurements of reef height (i.e., the vertical distance between the lowest and highest

point of the reef structure in cm), taken at five haphazard points within the survey area

(either transect or rover diver area) (Wilson, Graham & Polunin, 2007). To make reef

complexity estimates homogenous for all sites, we transformed the relief complexity

estimates taken in Eleuthera and New Providence to the rugosity index, described by

Polunin & Roberts (1993), by assigning a gradient of 0 cm to “0” and over 300 cm to “5”.

This resulted in a continuous rugosity index for these two sub-regions that was comparable

with the rest of the sites.

Data analysis
Before applying the statistical model, we explored the data and determined that a

negative binomial or Poisson were the most plausible distributions for lionfish counts

(Appendix S1). Additionally, we checked for collinearity among covariates. We ran a

logistic regression model with all the covariates and examined the variance inflation

factor (VIF) for each variable. We used a VIF > 2 as a threshold to determine collinearity

(Graham, 2003). Depth was correlated with reef habitat type as shallower sites tended to

be dominated by patch reefs. Thus we modeled these two factors separately. However, we

found that keeping depth in the full model, together with habitat type, did not compromise

fitting or the magnitude of the effects (Appendix S1).

We ran a generalized linear mixed-effect model using the Automatic Differentiation

Model Builder (glmmADMB) package (Skaug et al., 2013) in R 3.0.2 (R Core Team,

2013). As the lionfish data were over-dispersed and with excess of zeroes (Hackerott et

al., 2013), a glmmADMB which accommodates zero inflation was the most adequate

model structure (Bolker et al., 2012). We modeled lionfish counts with a negative binomial

type 1 distribution and log link because this model performed better than a Poisson

distribution based on the Akaike Information Criterion (AIC) (Appendix S1). Since a

negative binomial is a discrete distribution we included an offset in the model to account

for survey area (sampling unit level), thus we could effectively analyze the relationship

between the density of lionfish and grouper biomass, i.e.,:

Log (LF Density) = Log (LF Counts) − Log (Survey Area)
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Because lionfish density and biomass were highly correlated (Pearson’s product moment

correlation ∼0.96, p < 0.0001, Appendix S1), the results of the model should be applicable

to biomass as well. The rest of the covariates were considered fixed. We standardized and

centered the numerical covariates to aid in comparison of the coefficient estimates. To

account for spatial autocorrelation we nested sites within sub-regions and used them as

random effects (see Table S1 for sub-regions). To validate the model we corroborated that

no patterns were found on the plot of the model residuals versus fitted values.

Moran’s I similarity spline correlograms constructed from the residuals of the

glmmADMB model (Zuur et al., 2009) graphically indicated that our mixed-effect

modeling framework successfully accommodated the spatial autocorrelation observed in

the raw data (Fig. S2). Additionally, we used Mantel tests (Mantel, 1967) to confirm the lack

of spatial autocorrelation between the Pearson residuals of the model and the lag distance

(in km) between sites (i.e., whether sites that are closer together were more similar), and

found that the overall correlation coefficient for the model was low (r = 0.073, p = 0.0001).

We performed the autocorrelation analyses using the spatial nonparametric covariance

function (ncf) package version 1.1-5 (BjØrnstad, 2013). All analyses were performed in

R version 3.0.2 (R Core Team, 2013). Additionally, we provide the entire workflow R code

(Appendix S1) and the master data summary by site level (FigShare, http://dx.doi.org/10.

6084/m9.figshare.899210).

RESULTS AND DISCUSSION
Even when including proxies for fishing and habitat structure in our statistical model,

we found no support for an effect of large-bodied grouper or other predator biomass on

lionfish abundance (Fig. 1, Table S3). As in Hackerott et al. (2013), the effects of other

covariates in our analysis (namely wind exposure, habitat type, and protection status)

(Fig. 1) remained the principal factors that appear to influence lionfish abundance.

Our analyses suggest that variation in lionfish density across the region is driven by

environmental processes and human activity and not by biotic resistance from native

predators.

The absence of a relationship between lionfish and native grouper biomass across a

large scale suggests that the results of Mumby, Harborne & Brumbaugh (2011), which

found a negative association across 12 sites—5 inside and 7 adjacent to a no-take reserve

(ECLSP)—represented a subset of a much broader and complicated relationship driven

by other factors (Figs. 1 and 2). The average biomass of large-bodied grouper in our

study of the Caribbean region (7.6 ± 0.8 g m−2, mean ± standard error) was slightly

lower (Wilcoxon test, W = 1197, p = 0.002) than that found by Mumby, Harborne &

Brumbaugh (2011) at Exuma (10.0 ± 2.6 gm−2) (Fig. 2). In contrast, the average biomass

of lionfish in our study (7.8 ± 0.5 gm−2) was ∼20 times higher (or ∼2 times higher

excluding patch reefs, i.e., 0.7 ± 0.1 gm−2) than those found at Exuma (0.4 ± 0.1 gm−2)

by Mumby, Harborne & Brumbaugh (2011) (Fig. 2). In that study, relatively low lionfish

biomass (∼0.3 gm−2) was associated with relatively high grouper biomass (∼25 gm−2).

