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ABSTRACT
The changes of protein expression that are monitored in proteomic experiments are a
type of biological transformation that also involves changes in chemical composition.
Accompanying the myriad molecular-level interactions that underlie any proteomic
transformation, there is an overall thermodynamic potential that is sensitive to
microenvironmental conditions, including local oxidation and hydration potential.
Here, up- and down-expressed proteins identified in 71 comparative proteomics studies
were analyzed using the average oxidation state of carbon (ZC) and water demand per
residue (nH2O), calculated using elemental abundances and stoichiometric reactions
to form proteins from basis species. Experimental lowering of oxygen availability
(hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or
nH2O of up-expressed compared to down-expressed proteins. This correspondence of
chemical composition with experimental conditions provides evidence for attraction
of the proteomes to a low-energy state. An opposite compositional change, toward
higher average oxidation or hydration state, is found for proteomic transformations in
colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells.
Calculations of chemical affinity were used to estimate the thermodynamic potentials
for proteomic transformations as a function of fugacity of O2 and activity of H2O,
which serve as scales of oxidation and hydration potential. Diagrams summarizing the
relative potential for formation of up- and down-expressed proteins have predicted
equipotential lines that cluster around particular values of oxygen fugacity and water
activity for similar datasets. The changes in chemical composition of proteomes are
likely linked with reactions among other cellularmolecules. A redox balance calculation
indicates that an increase in the lipid to protein ratio in cancer cells by 20%over hypoxic
cells would generate a large enough electron sink for oxidation of the cancer proteomes.
The datasets and computer code used here are made available in a new R package,
canprot.

Subjects Biochemistry, Mathematical Biology, Oncology
Keywords Compositional biology, Thermodynamic potential, Redox balance

INTRODUCTION
The relationship between cells and tissue microenvironments is a topic of vital
importance for cancer biology. Because of rapid cellular proliferation and irregular
vascularization, tumors often develop regions of hypoxia (Höckel & Vaupel, 2001). Tumor
microenvironments also exhibit abnormal ranges of other physical-chemical variables,
including hydration state (McIntyre, 2006; Abramczyk et al., 2014).
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Some aspects of the complex metazoan response to hypoxia are mediated by hypoxia-
inducible factor 1 (HIF-1). HIF-1 is a transcription factor that is tagged for degradation
in normoxic conditions. Under hypoxia, the degradation of HIF-1 is suppressed; HIF-1
can then enter the nucleus and activate the transcription of downstream targets (Semenza,
2003). Indeed, transcriptional targets of HIF-1 are found to be differentially expressed
in proteomic datasets for laboratory hypoxia (Cifani et al., 2011; McMahon et al., 2012).
However, proteomic studies of cells in hypoxic conditions provide many examples of
proteins that are not directly regulated by HIF-1 (McMahon et al., 2012; Fuhrmann et al.,
2013), and cancer proteomic datasets also include many proteins that are not known to be
regulated by HIF-1.

The complexity of the underlying regulatorymechanisms (McMahon et al., 2012) and the
large differences between levels of gene expression and protein abundance (van den Beucken
et al., 2011; Cifani et al., 2011; Ho et al., 2016) present many difficulties for a bottom-up
understanding of global proteomic trends. As a counterpart to molecular explanations,
a systems perspective can incorporate higher-level constraints (Drack & Wolkenhauer,
2011). A commonly used metaphor in systems biology is attractor landscapes. The basins
of attraction are defined by dynamical systems behavior, but in many cases are analogous to
minimum-energy states in thermodynamics (Emmeche, Koppe & Stjernfelt, 2000; Enver et
al., 2009). Nevertheless, little attention has been given to the thermodynamic potential that
is inherent to the compositional difference between the up-expressed and down-expressed
proteins in proteomic experiments. Such a high-level perspective may require concepts
and language that differ from those applicable to molecular interactions (Ellis, 2015).

To better understand the microenvironmental context for compositional changes,
this study uses proteomic data as input into a descriptive thermodynamic model. First,
a compositional analysis of differentially (up- and down-) expressed proteins identifies
consistent trends in the oxidation and hydration states of proteomes of colorectal cancer
(CRC), pancreatic cancer, and cells exposed to hypoxia or hyperosmotic stress. These
results lay the groundwork for using a thermodynamic model to quantify environmental
constraints on the potential for proteomic transformation. Finally, the Discussion section
explores some implications of the hypothesis that elevated synthesis of lipids provides
an electron sink for the oxidation of proteomes. In this situation, some cancer systems
may develop an abnormally large redox disproportionation between pools of cellular
biomacromolecules.

METHODS
Data sources
Tables 1–4 present the sources of data. Protein IDs and expression (up/down or abundance
ratios) were found in the literature, often being reported in the supporting information (SI)
or supplementary (suppl.) tables. In some cases, source tables were further processed, using
fold-change and significance cutoffs that, where possible, are based on statements made in
the primary publication. The data are stored as *.csv files in the R package canprot, which
was developed during this study (see http://github.com/jedick/canprot) and is provided as
Dataset S1.
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Table 1 Selected proteomic datasets for colorectal cancer.* Here and in Tables 2–4, n1 and n2 stand for
the numbers of down- and up-expressed proteins, respectively, in each dataset.

Set n1 n2 Description Set n1 n2 Description

a© 57 70 T/N s© 73 175 MSS-type T/Na

b© 101 28 CRC C/Aa t© 79 677 T/N
c© 87 81 CIN C/Aa u© 55 68 CM T/Nb

d© 157 76 MIN C/Aa v© 33 37 stromal T/Na

e© 43 56 biomarkers up/down w© 51 55 chromatin-binding C/A
f© 48 166 stage I/normalb x© 58 65 epithelial A/N
g© 77 321 stage II/normalb y© 44 210 tissue secretome T/Na

h© 61 57 microdissected T/Nb z© 113 66 membrane enriched T/N
i© 71 92 adenoma/normala A© 1061 1254 A/N
j© 109 72 stage I/normala B© 772 1007 C/A
k© 164 140 stage II/normala C© 879 1281 C/N
l© 63 131 stage III/normala D© 123 75 stromal AD/NCa

m© 42 26 stage IV/normala E© 125 60 stromal CIS/NCa

n© 72 45 T/N F© 99 75 stromal ICC/NCa

o© 335 288 A/N G© 191 178 biopsy T/Nb

p© 373 257 C/A H© 113 86 AD/NCa

q© 351 232 C/N I© 169 138 CIS/NCa

r© 75 61 poor/good prognosisb J© 129 100 ICC/NCa

Notes.
Abbreviations: T, tumor; N, normal; C, carcinoma or adenocarcinoma; A, adenoma; CM, conditioned media; AD, ade-
nomatous colon polyps; CIS, carcinoma in situ; ICC, invasive colonic carcinoma; NC, non-neoplastic colonic mucosa.
* a© Source: Table 1 and Suppl. Data 1 ofWatanabe et al. (2008). b© c© d© Nuclear matrix proteome; chromosomal instability
(CIN), microsatellite instability (MIN), or both types (CRC). Source: Suppl. Tables 5–7 of Albrethsen et al. (2010). e© Candi-
date serum biomarkers. Source: Table 4 of Jimenez et al. (2010). f© g© Source: Suppl. Table 4 of Xie et al. (2010). h© Source:
Suppl. Table 4 of Zhang et al. (2010). i© j© k© l© m© Source: Suppl. Table 9 of Besson et al. (2011). n© Source: Suppl. Ta-
ble 2 of Jankova et al. (2011). o© p© q© Source: Table S8 ofMikula et al. (2011). r© Source: extracted from Suppl. Table 5 of
Kim et al. (2012), including proteins with abundance ratio >2 or <0.5. s©Microsatellite stable (MSS) type CRC tissue. Source:
Suppl. Table 4 of Kang et al. (2012). t© Source: Suppl. Table 4 ofWiśniewski et al. (2012). u© Source: Suppl. Table 2 of Yao
et al. (2012). v© Source: Table 1 ofMu et al. (2013). w© Source: Table 2 of Knol et al. (2014). x© Source: Table III of Uzozie
et al. (2014). y© Source: Suppl. Table 1 of de Wit et al. (2014). z© Source: Supporting Table 2 of Sethi et al. (2015). A© B© C©
Source: SI Table 3 ofWiśniewski et al. (2015). D© E© F© Source: Suppl. Table S3 of Li et al. (2016). G© Source: extracted from
SI Table S3 of Liu et al. (2016), including proteins with p-value< 0.05. H© I© J© Source: Suppl. Table 4 of Peng et al. (2016).

aGene names or GI numbers were converted to UniProt IDs using the UniProt mapping tool.
bIPI numbers were converted to UniProt IDs using the DAVID conversion tool.

