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ABSTRACT
Some evidence suggests that bone health can be regulated by gut microbiota. To better
understand this, we performed 16S ribosomal RNA sequencing to analyze the intestinal
microbial diversity in primary osteoporosis (OP) patients, osteopenia (ON) patients
and normal controls (NC). We observed an inverse correlation between the number
of bacterial taxa and the value of bone mineral density. The diversity estimators in
the OP and ON groups were increased compared with those in the NC group. Beta
diversity analyses based on hierarchical clustering and principal coordinate analysis
(PCoA) could discriminate the NC samples from OP and ON samples. Firmicutes,
Bacteroidetes, Proteobacteria and Actinobacteria constituted the four dominant phyla
in all samples. Proportion of Firmicutes was significantly higher and Bacteroidetes was
significantly lower in OP samples than that in NC samples (p< 0.05), Gemmatimon-
adetes and Chloroflexi were significantly different between OP and NC group as well as
between ON and NC group (p< 0.01). A total of 21 genera with proportions above 1%
were detected and Bacteroides accounted for the largest proportion in all samples. The
Blautia, Parabacteroides and Ruminococcaceae genera differed significantly between
the OP and NC group (p< 0.05). Linear discriminant analysis (LDA) results showed
one phylum community and seven phylum communities were enriched in ON and OP,
respectively. Thirty-five genus communities, five genus communities and two genus
communities were enriched in OP, ON and NC, respectively. The results of this study
indicate that gutmicrobiotamay be a critical factor in osteoporosis development, which
can further help us search for novel biomarkers of gutmicrobiota inOP and understand
the interaction between gut microbiota and bone health.

Subjects Microbiology, Orthopedics, Rheumatology
Keywords Osteoporosis, 16S ribosomal RNA, Diversity analysis, Bone mineral density, Gut
microbiota

INTRODUCTION
Osteoporosis is a type of bone-thinning disorder, characterized by a reduction of bone
mass, microarchitecture deterioration and an increased risk of fragility fractures. It is the
most common reason for a broken bone among the elderly. As the population grows
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and ages, the number of patients with osteoporosis is expected to increase. A decline in
bone mineral density (BMD) is the primary cause of fragility fracture (Lu et al., 2016).
As a metabolic procedure, bone homeostasis relies on a balance between bone formation
(osteoblast-regulated) and bone resorption (osteoclast-regulated) (Chung et al., 2014;
Harada & Rodan, 2003). Hereditary characteristics and environmental factors can regulate
the complex process of bone metabolism and significantly contribute to age-related bone
loss (Pollitzer & Anderson, 1989).

Recently, the gut microbiota have attracted attention in connection with metabolic
diseases. The human gastrointestinal tract are colonized by rich and dynamic communities
of microbes. The microbes has been considered as a critical factor for metabolic disorders
including obesity, diabetes, and osteoporosis (Ejtahed et al., 2016). Therefore, it may
represent a novel potential biomarker for the diagnosis and treatment ofmetabolic disorders
(Steves et al., 2016). So far, the effect of gut microbiota on bone health is a relatively new
field of research. Several studies have reported it as a regulator of bone mass (McCabe,
Britton & Parameswaran, 2015; Sjogren et al., 2012; Weaver, 2015) through mediation of
the immune system (e.g., osteoclastogenesis), intestinal calcium absorption and the release
of neurotransmitters (e.g., serotonin). A better understanding of structure and function
changes ofmicrobes will help us search for novel biomarkers and understand the interaction
between gut microbiota and bone mass disorder. However, to our knowledge, it remains
unclear how gut microbiota changes in osteoporosis patients.

Traditional methods for research on bacterial community inhabitants include isolation,
cultivation, and optical microscopy. These approaches are insufficient to obtain relatively
full-scale and accurate results about the structure and diversity of microbiota communities
in specific samples because the vast majority of bacteria in fecal samples are anaerobic and
cannot be isolated in the laboratory (Perry et al., 2010). High-throughput sequencing has
recently been used for bacterial diversity analysis (Li et al., 2016a; Li et al., 2016b). This
approach overcomes the limitations of traditional technology and can effectively capture
the genomic information of uncultured microorganisms, which may be pathogenic or
important for biological processes.