However, across 71 sites in our study, lionfish biomass ranged widely (0–50 gm−2) at sites
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Figure 1 Coefficient estimates (±95% confident intervals) showing the effect of different variables on
lionfish abundance. Lionfish counts were modeled with a generalized linear mixed effect model using the
automatic differentiation model builder (glmmADMB) based on a negative binomial distribution type
1 and log link. Abundance values were obtained by adding the log of survey area as offset in the model.
Numerical variables (top axis, circles) and categorical variables (bottom axis, squares) are on different
scale for easy visual representation as the magnitude effects of the former are relatively smaller. For full
summary of the model see Table S3.

with equivalent grouper abundance (Fig. 2). Thus, while predators may negatively impact

lionfish under a particular set of local conditions (Mumby, Harborne & Brumbaugh, 2011),

the underlying relationship between lionfish and predator biomass was undetectable on a

wide range of heterogeneous sites across the Caribbean region.

In this study, we assume that high predator biomass is indicative of high predatory

capacity resulting from a high frequency of large individuals (Fig. 3A). Grouper at

protected sites were, on average, larger (48.6 ± 1.5 cm TL, mean ± standard error total

length) than those at unprotected sites (34.7 ± 1.1 cm) (t = −7.68, p < 0.001, Fig. 3A).

It is unlikely that sites with relatively high grouper biomass have low predatory capacity

as a result of more abundant, but smaller, individual fishes. Indeed, the exact opposite
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Figure 2 Relationship between mean grouper and lionfish biomass. In this study, 71 fore reefs (black
dots protected sites, grey dots non-protected sites) were surveyed and analyzed across the Caribbean. For
comparison, we included 12 sites (red squares) surveyed at Exuma Cays Land and Sea Park by Mumby,
Harborne & Brumbaugh (2011). The red fitted line is for the linear regression model by Mumby, Harborne
& Brumbaugh (2011) that explain 56% of the variability of lionfish biomass due to grouper abundance.
Note that red squares represent ∼16% of all sites. Boxplots are median (vertical or horizontal line), 50 and
90 percentiles for lionfish biomass (right) and grouper biomass (top). Boxplots with black dots (general
mean) correspond to our study and boxplots with red squares (general mean) to Mumby, Harborne &
Brumbaugh (2011). The empty circles are outliers. Axes are in log scale.

pattern is well documented in a wide range of habitat types for several fish species (Gust,

Choat & McCormick, 2001; Friedlander & DeMartini, 2002; McClanahan et al., 2007). This

seems to also be the case for groupers in our study (Fig. 3B). At sites with grouper biomass

of at least 10 gm−2, which was the minimum biomass per site in the ECLSP (Mumby,

Harborne & Brumbaugh, 2011), there were relatively high frequencies of medium/large

individuals (Fig. 3B). Medium/large groupers (>30 cm TL) have been classified as having

potentially high predatory capacity (Mumby, Harborne & Brumbaugh, 2011). We found

relatively lower frequencies (<50%) of small individuals (<30 cm TL) across all protected

sites. Therefore, it is unlikely that a lack of predatory capacity at sites with the highest

grouper biomass (Figs. 2 and 3B) explains the absence of a relationship between lionfish

and grouper in our results.

While we did not find evidence for an effect of native predators on invasion status,

lionfish biomass varied significantly between the reef types we examined. All of our

fore-reef sites (slope and spur-and-groove) constituted high-profile habitats and we also

included a set of patch reefs, a reef habitat common in the region. In particular, slope and

spur-and-groove habitat had a negative effect on lionfish abundance (Fig. 1, Table S3)
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Figure 3 Histograms of grouper class size (total length in cm) by categories. (A) Class size distribution
for protected and non-protected sites, (B) for sites with over and under 10 gm−2 of grouper biomass,
and (C) for reef habitat types. Note that over 90% of protected sites and sites with >10 gm−2 of grouper
biomass have individuals >30 cm in total length. Only every other class size has a label for clarity.

with higher average lionfish abundance in patch reef habitats (27.5 ± 2.1 gm−2 vs.

0.7 ± 0.1 gm−2). However, both lionfish and large-bodied grouper and predators were

frequently observed in each of these habitats (Fig. 3C). The class size distribution for

groupers among reef habitats were similar (Fig. 3C). Almost 90% of the patch reef sites had

groupers in the 21–40 cm class size range, while ∼60% of slope and spur-and-groove sites

had groupers within 31–50 cm total length (Fig. 3C). Although, the size distribution of our

study sites indicates that grouper >30 cm TL (deemed ‘large-bodied’ by Mumby, Harborne

& Brumbaugh, 2011) were frequently (over 50%) observed in patch reef habitats (Fig. 3C),

we caution that other patch reefs across the Caribbean must be surveyed in order to make

meaningful extrapolations of the observed patterns in this habitat.