Sequence IDs were converted to UniProt IDs using the UniProt mapping tool
(http://www.uniprot.org/mapping/) or the gene ID conversion tool of DAVID 6.7
(https://david.ncifcrf.gov/conversion.jsp). For proteins where the automatic conversions
produced nomatches, manual searches in UniProt were performed using the gene names or
protein descriptions. If specified (i.e., as UniProt IDs with suffixes), particular isoforms of
the proteins were used. Obsolete or secondary IDs reported for some proteins were updated
to reflect current, primary IDs (uniprot_updates.csv in Dataset S1). Any duplicated IDs
listed as having opposite expression ratios were excluded from the comparisons here.

Amino acid sequences of human proteins were taken from the UniProt human reference
proteome. Sequences of proteins in other organisms and of human proteins not contained
in the reference proteome were downloaded from UniProt or the NCBI website (for one
study reporting GI numbers; see Table 4). Amino acid compositions were computed using
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Table 2 Selected proteomic datasets for pancreatic cancer.*

Set n1 n2 Description Set n1 n2 Description

a© 41 69 T/N l© 29 73 FFPE PC/AIPc

b© 60 88 T/Na m© 53 73 FFPE PC/CPc

c© 48 54 T/Na n© 83 32 low-grade T/Na

d© 19 95 CP/Na o© 224 176 high-grade T/Na

e© 28 29 T/N p© 208 219 T/N (no DM)a

f© 38 45 T/Nb q© 56 167 T/N (DM)a

g© 207 152 FFPE T/Na r© 227 148 LCM PDAC/ANTc

h© 108 86 accessible T/Nc s© 65 34 T/N
i© 38 47 FFPE T/Nc t© 35 51 mouse 2.5 w T/Na

j© 78 57 T/Na u© 40 73 mouse 3.5 w T/Na

k© 257 456 T/Na v© 49 84 mouse 5 w T/Na

w© 37 108 mouse 10 w T/Na

Notes.
Abbreviations: T, tumor; N, normal; CP, chronic pancreatitis; AIP, autoimmune pancreatitis; PC, pancreatic cancer;
DM, diabetes mellitus; PDAC, pancreatic ductal adenocarcinoma; ANT, adjacent normal tissue; FFPE, formalin-fixed
paraffin-embedded; LCM, laser-capture microdissection; NP, normal pancreas.
* a© Pooled tissue samples of PC and matched normal tissue from 12 patients. Source: Tables 2 and 3 of Lu et al. (2004). b©
Two PC and two NP samples. Source: Tables 1 and 2 of Chen et al. (2005). c© Large-scale immunoblotting (PowerBlot) of
8 tissue specimens of pancreatic intraepithelial neoplasia compared to NP and CP. Source: Table 2 of Crnogorac-Jurcevic et
al. (2005). d© Tissue specimens from patients with CP and 10 control specimens from patients with NP. Source: Table 1 of
Chen et al. (2007). e© 12 carcinoma samples (PDAC), 12 benign pancreatic cystadenomas and 10 normal tissues adjacent to
the PDAC primary mass. Source: Table 1 of Cui et al. (2009). f© Source: extracted from Table S2 ofMcKinney et al. (2011).
g© PDAC compared to NP. Source: Suppl. Table 3 of Pan et al. (2011). h© Potentially accessible proteins in fresh samples of
PC tumors (three patients) vs normal tissue (two patients with NP and one with CP). Source: extracted from the SI Table of
Turtoi et al. (2011). i© 11 tissue specimens containing >50% cancer and 8 unmatched, uninvolved tissues adjacent to pancre-
atitis. Source: Suppl. Tables 2 and 3 of Kojima et al. (2012). j© Fresh-frozen PDAC tissue specimens from seven patients vs
a pooled mixture of three normal main pancreatic duct tissue samples. Source: extracted from SI Table S3 of Kawahara et al.
(2013), including proteins with an expression ratio >2 [or <0.5] in at least five of the seven experiments and ratio >1 [or <1]
in all experiments. k© Frozen samples of PDAC tumors vs adjacent benign tissue from four patients. Source: Suppl. Table 2
of Kosanam et al. (2013). l© m© Tissue samples from three patients with PC vs 3 patients with AIP or three patients with CP.
Source: extracted from Tables 2, 3, and 4 of Paulo et al. (2013). n© o© 12 samples each (pooled) of low-grade tumor or high-
grade tumor vs non-tumor. Source: extracted from Suppl. Tables S4 and S5 ofWang et al. (2013b), including proteins with
ratios ≥3/2 or ≤2/3 for at least two of the four groups, and with expression differences for all four groups in the same direc-
tion. p© q© Source: extracted from Suppl. Tables S3 and S4 ofWang et al. (2013a), including proteins with >3/2 or <2/3 fold
change in at least 3 of 4 iTRAQ experiments for different pooled samples. r© LCM of CD24+ cells from PDAC vs CD24− cells
from adjacent normal tissue (ANT). Source: SI Table S5 of Zhu et al. (2013). s©Matched PDAC and normal tissue from nine
patients. Source: extracted from SI Table S5 of Iuga et al. (2014), excluding ‘‘not passed’’ proteins (those with inconsistent reg-
ulation). t© u© v© w© PDAC tumors in transgenic mice vs pancreas in normal mice, at time points of 2.5, 3.5, 5 and 10 weeks.
Source: Suppl. Table of Kuo et al. (2016).

aGene names, IPI numbers or UniProt names were converted to UniProt IDs using the UniProt mapping tool.
bIPI numbers were converted to UniProt IDs using the DAVID conversion tool.
cIncludes differentially expressed proteins shared between groups and proteins identified in only one group.

functions in the CHNOSZ package (Dick, 2008) or the ProtParam tool on the UniProt
website. The amino acid compositions are stored in *.Rdata files in Dataset S1.