The present studywas to explore the bacterial community structure and diversity changes
of gut microbiota in patients with primary osteoporosis and primary osteopenia based on
16S rRNA gene sequencing. Results of our research will lay a foundation for searching
novel microbe biomarkers and understanding the potential mechanisms of effects of gut
microbiota on bone health.

METHODS
Subject recruitment and bone mineral density detection
Participants in this studywere recruited fromHongHuiHospital, Xi’an JiaotongUniversity,
Xi’an, China. Dual X-ray absorptiometry (DXA) was performed to detect the bone
mineral density of lumbar vertebrae of subjects. We further excluded all patients with
any malignancy, chronic liver disease, heart disease, kidney disease, or diabetes. Finally,
a total of 18 subjects including six with primary osteoporosis (OP), six with primary
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Table 1 Clinicopathological information of the study participants.

Group Case Gender Age BMD L1−4 (g/cm2) Z -score L1−4 T -score L1−4

Normal control (NC) 6 Female: 5 Male: 1 64.80 ± 5.93 0.81± 0.08 0.12± 0.45 -0.42± 0.26
Osteopenia (ON) 6 Female: 5 Male: 1 67.17± 8.30 0.75± 0.04∗ −0.22± 0.50 −2.15± 0.34∗

Osteoporosis (OP) 6 Female: 5 Male: 1 70.00± 7.77 0.61± 0.06∗∗## −1.18± 0.73∗∗# −3.57± 0.46∗∗##

Notes.
Compares with NC group: ∗P < 0.05, ∗∗P < 0.01. Compares with ON group: #P < 0.05, ##P < 0.01.
BMD, Z -score and T -score were collected from dual X-ray absorptiometry detection, L1−4 represents lumbar vertebrae 1-4.
BMD, bone mineral density; Z -score, the Z -score is the comparison to the age-matched normal; T -score, the T -score is the relevant measure when screening for
osteoporosis.
The criteria of the World Health Organization are: Normal is a T -score of−1.0 or higher; Osteopenia is defined as between−1.0 and−2.5; Osteoporosis is defined as−2.5 or
lower.

osteopenia (ON), and six normal controls (NC; as determined by physical examination)
were selected for further research (Table 1). None of the 18 participants ingested yogurt,
prebiotics, or probiotics during the fecal collection period, nor had they used medication
(e.g., antibiotics) within one month of sample collection. The study was approved by
Hong Hui Hospital, Xi’an Jiaotong University, Biomedical research ethics committee. Each
participant provided his or her written informed consent.

Fecal sample collection and DNA extraction
Fresh stool samples were collected in sterile boxes, then frozen and stored at −80 ◦C for
further use. The microbial genome was extracted using QIAamp Fast DNA Stool Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Sample DNA
purity and concentration were tested using a Nanodrop 2000 Spectrophotometer.

16S rRNA PCR and Illumina sequencing
We amplified the bacterial 16S ribosomal RNA gene V3-V4 region using the TransGen
AP221-02 Kit (TransGen, Beijing, China). The following PCR primers were used: 338F
5′-ACTCCTACGGGAGGCAGCAG-3′ and 806R 5′-GGACTACHVGGGTWTCTAAT-3′.
The reaction volume (20 µl) comprised 5 × FastPfu Buffer (4 µl), 2.5 mM dNTPs (2
µl), forward primer (0.8 µl), 5 µM reverse primer (0.8 µl), FastPfu Polymerase (0.4 µl),
and template DNA (10 ng). Cycling proceeded as follows: 3 min at 95 ◦C twenty-seven
cycles(30 sat 95 ◦C, 30 sat 55 ◦C, 45 sat 72 ◦C); 10 min at 72 ◦C. After amplicons extraction,
samples were purified and quantified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, CA, USA) andQuantiFluorTM-ST (Promega,Madison,WI, USA), respectively.
Purified amplicons were pooled in equimolar proportions and paired-end sequenced (2×
250 bp) on the Illumina MiSeq platform with TruSeqTM DNA Sample Prep Kit (Illumina,
San Diego, CA, USA).