Other variables may also partly explain the variability of lionfish abundance in the

region. Wind exposure, specifically whether sites were located on the windward side, had

a weak negative effect on lionfish abundance (Fig. 1). However, the mechanism behind

this association is not well understood and a premature explanation may be misleading.

Larval supply, which we did not measure, may contribute to the lack of biotic resistance.

As with other reef fish species (James et al., 2002; Cowen & Sponaugle, 2009), differential
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larval supply could influence site-specific lionfish recruitment (Ahrenholz & Morris, 2010).

However, such data are not available for our sites. While measuring larval supply would

have been interesting, it was outside the scope of our study due to the large number of

sites included and the regional scale of the analysis. Additionally, though larval supply

can be predicted by biophysical models that describe oceanographic features such as

wind direction, surface temperature, or tidal amplitude, these relationships are often

taxon-dependent (Wilson & Meekan, 2001; Vallès, Hunte & Kramer, 2009).

The question from a management point of view is whether native predators can actually

constrain lionfish abundance across the Caribbean, given the heterogeneity of the systems

and the factors that seemingly affect lionfish abundance. While we found no evidence

that large-bodied grouper or any other large-bodied predators influence lionfish invasion

success across the region, this finding is expected based on other systems and examples

of invasive predators. For example, there is weak support in the literature for the biotic

resistance hypothesis of native species constraining exotic predators in natural ecosystems,

and rarely can resident predators constrain the distribution expansion of the invader

(Harding, 2003; deRivera et al., 2005). In fact, the exact opposite is typical in systems where

native predators are abundant. For example, the successful invasion of the Burmese python

(Python molurus bivittatus) in the Everglades of South Florida has not been constrained

by potential and abundant predators such as alligators (Alligator mississippiensis) (Willson,

Dorcas & Snow, 2011). Moreover, it is common that invasive predators feed on the juveniles

of the resident predators and competitors (Snyder & Evans, 2006; MacDonald et al., 2007;

Doody et al., 2009; Kestrup, Dick & Ricciardi, 2011; Willson, Dorcas & Snow, 2011; Côté,

Green & Hixon, 2013), further weakening the potential resistance capacity of the system.

Ecological interactions, such as predation and competition, seldom enable communities

to resist invasion, but instead constrain the abundance of invasive species once they have

successfully established (Levine, Adler & Yelenik, 2004). However, the abundance of lionfish

across the region does not appear to be constrained by ecological interactions (Hackerott et

al., 2013). In the one published record of grouper eating lionfish (Maljković, van Leeuwen

& Cove, 2008), it could not be determined whether the lionfish were dead or alive when

consumed. It is common for divers and tour operators to feed speared lionfish to native

predators, including sharks (Busiello, 2011). However, there is no evidence that this

practice has changed the natural predatory instincts of resident predators towards the

invader and feeding speared lionfish to native predators is now being discouraged due to

safety concerns for divers (Whittaker, 2013).

Our results indicate that protection status (i.e., whether sites were located within a

marine reserve or not) also had a negative effect on lionfish abundance (Fig. 1). This is

most likely due to targeted culling in protected areas. Morris & Whitfield (2009)suggested

that lionfish removals should be focused on ecologically important areas, including

marine protected areas and reserves. Lionfish removals have since occurred in many

marine reserves through organized citizen programs (Biggs & Olden, 2011; López-Gómez,

Aguilar-Perera & Perera-Chan, 2013) and by reef managers (J Cal, pers. comm., 2013).

This effort is paying off and has the potential to greatly reduce lionfish abundance,
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at least temporarily (Barbour et al., 2011; Frazer et al., 2012; Côté, Green & Hixon, 2013).

In our dataset, of the six sites with grouper biomass over 20 gm−2, five were in protected

areas where culling is very likely occurring (Fig. 2). This pattern supports the results of

our statistical analysis that lionfish abundance is reduced in marine protected areas due

to some factor other than predator abundance. The negative effect of protection status

on lionfish abundance and lack of effect of grouper or other predator biomass on lionfish

abundance indicate that culling within protected areas most likely explains the observed

pattern.

This analysis expands our original statistical model of the relationship between invasive

lionfish and native grouper species (Hackerott et al., 2013) to include two additional

covariates hypothesized to moderate the relationship between these species Mumby et

al. (2013). After accounting for these additional processes, we find that: (a) the biomasses

of lionfish and large-bodied grouper (or other predators) are not negatively related, and

(b) lionfish biomass is controlled by a number of physical site characteristics, as well as by

culling within marine reserves. Our study was motivated by the desire to explore whether

the findings and solutions from local case studies will be effective elsewhere, which is key to

informed management decisions about the invasion. We conclude that removals are most

likely the only feasible mechanism for controlling lionfish at a Caribbean-wide scale.
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