R (R Core Team, 2016) and R packages canprot (this study) and CHNOSZ (Dick, 2008)
were used to process the data and generate the figures with code specifically written for this
study, which is provided in Dataset S2.
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Table 3 Selected proteomic datasets for hypoxia and reoxygenation experiments or growth in 3D culture.*

Set n1 n2 Description Set n1 n2 Description Set n1 n2 Description

a© 37 24 U937a k© 56 40 THP-1 v© 113 154 CRC-derived SPH
b© 41 22 placental secretome l© 178 77 A431 Hx48 w© 127 292 HepG2/C3A SPH
c© 71 19 B104 m© 69 54 A431 Hx72 x© 53 72 HeLa
d© 87 28 DU145a n© 48 36 A431 ReOx y© 137 64 U87MG and 786-O
e© 29 21 SK-N-BE(2)c; IMR-32 o© 141 64 SH-SY5Y z© 129 141 HCT116 transcriptiona

f© 53 65 H9C2b p© 65 34 A431 Hx48-S A© 469 1024 HCT116 translationa

g© 409 337 MCF-7 SPH P5 q© 137 61 A431 Hx72-S B© 66 50 adipose-derived SCa

h© 248 214 MCF-7 SPH P2 r© 56 49 A431 ReOx-S C© 65 27 cardiomyocytes CoCl2a

i© 48 52 SPH perinecrotica s© 74 44 A431 Hx48-P D© 35 69 cardiomyocytes SALa

j© 101 186 SPH necrotica t© 67 53 A431 Hx72-P E© 116 225 HT29 SPH
u© 41 31 A431 ReOx-P

Notes.
Abbreviations: U937, acute promonocytic leukemic cells; B104, rat neuroblastoma cells; DU145, prostate carcinoma cells; SK-N-BE(2)c; IMR-32; SH-SY5Y, neuroblastoma
cells; H9C2, rat heart myoblast; MCF-7, breast cancer cells; THP-1, macrophages; A431, epithelial carcinoma cells; Hx48, hypoxia 48 h; Hx72, hypoxia 72 h; ReOx,
hypoxia 48 h followed by reoxygenation for 24 h; -S, supernatant fraction; -P, pellet fraction; SPH, spheroids; HepG2/C3A, hepatocellular carcinoma cells; U87MG,
glioblastoma; 786-O, renal clear cell carcinoma cells; HCT116; HT29, colon cancer cells; SC, stem cells; SAL, salidroside.
* a© 2% O2 vs normoxic conditions. Source: Table 1 of Han et al. (2006). b© 1% vs 6% O2. Source: Tables 2 and 3 of Blankley et al. (2010). c© Expression ratios HYP/LSC (oxy-
gen deprivation/low serum control) >1.2 or <0.83. Source: calculated using data from Suppl. Table 2 of Datta et al. (2010), including proteins with p-value< 0.05 and EF< 1.4.
d© Translationally regulated genes. Source: Suppl. Tables 1–4 of van den Beucken et al. (2011). e© 1% O2 for 72 h vs standard conditions. Source: Suppl. Table 1(a) of Cifani et
al. (2011). f©Hypoxic vs control conditions for 16 h. Source: Suppl. Table S5 of Li et al. (2012). g© h© Tumorspheres (50 to 200 µm diameter) at passage 5 (P5) or 2 (P2) com-
pared to adherent cells. Source: Sheets 2 and 3 in Table S1 ofMorrison et al. (2012). i© j© Perinecrotic and necrotic regions compared to surface of multicell spheroids (∼600
µm diameter) (expression ratios <0.77 or >1.3). Source: Suppl. Table 1C ofMcMahon et al. (2012). k© Incubation for several days under hypoxia (1% O2). Source: Suppl. Table
2A of Fuhrmann et al. (2013) (control virus cells). l© m© n© Source: extracted from Suppl. Table 1 of Ren et al. (2013), including proteins with iTRAQ ratios <0.83 or >1.2 and
p-value< 0.05. o© 5% O2 vs atmospheric levels of O2 (normalized expression ratio >1.2 or <0.83). Source: SI table of Villeneuve et al. (2013). p© q© r© s© t© u© The compar-
isons here include proteins with p < 0.05. Source: Suppl. Table S1 of Dutta et al. (2014). v© Organotypic spheroids (∼250 µm diameter) vs lysed CRC tissue. Source: extracted
from Table S2 of Rajcevic et al. (2014), filtered as follows: at least two of three experiments have differences in spectral counts, absolute overall fold change is at least 1.5, and p-
value is less than 0.05. w© SPH vs classical cell culture (2D growth) (log2 fold change at least±1). Source: P1_Data sheet in the SI ofWrzesinski et al. (2014). x© 1% vs 19% O2.
Source: Table S1 of Bousquet et al. (2015). y© 1% O2 for 24 h (fold change <0.5 or >1 for proteins detected in only hypoxic or only normoxic conditions). Source: Table S1 of Ho
et al. (2016). z© A©Microarray analysis of differential gene expression in the transcriptome (total rRNA) and translatome (polysomal/total RNA ratio) of cells grown in normal
and hypoxic (1% O2) conditions. Source: data file supplied by Ming-Chih Lai (Lai, Chang & Sun, 2016). B© ASC from three donors cultured for 24 h in hypoxic (1% O2) vs nor-
moxic (20% O2) conditions. Source: Tables 1 and 2 of Riis et al. (2016). C© D© Rat cardiomyocytes treated with CoCl2 (hypoxia mimetic) vs control or with SAL (anti-hypoxic)
vs CoCl2. Source: SI Tables 1S and 2S of Xu et al. (2016). E© 800 µm spheroids vs 2D monolayers. Source: Tables S1a–b of Yue et al. (2016).

aGene names, GI numbers, or other IDs were converted to UniProt IDs using the UniProt mapping tool.
bIPI numbers were converted to UniProt IDs using the DAVID conversion tool.

Measures of compositional oxidation and hydration state
Two compositional metrics that afford a quantitative description of proteomic data, the
average oxidation state of carbon (ZC) and the water demand per residue (nH2O), are briefly
described here.

The oxidation state of atoms inmolecules quantifies the degree of electron redistribution
due to bonding; a higher oxidation state signifies a lower degree of reduction. Although
calculations of oxidation state from molecular formulas necessarily make simplifying
assumptions regarding the internal electronic structure of molecules, such calculations
may be used to quantify the flow of electrons in chemical reactions, and the oxidation
state concept is useful for studying the transformations of complex mixtures of organic
molecules. For example, calculations of the average oxidation state of carbon provide
insight on the processes affecting the decomposition of carbohydrate, protein and lipid
fractions of natural organic matter (Baldock et al., 2004). Moreover, oxidation state can be
regarded as an ensemble property of organic systems (Kroll et al., 2015). See Dick (2016)
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Table 4 Selected proteomic datasets for hyperosmotic stress experiments.*

Set n1 n2 Description Set n1 n2 Description

a© 38 44 S. cerevisiae VHG 2 ha n© 49 28 eel gilla

b© 33 62 S. cerevisiae VHG 10 ha o© 78 77 S. cerevisiae t30ab

c© 18 65 S. cerevisiae VHG 12 ha p© 67 67 S. cerevisiae t30bb

d© 63 94 mouse pancreatic islets q© 87 87 S. cerevisiae t30cb

e© 148 44 adipose-derived stem cells r© 25 38 IOBA-NHC
f© 17 11 ARPE-19 25 mM s© 105 96 CAUCR succinate tr.a