16S rRNA gene sequencing analysis
Raw fastq files were demultiplexed, quality-filtered by Trimmomatic and merged by
FLASH with the following criteria: (i) The reads were truncated at any site receiving
an average quality score <20 over a 50 bp sliding window; (ii) Primers were exactly
matched allowing 2 nucleotide mismatching, and reads containing ambiguous bases were
removed; (iii) Sequences whose overlap longer than 10 bp were merged according to their
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overlap sequence. Operational taxonomic units (OTUs) were clustered with 97% similarity
cutoff (Edgar, 2013) using UPARSE (version 7.1; http://drive5.com/uparse/) and chimeric
sequences were identified and removed using UCHIME. The taxonomy of each 16S rRNA
gene sequence was assigned by QIIME (version 1.7; http://qiime.org/home_static/dataFiles.
html) (Caporaso et al., 2010) using RDP Classifier algorithm (http://rdp.cme.msu.edu/)
(Wang et al., 2007) against the Silva (SSU123) 16S rRNA database (Quast et al., 2013) using
a confidence threshold of 70%. Alpha diversity at the OTU level (e.g., Ace, Chao, Shannon
and Simpson index) were calculated in QIIME following previously described methods
(Jiang & Takacs-Vesbach, 2017; Lauber et al., 2009; Van Horn et al., 2016).

Statistical analysis
Results analysis and figure generation based on clinicopathological information, alpha
estimators and relative bacterial abundance were performed using SPSS 21.0 and
GraphPad Prism 5.01 software. Student’s t -test and the Mann–Whitney U -test were
performed, with p< 0.05 indicating a significant difference between groups. Rarefaction
curves were generated based on the alpha diversity estimators. The unweighted UniFrac
algorithm was applied for hierarchical clustering and principal coordinates analysis at
the OTU level to analyze beta diversity. We applied ‘‘Vennerable’’ package in R software
(version 3.3.3) for the generation of venn diagram based at the OTU level. The Circos
software (http://circos.ca/software/download/circos/) was performed for the generation
of collonearity diagram to visualize the corresponding abundance relationship between
samples and bacterial communities at the phylum and genus levels. The enriched and
significant bacteria in each group were identified by linear discriminant analysis (LDA)
combinedwith effect-sizemeasurements (LEfSe) (Segata et al., 2011), with p< 0.05. For the
Kruskal–Wallis test, LDA values >2 were considered significant (Szafranski et al., 2015).

RESULTS
Illumina sequencing data characteristics
The clinicopathological information for each of the three groups included in the
study is presented in Table 1. There were no significant differences in terms of age or
gender, while BMD, T -score and Z -score differed significantly among groups. Illumina
sequencing captured a total of 694,232 high-quality sequences, with an average of 38,568
sequences/sample. Detailed information on the sequence results obtained for each sample
are presented in Table S1.

Inverse correlation between the number of bacterial taxa and the
value of BMD
Based on the sequencing data, the gutmicrobiota of all samples were classified to 507OTUs,
367 species, 235 genera, 99 families, 63 orders, 38 classes, 25 phyla. The number of bacterial
taxa tended to increase at each level in accordance with the reduction in BMD, as shown in
Table 2 and Fig. S1. Figure 1 presents a Venn diagram for the OP, ON and NC groups (at
the OTU level). There were 455, 378, and 282 OTUs present in the OP, ON, and NC group,
respectively. In addition, 208 OTUs (41%) were shared by all samples; 154 OTUs (30.4%)
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Figure 1 Venn diagram of OP, ON and NC groups at OTU level.

Table 2 Bacterial taxa in each group at different levels.

Phylum Class Order Family Genus Species OTU

NC 8 14 20 41 134 218 282
ON 21 33 56 88 195 296 378
OP 23 35 58 92 219 335 455
Total 25 38 63 99 235 367 507

were shared between the OP and ON groups. For the remaining components (28.6%), the
OP group (13.6%) accounted for nearly half of all OTUs.