g© 21 24 ARPE-19 100 mM t© 209 142 CAUCR NaCl tr.a

h© 114 61 ECO57 25 ◦C, aw 0.985a u© 33 33 CAUCR succinate pr.a

i© 238 61 ECO57 14 ◦C, aw 0.985a v© 33 27 CAUCR NaCl pr.a

j© 263 56 ECO57 25 ◦C, aw 0.967a w© 294 205 CHO alla

k© 372 73 ECO57 14 ◦C, aw 0.967a x© 66 75 CHO higha

l© 32 39 Chang liver cells 25 mM y© 14 28 Yarrowia lipolyticab

m© 19 50 Chang liver cells 100 mM z© 160 141 Paracoccidioides lutzii a

Notes.
Abbreviations: VHG, very high glucose; ARPE-19, human retinal pigmented epithelium cells; ECO57, Escherichia coli
O157:H7 Sakai; IOBA-NHC, human conjunctival epithelial cells; CAUCR, Caulobacter crescentus; tr, transcriptome; pr,
proteome; CHO, Chinese hamster ovary cells.
* a© b© c© VHG (300 g/L) vs control (20 g/L). The comparisons here use proteins with expression ratios <0.9 or >1.1 and
with p-values< 0.05. Source: SI Table of Pham &Wright (2008). d© 24 h at 16.7 mM vs 5.6 mM glucose. Source: extracted
from Suppl. Table ST4 ofWaanders et al. (2009); including the red- and blue-highlighted rows in the source table (those with
ANOVA p-value< 0.01), and applying the authors’ criterion that proteins be identified by 2 or more unique peptides in at
least 4 of the 8 most intense LC-MS/MS runs. e© 300 mOsm (control) or 400 mOsm (NaCl treatment). Source: Suppl. Ta-
ble 1 of Oswald et al. (2011). f© g©Mannitol-balanced 5.5 (control), 25 or 100 mM d-glucose media. Source: Table 1 of Chen
et al. (2012). h© i© j© k© Temperature and NaCl treatment (control: 35 ◦C, aw 0.993). Source: Suppl. Tables S13–S16 of
Kocharunchitt et al. (2012). l© m© 5.5 (control), 25 or 100 mM d-glucose. Source: Table 1 of Chen et al. (2013). n© Gill pro-
teome of Japanese eel (Anguilla japonica) adapted to seawater or freshwater. Source: protein IDs from Suppl. Table 3 and gene
names of human orthologs from Suppl. File 4 of Tse et al. (2013). o© p© q©Multiple experiments for 30 min after transfer
from YPKG (0.5% glucose) to YNB (2% glucose) media. Source: extracted from Suppl. Files 3 and 5 of Giardina, Stanley &
Chiang (2014), using the authors’ criterion of p-value< 0.05. r© 280 (control), 380, or 480 mOsm (NaCl treatment) for 24 h.
Source: Table 2 of Chen et al. (2015). s© t© u© v© Overnight treatment with a final concentration of 40/50 mM NaCl or 200
mM sucrose vs M2 minimal salts medium plus glucose (control). Source: Table S2 of Kohler et al. (2015). w© x© 15 g/L vs 5
g/L (control) glucose at days 0, 3, 6, and 9. The comparisons here use all proteins reported to have expression patterns in Clus-
ter 1 (up) or Cluster 5 (down), or only the proteins with high expression differences (ratio ≤−0.2 or ≥0.2) at all time points.
Source: SI Table S4 of Liu et al. (2015). y© 4.21 osmol/kg vs 3.17 osmol/kg osmotic pressure (NaCl treatment). Source: Table
1 of Yang et al. (2015). z© 0.1 M KCl (treatment) vs medium with no added KCl (control). Source: Suppl. Tables 2 and 3 of
da Silva Rodrigues et al. (2016).

aGene names, GI numbers, or NCBI RefSeq accessions were converted to UniProt IDs using the UniProt mapping tool.
bAmino acid sequences were obtained for the listed GI numbers using Batch Entrez (https://www.ncbi.nlm.nih.gov/sites/
batchentrez).

for additional references where organic and biochemical reactions have been characterized
using the average oxidation state of carbon.

Despite the large size of proteins, their relatively simple primary structure means that ZC

can be computed using the elemental abundances in any particular amino acid sequence
(Dick, 2014):

ZC=
−h+3n+2o+2s+z

c
. (1)

In this equation, c , h, n, o, and s are the elemental abundances in the chemical formula
CcHhNnOoSzs for a specific protein with total charge z . Note, however, that ionization by
gain or loss of protons alters charge and the number of H equally, so has no effect on the
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value of ZC; for ease of computation, ZC is calculated here for proteins in their completely
non-ionized forms.

In contrast to the elemental stoichiometry in Eq. (1), a calculation of the hydration state
must account for the gain or loss of H2O. In the biochemical literature, ‘‘protein hydration’’
or water of hydration refers to the effective (time-averaged) number of water molecules
that interact with a protein (Timasheff, 2002). These dynamically interacting molecules
form a hydration shell that has important implications for crystallography and enzymatic
function, but hydration numbers have been measured for few proteins and are difficult
to compute, especially for the many proteins with unknown tertiary structure. Thus,
the structural hydration of proteins identified in proteomic datasets generally remains
unquantified.

A different concept of hydration state arises by considering the chemical components
that make up proteins. A componential analysis is a method of projecting the composition
of a molecule using specified chemical formula units as the components, or basis species.
The notion of components is central to chemical thermodynamics (Gibbs, 1875); the
choice of components determines the thermodynamic variables (chemical potentials),
and a careful choice leads to more convenient representations of the compositional and
energetic constraints on reactions (e.g. Zhu & Anderson, 2002).

The components, or basis species, consist of a minimum number of species whose
compositions can be linearly combined to represent the composition of any protein. The
20 proteinogenic amino acids are together composed of five elements (C, H, N, O, S),
so five basis species are needed to represent the primary sequences of proteins. As noted
previously (see references in Dick, 2016), all possible combinations of basis species lead to
thermodynamically consistent models, but are differently suited to making interpretations.
Dick (2016) proposed using C5H10N2O3, C5H9NO4, C3H7NO2S, O2, and H2O as a basis
for assessing compositional differences in proteomes. The first three formulas correspond
to glutamine (Q), glutamic acid (E), and cysteine (C).

To account for protein ionization, a proton can be included in the basis, which is now
referred to as ‘‘QEC+’’. Using the QEC+ basis, the stoichiometric projection of a protein
with formula CcHh+zNnOoSzs , where z is the charge of the protein and h is the number of
H in the fully nonionized protein, is represented by

nCysC3H7NO2S+nGluC5H9NO4+nGlnC5H10N2O3

+nH2OH2O+nO2O2+zH+→CcHh+zNnOoSzs . (R1)

To compare the compositions of different-sized proteins, the stoichiometric coefficients in
Reaction (R1) can be divided by the sequence length (number of amino acids) of the protein.
The length-normalized coefficients, written with an overbar, include the per-residue water
demand for formation of a protein (nH2O). This componential ‘‘hydration state’’ is used in
this study, and should not be confused with the structural biochemical ‘‘protein hydration’’
mentioned above.

The primary reason for choosing the QEC+ basis instead of others lies in the relation
of the compositional variables representing oxidation and hydration state (nO2 and
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nH2O) with each other and with ZC. It is important to note that ZC is a measure of
oxidation state that is independent of the choice of basis species. Smoothed scatter
plots of nH2O vs ZC and nO2 vs ZC are shown in Fig. S1 for the 21,006 human proteins
in the UniProt reference proteome. The plots in the top row of this figure are made
using the QEC basis (which is equivalent to the QEC+ basis for the plotted variables)
while those in the bottom row are made using the basis species CO2, NH3, H2S, H2O,
and O2; these inorganic species are often used to balance reactions in geochemical
models. It is apparent from Fig. S1 that, using the QEC basis, nO2 is highly positively
correlated with ZC, and nH2O shows a slight negative correlation with ZC. Accordingly,
in the QEC basis, nO2 is a strong indicator of oxidation state, while nH2O represents a
distinct compositional variable. In contrast, the plots in the bottom row of Fig. S1 show
a moderate positive correlation between nO2 and ZC and a stronger negative correlation
between nH2O and ZC. Using that basis would therefore weaken the interpretation of
nO2 as an indicator of oxidation state and of nH2O as a distinct compositional variable.
The relations among nH2O, nO2 , and ZC also vary between basis species consisting
of different combinations of amino acids; those differences together with biological
considerations support the choice of QEC instead of other amino acids (Dick, 2016).

In summary, Reaction (R1) is not a mechanism for protein synthesis, but is a projection
of any protein’s elemental composition into chemical components, i.e., the basis. Compared
to a basis composed of simpler inorganic species, the QEC+ basis reduces the projected
codependence of oxidation and hydration state in proteins, unfolding a compositional
dimension that can enrich a thermodynamic model.

RESULTS
Colorectal cancer
The progression of colorectal cancer (CRC) begins with the formation of numerous
non-cancerous lesions (adenoma), which may remain undetectable. Over time, a small
fraction of adenomas develop into malignant tumors (carcinoma) (Jimenez et al., 2010;
Wiśniewski et al., 2015). Publicly available datasets reporting a minimum of ca. 30 up- and
30 down-expressed proteins for tissue samples of CRC, and one meta-analysis of serum
biomarkers, were compiled recently (Dick, 2016). These same datasets are listed in Table 1,
with one newer addition (dataset G©; Liu et al., 2016).

Many aspects of the experimental methods, statistical tests, and bioinformatics analyses
used to identify significantly up-expressed and down-expressed proteins vary considerably
among studies. The comparisons here are made without any control of this variability.
Although particular comparisons may reflect study-specific conditions and methods,
visualization of the chemical compositions of proteins for many datasets can reveal general
features of the cancer phenotype.

For each dataset, Table 1 lists the numbers of down-expressed (n1) and up-expressed
(n2) proteins in cancer relative to normal tissue. For datasets comparing different stages of
cancer progression, groups n1 and n2 correspond to the down- and up-expressed proteins
in the more advanced stage (e.g., carcinoma) compared to the less advanced stage (e.g.,
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Figure 1 Compositional analysis of differential protein expression in (A) colorectal cancer and (B)
pancreatic cancer. The plots show differences (1) between the mean for up-expressed and the mean for
down-expressed proteins of average oxidation state of carbon (ZC) and water demand per residue (n̄H2O)
for each dataset from Tables 1 and 2. Red colors highlight (A) adenoma/normal comparisons or (B)
chronic pancreatitis/normal or low-grade tumor/normal comparisons. Here and in Fig. 2, filled points and
dashed lines indicate p< 0.05; solid lines are drawn instead if the common language effect size is ≥60% or
≤40%.

adenoma). Mean values of average oxidation state of carbon (ZC; Eq. (1)) and water
demand per residue (nH2O; Reaction (R1)) were calculated for the up- and down-expressed
groups of proteins, together with the corresponding mean differences (1ZC and 1nH2O

for the means of up- minus down-expressed groups), p-values, and effect sizes. These
values are listed in Table S1. Figure S2 shows the mean values of ZC and nH2O for the
up- and down-expressed proteins together in a single plot (lettered point symbols for
down-expressed and arrowheads for up-expressed proteins). Because of the high variability
of mean values among datasets, compositional trends between up- and down-expressed
proteins are difficult to interpret using Fig. S2. Therefore, the differences in mean values
between up- and down-expressed proteins (1ZC and 1nH2O) are plotted in this paper.

Figure 1A shows 1nH2O vs 1ZC for the CRC datasets. The gray boxes cover the range
from −0.01 to 0.01 for each of the variables. To draw attention to the largest and most
significant changes, filled points and dashed lines indicate mean differences with a p-value
(Wilcoxon test) less than 0.05; solid lines indicate mean differences with a common
language effect size (CLES) ≥60% or ≤40%. The common language statistic ‘‘is the
probability that a score sampled at random from one distribution will be greater than
a score sampled from some other distribution’’ (McGraw &Wong, 1992). Here, CLES is
calculated as the percentage of pairings of individual proteins with a positive difference in
ZC or nH2O between the up- and down-expressed groups from all possible pairings between
the groups. Point symbols are squares if the p-values for both ZC and nH2O are less than
0.05, or circles otherwise.

The plot illustrates that proteins up-expressed in carcinoma relative to normal tissue
most often have significantly higher ZC [ g© k© l© n© p© r© s© u© v© l©], nH2O [ e© o© t© x© y© D© G©
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H©], or both [ q© A© C©] (see also Dick, 2016). The red points in the plot highlight the datasets
for adenoma/normal comparisons [ i© o© x© A© D© H©]. Most of these exhibit a significant
positive 1nH2O but not the large increase in ZC found for many of the carcinoma/normal
comparisons.

Pancreatic cancer
Many proteomic studies have been performed to investigate the differences between normal
pancreas (NP) and pancreatic adenocarcinoma (PDAC). Proteomic studies also address the
inflammatory conditions of autoimmune pancreatitis, which is sometimes misidentified as
carcinoma (Paulo et al., 2013), and chronic pancreatitis, which is associated with increased
cancer risk (Chen et al., 2007). Searches for proteomic data were aided by the reviews of
Pan et al. (2013) and Ansari et al. (2014). Table 2 lists selected datasets reporting at least ca.
25 up-expressed and 25 down-expressed proteins.

The compositional comparisons in Fig. 1B show that up-expressed proteins in pancreatic
cancer often have significantly higher ZC [ b© e© g© i© o© p© q© r©]. A dataset obtained for
pancreatic cancer associated with diabetes mellitus (Wang et al., 2013a) [ q©] has both
significantly higher ZC and nH2O. Only one dataset, from a study that targeted accessible
proteins (Turtoi et al., 2011) [ h©], is characterized by a large negative mean difference of
1ZC. Some other datasets that do not have significantly different ZC exhibit higher nH2O in
cancer compared to non-cancerous (normal or pancreatitis) tissue [ a© j© k© m© u©]. Two of
the four datasets with negative 1nH2O [ d© h© n© s©] were obtained from studies of chronic
pancreatitis (Chen et al., 2007) or low-grade tumors (Wang et al., 2013b) (red points in
Fig. 1B); another used a procedure to isolate accessible proteins (Turtoi et al., 2011) [ h©],
while the remaining low-1nH2O dataset [ s©] may be an outlier in terms of mean chemical
composition (Fig. S2). Therefore, the datasets with positive 1nH2O and/or 1ZC likely
reflect a general characteristic of pancreatic cancer.

Hypoxia and 3D culture
Hypoxia refers to oxygen concentrations that are lower than normal physiological levels.
Hypoxia is a factor inmany pathological conditions, including altitude sickness, stroke, and
cardiac ischemia (e.g., Datta et al., 2010; Li et al., 2012; Fuhrmann et al., 2013). In tumors,
irregular vascularization and abnormal perfusion contribute to the formation of hypoxic
regions (Höckel & Vaupel, 2001). A related situation is the growth in the laboratory of 3D
cell cultures (e.g., tumor spheroids), instead of two-dimensional growth on a surface. In
2D monolayers, all cells are exposed to the gas phase, but interior regions of 3D cultures
are often diffusion-limited, leading to oxygen deprivation and necrosis (McMahon et al.,
2012). There are some overlaps, but also many differences, between gene expression in 3D
culture and hypoxic conditions (DelNero et al., 2015). These studies emphasize that growth
in 3D culture is associated with heterogeneous oxygen concentrations and have found
an interdependence between the effects of hypoxia and 3D growth on gene expression.
The proteomic changes likely reflect not only oxygen limitation but also other processes
connected with 3D growth (e.g., nutrient deprivation, extracellular architecture, and even
light penetration). Although the comparisons made here do not address these individual
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Figure 2 Compositional analysis of differential protein expression in (A) hypoxia or 3D culture
and (B) hyperosmotic stress. The plots show differences (1) between the mean for up-expressed and
the mean for down-expressed proteins of average oxidation state of carbon (ZC) and water demand per
residue (n̄H2O) for each dataset from Tables 3 and 4. Red, blue, and orange symbols are used to highlight
datasets for tumorspheres, reoxygenation or anti-hypoxic treatment, and adipose-derived stem cells,
respectively.

factors, they do provide information on whether hypoxia and 3D culture lead to similar
changes in the overall chemical composition of proteomes.