Diversity analysis of gut microbiota in osteoporosis and osteopenia
patients
To determine alpha diversity, we calculated the mean ace index, chao index, shannon
index, and simpson reciprocal index. This process allowed us to fully characterize the
bacterial community diversity in samples. Detailed information on the estimators in each
sample is presented in Table S2. The OTU level rarefaction curves of diversity estimators
reached plateau phase (Fig. S2), indicating that most bacterial species had been captured
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Figure 2 Significance of alpha diversity estimators between different groups. ∗0.01 < p ≤ 0.05,
∗∗0.001< p≤ 0.01.

by sequencing in all samples. Higher numbers of the estimators represent greater diversity,
which suggests that alpha diversity index was inversely correlated with BMD, although
there were no significant differences between the OP and ON groups, as shown in Fig. 2.

With regard to beta diversity, unweighted UniFrac analysis indicated that hierarchical
clustering and principal coordinate analysis (PCoA) could discriminate the NC samples
from OP as well as ON samples. However, there was substantial overlap between the OP
and ON groups, and most ON samples were positioned in the middle of the OP and NC
samples, as Fig. 3 illustrates.

Significance analysis of gut bacterial community abundance in
osteoporosis and osteopenia patients
At the phylum level illustrated in Fig. 4, Firmicutes, Bacteroidetes, Proteobacteria and
Actinobacteria constituted the four dominant phyla in all samples. The average ratios of
Firmicutes/Bacteroidetes were 3.326, 1.755 and 1.290 in the OP, ON, and NC groups,
respectively. Furthermore, we calculated the significance of the 10 most dominant phyla of
microbial community structure among theOP, ON, andNC groups. Differences among the
four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria) were
not statistically significant for comparisons between the OP and ON group or the ON and
NC group (p> 0.05). Proportion of Firmicutes was significantly higher and Bacteroidetes
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Figure 3 Beta diversity analysis of OP, ON and NC group at OTU level. (A) the hierarchical clustering
tree. (B) Principal coordinate analysis (PCoA) scatter plot.

Figure 4 Bacterial community abundance at phylum level of each group. (A) Bacterial community
abundance barplot at phylum level. (B) Significance of the top 10 bacterial community abundance at phy-
lum level. ∗0.01< p≤ 0.05, ∗∗0.001< p≤ 0.01 based on Mann–Whitney U -test.
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Figure 5 Bacterial community abundance at genus level of each group. (A) Bacterial community abun-
dance barplot at genus level. (B) Significance of the 10 bacterial community abundance at genus level.
∗0.01< p≤ 0.05 based on Mann–Whitney U -test.

proportion was significantly lower in OP samples than that in the NC group (p< 0.05)
(Fig. 4B). As for other bacterial communities with small proportions, most of them were
rare in the NC group but increased in the OP and ON groups. Gemmatimonadetes and
Chloroflexi were significantly different between the OP and NC groups (p< 0.01) as well
as between the ON and NC groups (p< 0.01).

At the genus level, a total of 21 genera with proportions above 1% were detected, as
visualized in Fig. 5. Bacteroides accounted for the largest proportion in all samples. In the
NC group, three genera (Bacteroides, Faecalibacterium and Prevotella) contributed more
than half of the bacterial community. In the ON and OP groups, five and 11 genera,
respectively, accounted for 50% of the bacterial community. Differentiation analysis of
the 21 genera is presented in Fig. 5B. The Blautia, Parabacteroides and Ruminococcaceae
genera differed significantly between the OP and NC groups. Fig. S3 depicts the collinearity
diagram for the bacterial community and samples from all three groups.

We further applied linear discriminant analysis (LDA) combined effect size
measurements (LEfSe) to explore the significant changes and relative richness of the
bacterial community in the OP, ON, and NC groups, at phylum and genus levels. Fig. 6
summarizes the enrichment and variations in bacterial community for all three groups. At
the phylum level, one phylum and seven phylum communities were enriched in the ON and
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Figure 6 LEfSe at the phylum and genus level of each group. (A) LEfSe bar at phylum level. (B) LEfSe
bar at genus level. P < 0.05, LDA value > 2.

OP group, respectively, while no community in the NC group was enriched. At the genus
level, 35 genus, five genus and two genus communities were enriched in theOP, ON andNC
groups, respectively. The significance and variance of bacterial communities, as determined
by sequencing analysis, may help discriminate OP or ON patients from NC subjects.