Table 3 lists selected proteomic datasets with a minimum of ca. 20 up- and 20 down-
expressed proteins in hypoxia or 3D growth. The differences in chemical composition of
the differentially expressed proteins are plotted in Fig. 2A. In many experiments, hypoxia
or 3D growth induces a proteomic transformation with a significant and/or large decrease
of ZC [ a© b© c© g© h© j© m© o© w© A© E©]. These datasets cluster around a narrow range of1ZC

(−0.032 to −0.021), except for dataset E© (3D growth of colon cancer cells) with much
lower 1ZC. As extracellular proteins have relatively high ZC (Dick, 2014), the observation
in some experiments that hypoxia decreases the abundance of proteins associated with the
extracellular matrix (ECM) (Blankley et al., 2010) is compatible with the overall expression
of more reduced (low- ZC) proteins. Conversely, reoxygenation leads to the formation
of more oxidized proteins in the supernatant (-S) and pellet (-P) fractions of isolated
chromatin [ r© u©].

While most studies controlled gas composition to generate hypoxia, two datasets [ C© D©]
are from a study that used cobalt chloride (CoCl2) to induce hypoxia in rat cardiomyocytes;
treatment with salidroside (SAL) had anti-hypoxic effects (Xu et al., 2016). The CoCl2 and
SAL treatments result in the expression of somewhat more reduced and more oxidized
proteins, respectively, in agreement with the general trends for hypoxia and reoxygenation
experiments.

Two datasets oppose the general trends, showing large and significantly higher ZC under
hypoxia. These datasets were obtained using particular analytical methods or cell types. One
of the nonconforming datasets is for the supernatant in a chromatin isolation procedure
[ p©], and the other is for adipose-derived stem cells [ B©] (see below).
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Hyperosmotic stress
By hyperosmotic stress is meant a condition that increases the extracellular hypertonicity,
or osmolality. The addition of osmolytes (or ‘‘cosolvents’’) lowers the water activity in the
medium (Timasheff, 2002). Equilibration with hypertonic solutions drives water out of
cells, causing cell shrinkage. The selected datasets listed in Table 4 include at least ca. 20
up-expressed and 20 down-expressed proteins in response to high concentrations of NaCl
(five studies), glucose (six studies), succinate (one study), KCl (one study), or adaptation
to seawater (one study). The proteomic analyses used bacterial, yeast, or mammalian
cells, or fish (eel) gills (Tse et al., 2013). One study varied temperature along with NaCl
concentration (Kocharunchitt et al., 2012), and one study reported both transcriptomic
and proteomic ratios (Kohler et al., 2015).

In the study of Giardina, Stanley & Chiang (2014) [ o© p© q©], the reported expression
ratios for extracellular proteins after transfer from low glucose to high glucose media are
nearly all less than 1. Therefore, the ‘‘up-expressed’’ proteins in the comparisons here are
taken to be those that have a higher expression ratio than the median in a given experiment.
To achieve a sufficient sample size using data from Chen et al. (2015) [ r©], the comparisons
here use a combined set of proteins, i.e., those identified to have the same direction of
change in the two treatment conditions (380 and 480mOsmNaCl) and a significant change
in at least one of the conditions.

Figure 2B shows that hyperosmotic stress strongly (CLES ≤40%) and/or significantly
(p-value < 0.05) induces the formation of proteins with relatively low water demand per
residue in 11 datasets [ a© b© d© f© i© m© s© t© u© v© z©]. Five of these datasets, including four
for bacteria [ s© t© u© v©] and one for human cells [m©], also show an increase in ZC. These
trends are found in both the transcriptomic [ s© t©] and proteomic [ u© v©] data from the
study of Kocharunchitt et al. (2012).

Four datasets obtained for mammalian cells have low 1ZC with no significant
[ r© w© x©] or a significantly negative mean difference of nH2O [ f©]. Six datasets
[ h© k© n© o© p© q©] from one study each of yeast and E. coli, and of Japanese eels adapted to
seawater, have very small mean differences in ZC and a negative 1nH2O that follows the
trends of most of the other datasets, but with lower significance (p-value > 0.05).

The comparisons here show that hyperosmotic stress consistently induces the formation
of proteins with lower water demand per residue. In some, but not all, cases, this coincides
with an increase in average oxidation state of carbon. Less often, and perhaps specific to
mammalian cells, the proteomic composition is shifted toward lower oxidation state of
carbon. There are only a couple of datasets, using NaCl treatment [ e© j©], that show an
increase in water demand per residue.

Notably, two datasets for adipose-derived stem cells oppose the general trends
for hypoxic and hyperosmotic conditions (see Fig. 2A [ B©] and Fig. 2B [ e©]). This
intriguing result shows that these stem cells respond to external stresses with proteomic
transformations that are chemically similar to those in cancer (Fig. 1).
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Potential diagrams
The correlations of compositional differences (negative 1ZC and 1n̄H2O) with hypoxia
and hyperosmotic stress can be proposed as resulting from attraction of the proteomes
to a context-specific low-energy state. Thermodynamic models can help to illuminate
the possible microenvironmental constraints on the observed proteomic transformations.
Here, the chemical affinities of stoichiometric formation reactions of proteins were
calculated, grouped, and compared in order to estimate the thermodynamic potential for
the overall process of proteomic transformation.

The chemical affinity quantifies the potential, or propensity, for a reaction to proceed.
It is the infinitesimal change with respect to reaction progress of the negative of the Gibbs
energy of the system. The chemical affinity is numerically equal to the ‘‘non-standard’’ or
actual (Warn & Peters, 1996), ‘‘real’’ (Zhu & Anderson, 2002), or ‘‘overall’’ (Shock, 2009)
negative Gibbs energy of reaction. These energies are not constant, but vary with the
chemical potentials, or chemical activities, of species in the reaction. Chemical activity
(a) and potential (µ) are related through µ=µ◦+RT lna, where the standard chemical
potentials of particular species (µ◦ =G◦, i.e., standard Gibbs energies) depend only on
temperature and pressure.

The equilibrium constant (K ) for a reaction is given by 1G◦=−2.303RT logK , where
1G◦ is the standard Gibbs energy of the reaction, 2.303 stands for the natural logarithm
of 10, R is the gas constant, T is temperature in Kelvin, and log denotes the decadic
logarithm. The equation used for affinity (A) is A= 2.303RT log(K/Q), where Q is the
activity quotient of the reaction (e.g., Helgeson, 1979, Eq. 11.27; Warn & Peters, 1996, Eq.
7.14; Shock, 2009). Accordingly, the per-residue affinity of Reaction (R1) can be written as

A= 2.303RT (logK +nCys logaCys+nGlu logaGlu+nGln logaGln
+nH2O logaH2O+nO2 logfO2− z̄H+pH− logaresidue) (2)

where the abbreviations of the amino acids have been substituted for their formulas. Here,
a and f stand for chemical activity and fugacity (e.g., aH2O is water activity, and fO2 is
oxygen fugacity). The fugacity, rather than activity, of O2 is used because gaseous oxygen
is the reference state most commonly used in previous thermodynamic models. If aO2

were used instead, its values would differ from fO2 according to the solubility of oxygen in
water at the given temperature but otherwise the two models would be thermodynamically
equivalent. The overbar notation (n and z̄) signifies that the coefficients in Reaction (R1)
are each divided by the length (number of amino acids) of the protein sequence. Likewise,
the elemental composition and standard Gibbs energy per residue are those of the ionized
protein (with formula CcHh+zNnOoSzs ) divided by the length of the protein.

The standard Gibbs energies of species at 37 ◦C and 1 bar were calculated with CHNOSZ
(Dick, 2008) using equations and data taken from Wagman et al. (1982) and Kelley (1960)
(O2(g)), Johnson, Oelkers & Helgeson (1992) and references therein (H2O), and using the
Helgeson–Kirkham–Flowers equations of state (Helgeson, Kirkham & Flowers, 1981) with
data taken from Amend & Helgeson (1997) and Dick, LaRowe & Helgeson (2006) (amino
acids), and from Dick, LaRowe & Helgeson (2006) and LaRowe & Dick (2012) (amino acid
group additivity for proteins).
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In previous calculations, activities of the amino acid basis species and protein residues
were set to 10−4 and 100, respectively (Dick, 2016). As long as constant total activity of
residues is assumed, the specific value does not greatly affect the outcome of the calculations;
here it is kept at 100. Revised activities of the amino acid basis species, corresponding to
mean concentrations in human plasma (Tcherkas & Denisenko, 2001), are used here: 10−3.6

(cysteine), 10−4.5 (glutamic acid) and 10−3.2 (glutamine). Adopting these activities of
basis species, instead of 10−4, lowers the calculated equipotential lines for proteomic
transformations by about 0.5 to 1 logaH2O (see below). Accounting for protein ionization,
with pH set to 7, also lowers the equipotential lines, by about 1 logaH2O compared to
calculations for nonionized proteins.

It follows from Eq. (2) that varying the fugacity of O2 and activity of H2O alters the
chemical affinity for formation of proteins by a specific amount depending on their
chemical composition. For example, Figure 5A of Dick (2016) shows that decreasing
logfO2 is relatively more favorable for the formation of up-expressed than down-expressed
proteins in a particular cancer dataset (Knol et al., 2014; w© in Table 1). This tendency is
consistent with the lower ZC of these up-expressed proteins, which is unlike most other
datasets for CRC (Fig. 1A).

How can the affinities of groups, rather than individual proteins, be compared? One
method is based on differences in the ranks of chemical affinities of proteins between
groups (Dick, 2016). Using this method, the affinities of all of the proteins in a dataset are
ranked; the ranks are then summed for proteins in the up- and down-expressed groups
(rup and rdown). Before taking the difference, the ranks are multiplied by a weighting factor
to account for the different numbers of proteins in the groups (n= nup+ndown). This
weighted rank difference (WRD) of affinity summarizes the estimates of the differential
potential for formation:

WRD= 2
(ndown

n

∑
rup−

nup
n

∑
rdown

)
. (3)

On a contour diagram of theWRD of affinity (referred to here as a ‘‘potential diagram’’),
the line of zero WRD represents a rank-wise equal affinity (or ‘‘equipotential line’’) for
formation of proteins in the two groups.

To characterize the general trends, diagrams were made for groups of proteomic
datasets with similar compositional features. For pancreatic cancer, there are 11 datasets
with 1ZC > 0.01 (i.e., to the right of the gray box in Fig. 1B) and for which the mean
difference of nH2O is neither significant (low p-value) nor large (high CLES). Conversely,
there are 8 datasets for pancreatic cancer with 1nH2O > 0.01 and for which the mean
difference of ZC is neither large nor significant. Similarly, weighted rank-difference
diagrams were constructed for 13 (1ZC > 0.01) and 10 (1nH2O > 0.01) datasets for
CRC, 8 datasets for hypoxia (1ZC <−0.01), and 12 datasets for hyperosmotic stress
(1nH2O <−0.01). The individual diagrams for each of these groups are presented in
Fig. S3.

In order to observe the central tendencies among the various datasets, the potential
diagrams for each group in Fig. S3 were combined by taking the arithmetic mean of the
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Figure 3 Merged potential diagrams for proteomic transformations. Plots are shown for (A) 13
datasets for colorectal cancer and (B) 11 datasets for pancreatic cancer with1ZC > 0.01, (C) eight datasets
for hypoxia or 3D culture with1ZC < −0.01, (D) 10 datasets for colorectal cancer and (E) eight datasets
for pancreatic cancer with1nH2O> 0.01, and (F) 12 datasets for hyperosmotic stress with1nH2O<−0.01.
Red and blue colors denote higher relative potential for formation of up- and down-expressed proteins,
respectively. White lines are equipotential lines, where the mean weighted rank difference of affinity
(WRD; Eq. (3)) of the included datasets is 0; black lines show the median and interquartile range of the
WRD= 0 lines for individual datasets (Fig. S3). See text for details.

WRD at all grid points in logfO2–logaH2O space. The resulting diagrams (Fig. 3) have
equipotential lines, shown in white, and zones of positive and negative WRD of affinity,
i.e., greater relative potential for formation of up- and down-expressed groups of proteins,
colored red and blue, respectively.

The solid black lines in Fig. 3 show the median position along the x- or y-axis for the
equipotential lines in each group (Fig. S3), and the dashed black lines are positioned at the
1st and 3rd quartiles. The interquartile ranges for the cancer groups are smaller than those
for hypoxia, but less so for hyperosmotic stress. The smaller range would be expected if
the cancer datasets reflected a somewhat narrower set of conditions than the datasets for
experiments with hypoxia; the latter represent a wide variety of organisms, cell types, and
laboratory conditions (Table 3).

DISCUSSION
Calculations of the average oxidation state of carbon andwater demand per residue, derived
from elemental stoichiometry, provide information on the microenvironmental factors
affecting differential protein expression in cancer and laboratory experiments. Hypoxia
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or hyperosmotic stress generally induces the expression of proteins with lower overall
oxidation state of carbon or lower water demand per residue, respectively, compared
to down-expressed proteins. In contrast, proteomes of CRC and pancreatic cancer are
often characterized by greater water demand per residue or oxidation state of carbon. The
formation of more highly oxidized proteins despite the hypoxic conditions of many tumors
hints at a complex set of microenvironmental–cellular interactions in cancer.

Plots of data from experiments with hypoxia and hyperosmotic stress illuminate
two dimensions of possible compositional attraction to a low-energy state (Fig. 2). A
thermodynamic model quantifies the altered potential for proteomic transformation in
response to changing oxygen fugacity and water activity. The equipotential lines for cancer
proteomes with high differential water demand lie between logaH2O =−1 to −3, while
the potential threshold for transformation of proteomes in hyperosmotic stress is closer to
unit activity of water (logaH2O=−0 to −2) (Figs. 3D–3F). Although there is considerable
variability among the individual datasets (Fig. S3), the merged diagrams demonstrate a
physiologically realistic range for the activity of water. Water activity in cells is close to one,
but restricted diffusion of H2O in ‘‘osmotically inactive’’ regions of cells (Model, 2014)
could result in locally lower water activities. The present findings provide evidence that
the molecular processes regulating proteomic transformations operate within the chemical
constraints of subcellular regions of depleted water activity.

The finding of a frequently positive water demand for the transformation between
normal and cancer proteomes offers a new perspective on the biochemistry of hydration in
cancer. The thermodynamic calculations predict that, in contrast to hyperosmotic stress,
proteomes of cancer tissues are stabilized by increasing water activity. A higher than normal
water activity would be consistent with the greater hydration of tissue that is apparent in
spectroscopic analysis of breast cancer tissue (e.g., Abramczyk et al., 2014). Speculatively,
the relatively high water content needed for embryonic development (Moulton, 1923) could
be recreated in cancer cells if they revert to an embryonic mode of growth (McIntyre, 2006).