DISCUSSION
The humanmicrobiome, referred to as our second genome, can influence genetic diversity,
immunity andmetabolism (Grice & Segre, 2012; Solt, Kim & Offer, 2011). All of the bacteria
in specific samples can now be detected based on microbiota DNA sequencing. Research
focused on gut microbiota and bone metabolism has recently emerged. Our study is the
first survey about composition and diversity analysis of gut microbiota in osteoporosis,
osteopenia patients and healthy controls using metagenomic sequencing. The results
indicate that bacterial component structure and diversity are altered in osteoporosis and
osteopenia patients as compared with normal controls; this supported the perspective that
the bone health can be affected by the gut microbiota.

Microbiota diversity analysis is valuable for quantifying the bacterial component and
relative richness of a specific community. Our investigation of alpha diversity revealed an
elevation of diversity estimators in the OP and ON groups. Hierarchical clustering and
PCoA analysis of beta diversity was able to discriminate the NC group from the OP and ON
groups. These results suggested that a rich diversity of gut microbiota may be related to the
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reduction of bone mass. In the OP group, the proportion of Firmicutes phyla increased and
the proportion of Bacteroidetes decreased significantly (p< 0.05) compared with that in the
NC group. Several communities present at low levels in the OP and ON groups were absent
in the NC group (e.g., Gemmatimonadetes Chloroflexi and Synergistetes). At the genus
level, 21 genera with proportions over 1% were identified. Bacteroides, Faecalibacterium
and Prevotella were the top 3 genera in the NC group, while Prevotella was not observed in
the ON and was present at low levels in the OP group. The Lachnoclostridium and Klebsiella
genera were more abundant in the OP and ON groups as compared to the NC group. We
further identified the enriched and significant community in each group and speculated that
these communitiesmay be considered as specific biomarkers for the reduction of bonemass.

The underlying mechanisms of gut microbiota changes in osteoporosis and osteopenia
patients remained to be explained. We hypothesized that the immune-inflammatory axis
may act as the key bridge joining the gut microbiota to bone metabolism. Studies have
shown that bone mass increased in germ-free (GF) mice compared with conventionally
raised mice. The authors reported fewer osteoclasts, osteoclast precursor cells, CD4 (+)
cells and inflammatory cytokines in the bone and bone marrow of GF mice. They also
reported that bone mass could be normalized after gut microbiota transplantation in
GF mice (Sjogren et al., 2012). Moreover, certain pre- and probiotics have been shown to
increase bone mass ((Bindels et al., 2015; Maekawa & Hajishengallis, 2014; Scholz-Ahrens
et al., 2007). Research suggests that gut microbiota and specific probiotics may regulate
IGF-1, TNF-α and IL-1β, resulting in changes in bone formation and growth (Ohlsson et
al., 2014; Yan et al., 2016).

Notably, this study does have certain limitations. The sample size may not have been
large enough. The average age in the osteoporosis and osteopenia groups was 70 years,
and the sex ratio of female:male is 5:1 in the two groups. The occurrence of osteoporosis
is more common with age, and is more common in females than males. It was reported
that the osteoporosis prevalence ranged from 9% to 38% for females and 1% to 8% for
males in different countries (Wade et al., 2014). In this study, the subjects in the OP and
ON groups were chosen randomly according with the recruiting criteria, and we further
recruited the normal controls also at the same age and sex ratio to keep a balance. In view
of this, we should consider the relevant hormonal changes, with corresponding effects
on bone metabolism, because postmenopausal women are at high risk for osteoporosis
(Cappola & Shoback, 2016). Researchers have reported that prebiotics improve calcium
absorption, calcium accretion in bone and BMD in adolescents as well as postmenopausal
female subjects (Roberfroid et al., 2010). Thus, dietary intake (e.g., pre- or probiotics) may
alter bone metabolism in both pre- and post-menopausal women.

According to recent reports, studies in microbiota research have increased, which
focusing on exploring new approaches for disease diagnosis and treatment (Castro-Nallar
et al., 2015; Vernocchi, Chierico & Putignani, 2016). In our research, we explored gut
microbiota diversity changes in primary osteoporosis and osteopenia patients. Further
studies are required to understand the gut microbiota as a regulator for bone mass and
evaluate it as a novel biomarker for osteoporosis.
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