The equipotentials for transformation of proteomes in cancer cluster near an oxygen
fugacity of ca. 10−68 to 10−66. The oxygen fugacity should be interpreted not as actual
oxygen concentration, rather as a internal scale of oxidation potential. Oxygen fugacity
and water activity can be converted to the Eh scale for redox potential, giving values that
are comparable to other biochemical measurements (Dick, 2016).

Although cancer proteomes are obtained from tissues that are likely derived from
hypoxic tumor environments, their differential expression is most often in favor of
oxidized proteins (Figs. 1A and 1B). What are some explanations for this finding? Perhaps
the relatively high logfO2 threshold for chemical transformation of hypoxia-responsive
proteins could support a buffering action that potentiates the formation of relatively
oxidized proteins in cancer (compare the median and quartiles in Fig. 3C with those in
Figs. 3A and 3B). This speculative hypothesis requires a division of the cellular proteome
into localized, chemically interacting subsystems. Alternatively, the development of a
high oxidation potential in cancer cells may be associated with a higher concentration of
mitochondrially produced reactive oxygen species (ROS). Neither of these possibilities
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addresses the magnitude of the chemical differences in the proteomes, and the question
remains: where do the electrons go?

A plausible hypothesis comes from considering the different oxidation states of
biomolecules. Fatty acids are reduced compared to amino acids, nucleotides, and
saccharides (Amend et al., 2013). In parallel with the formation of more reduced proteins,
hypoxia induces the accumulation of lipids in cell culture (Gordon, Barcza & Bush, 1977).
Cancer cells are also known for increased lipid synthesis. Lipid droplets, which are derived
from the endoplasmic reticulum (ER), form in great quantities in cancer cells (Koizume
& Miyagi, 2016). Assuming that lipids are synthesized from relatively oxidized metabolic
precursors, their formation requires a source of electrons. These considerations lead to the
hypothesis that increased lipid synthesis is coupled to the oxidation of the proteome.

Calculations that combine proteomic and cellular data can be used to quantify a
hypothetical redox balance between cellular lipids and proteins. The major assumptions
in the calculations here are that the overall cellular oxidation state of carbon is the same in
cancer and hypoxia, and that changes in this cellular oxidation state are brought about by
altering only the numbers of lipid and proteinmolecules. The overall chemical composition
of the lipids is assumed to be constant, but the proteins are assigned different values of ZC.
These simplifying assumptions are meant to pose quantifiable ‘‘what if’’ questions, to serve
as points of reference about the range of molecular composition of cells (Milo & Phillips,
2015).

The worked-out calculation is shown in Fig. 4. The lipid:protein ratio in hypoxia is
taken from Gordon, Barcza & Bush (1977), and ballpark values for the differences in ZC

of proteins in hypoxia and cancer are from the present study. Notably, the lipid:protein
weight ratio in hypoxia (0.19) is higher than in normal cells (i.e., 0.15 using data from
Gordon, Barcza & Bush, 1977 or 0.16 using data compiled by Milo & Phillips, 2015 for E.
coli). The calculation indicates that an increase of the lipid:protein weight ratio in cancer
cells by ca. 20% over that in hypoxic normal cells could provide an electron sink that is
large enough to take up the electrons released by oxidation of the proteome in hypoxic
normal cells to generate that in hypoxic cancer cells. That proteomic transformation is
quantified here by an increase of1ZC from ca.−0.03 to 0.03, both relative to non-hypoxic
normal cells (Fig. 4).

As found by Raman spectroscopy, levels of both lipids and proteins are elevated in
colorectal cancer (Stone et al., 2004). Lipid droplets are formed extensively in CRC stem
cells (Tirinato et al., 2015), suggestive of a higher lipid:protein ratio than either cancer or
normal epithelial cells. In contrast to CRC, lipids are decreased in breast cancer compared
to normal breast tissue (Frank, McCreery & Redd, 1995; Stone et al., 2004). Given a lower
lipid content, and therefore smaller electron sink, onemight expect that proteomes in breast
cancer are oxidized to a lesser extent than those in CRC and pancreatic cancer. Other factors
that affect the systemic redox balance, such as a more reduced gut microbiome in CRC
(Dick, 2016) andmetabolic coupling between epithelial and stromal cells, may be important
for an accurate account of the compositional relationships among biomacromolecules.

These compositional and thermodynamic analyses support the notion that changes
in bulk chemical composition of cells and the microenvironment have a significant role
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Figure 4 A computer-aided ‘‘back of the envelope’’ calculation to estimate the lipid to protein ratio
(L:P) in cancer cells and the percent difference from normal cells in hypoxic conditions. Bold text in-
dicates function definitions (R code) or numerical results (comments/results (rounded)). Numerical val-
ues are taken from [1] the chemical formula of 1-palmitoyl-2,3-dioleoyl-glycerol, given as an example of a
triacylglycerol (triglyceride) in the chapter on lipid metabolism in Voet, Voet & Pratt (2013), [2] the aver-
age chemical formula of proteins in the UniProt human proteome, for which amino acid compositions are
stored in human_base.Rdata in the canprot package, [3] this study, and [4] Table 2 of Gordon, Barcza &
Bush (1977) (mouse cells grown in hypoxic conditions).

in shaping the differential expression of proteins. The analysis done here is primarily
concerned with top-down causal factors (physical constraints on protein synthesis and
degradation), but does not preclude a major role for bottom-up factors (e.g., regulation
of gene expression). Speculatively, further applications of these methods could be used to
predict the ability of chemotherapy or other treatments to reduce or reverse the potential
for formation of the proteins required by cancer cells. Based on the current findings,
a decreased proteomic oxidation and/or hydration state may emerge as one aspect of
beneficial treatments.

This approach to the data differs from conventional interpretations of proteomic
data that are based on the functions of proteins. Nevertheless, the scope of explanations
dealing with functions and molecular interactions offers limited insight on the high-level
organization of proteomes in a cellular and microenvironmental context. Although a
variety of bioinformatics tools are available for functional interpretations

Dick (2017), PeerJ, DOI 10.7717/peerj.3421 18/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.3421


(Laukens, Naulaerts & Berghe, 2015), none so far addresses the overall chemical require-
ments of proteomic transformations. The compositional and thermodynamic descriptions
presented here encourage a fresh look at the question, ‘‘What is cancer made of?’’

CONCLUSION
Althoughmany hypoxia experiments induce the formation of proteins with lower oxidation
state of carbon (ZC), the up-expressed proteins in colorectal and pancreatic cancer are
often relatively oxidized compared to the down-expressed ones. Hyperosmotic stress in the
laboratory leads to the formation of proteins with relatively low water demand per residue
(nH2O), but cancer proteomes often show the opposite trend, with up-expressed proteins
having higher average nH2O than down-expressed ones.

The global proteomic differences can be described as compositional changes in terms
of chemical basis species and quantified in a thermodynamic framework. A positive
thermodynamic potential for each proteomic transformation is predicted in a specific
range of oxidation and hydration potential. However, the distribution of biomolecules
other than proteins should also be considered to account for changes in cellular redox
balance. An electron sink associated with a ca. 20% greater lipid to protein ratio in cancer
compared to normal hypoxic cells would be sufficient to balance the electrons released by
the formation of more oxidized proteins in CRC and pancreatic cancer. It thus appears
possible that a redox disproportionation develops in some cancers, leading to pools of both
more reduced and more oxidized macromolecules compared to normal conditions.
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