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ABSTRACT
The running ability of Tyrannosaurus rex has been intensively studied due to its
relevance to interpretations of feeding behaviour and the biomechanics of scaling
in giant predatory dinosaurs. Different studies using differing methodologies have
produced a very wide range of top speed estimates and there is therefore a need to
develop techniques that can improve these predictions. Here we present a new approach
that combines two separate biomechanical techniques (multibody dynamic analysis
and skeletal stress analysis) to demonstrate that true running gaits would probably
lead to unacceptably high skeletal loads in T. rex. Combining these two approaches
reduces the high-level of uncertainty in previous predictions associated with unknown
soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb
segments ofT. rex—long argued to indicate competent running ability—would actually
have mechanically limited this species to walking gaits. Being limited to walking speeds
contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs
like T. rex, and demonstrates the power of multiphysics approaches for locomotor
reconstructions of extinct animals.

Subjects Mathematical Biology, Paleontology, Zoology
Keywords Computer simulation, Locomotion, Dinosaur, Biomechanics, MBDA

INTRODUCTION
Tyrannosaurus rex is one of the largest bipedal animals to have ever evolved and as such
it represents a useful model organism for understanding morpho-functional adaptations
and constraints at multi-tonne body sizes (Brusatte et al., 2010). The running ability
of T. rex and other similarly giant dinosaurs has been intensely debated in the literature
(Bakker, 1986;Hutchinson & Garcia, 2002; Paul, 1998; Paul, 2008; Sellers & Manning, 2007)
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and features prominently in reconstructions of the lifestyles and carnivorous behaviours
of large theropod dinosaurs (Bakker, 1986; Carbone, Turvey & Bielby, 2011; Farlow, 1994;
Holtz Jr, 2008; Paul, 1998; Paul, 2008;Ruxton & Houston, 2003). However, despite a century
of research since Osborn’s (1916) work on tyrannosaur limb anatomy there remains no
consensus on the most accurate maximum speeds for T. rex, or indeed whether or not its
gigantic body size prohibited running completely.

Some qualitative anatomical studies (Bakker, 1986; Paul, 1998; Paul, 2008), including
some employing a degree of quantitative biomechanical methods (Paul, 1998), have
proposed very fast running speeds (up to 20 ms−1) and an overall high degree of
athleticism for large theropods like T. rex. These studies cite the long and gracile limbs
of T. rex as a key adaptive feature indicative of high relative (Christiansen, 1998) and
absolute speeds (Bakker, 1986; Paul, 1998; Paul, 2008), along with possession of large
tail-based hip extensor musculature (Persons & Currie, 2011). In contrast, more direct
and quantitative biomechanical approaches have favoured intermediate (Farlow, Smith &
Robinson, 1995; Sellers & Manning, 2007) or much slower speeds for T. rex, with the latter
including within their predictive range an inability to reach true running gaits (Gatesy,
Baker & Hutchinson, 2009; Hutchinson, 2004b; Hutchinson & Garcia, 2002). Biomechanical
approaches emphasize the well-known scaling principles (Biewener, 1989; Biewener, 1990)
that animals of larger body mass have more restricted locomotor performance because
muscle mass scales isometrically, but muscle force, relative speed of contraction and power
scale with negative allometry (Alexander, 1977; Alexander & Jayes, 1983; Marx, Olsson &
Larsson, 2006; Medler, 2002).

Biomechanical models inherently incorporate anatomical characters (e.g., limb
proportions) on which more traditional qualitative assessments are based, but also require
quantitative definitions for soft tissue parameters associated with mass distribution and
muscle properties. These soft tissue parameters are almost never preserved in dinosaur
fossils and therefore need to be estimated indirectly. Typically, minimum and maximum
bounds are placed on such parameters based on data from living animals (Hutchinson,
2004a;Hutchinson, 2004b;Hutchinson & Garcia, 2002) and/or additional computer models
(Bates, Benson & Falkingham, 2012; Bates et al., 2010; Hutchinson et al., 2005; Sellers et al.,
2013). However, these approaches yield very broad ranges for soft tissue parameters
in dinosaurs which translates directly into imprecise values for performance estimates
like running speed (Bates et al., 2010). Thus, while biomechanical approaches are more
explicit and direct by their inclusion of all major anatomical and physiological factors
determining running ability, their utility within palaeontology in general has been
severely restricted by high levels of uncertainty associated with soft tissues. Consequently,
estimates for T. rex running speed from biomechanical models range from 5 to
15 m/s (Gatesy, Baker & Hutchinson, 2009; Hutchinson, 2004b; Hutchinson & Garcia, 2002;
Sellers & Manning, 2007).

One solution is to find information in the preserved skeletal morphology that can be used
to reduce the predictive dependence of biomechanical models on soft tissue. It has recently
been suggested that bone loading can be used to improve the locomotor reconstruction
of fossil vertebrates by excluding gaits that lead to overly high skeletal loads (Sellers et
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al., 2009). It is highly likely that in many cases the skeletons of cursorial vertebrates are
optimised for locomotor performance such that the peak locomotor stresses are 25–50% of
their failure strength, indicating a safety factor of between two and four (Biewener, 1990).
There are notable exceptions where long bones are considerably stronger than required
(Brassey et al., 2013a) but in general this trade-off between body mass and load bearing
ability appears to be a widespread anatomical adaptation that is found in invertebrates as
well as vertebrates (Parle, Larmon & Taylor, 2016). Our previous simulations of theropod
bipedal running (Sellers & Manning, 2007) did not directly consider the skeletal loading
but these simulations do calculate the joint reaction forces and these can be used directly to
estimate the bone loading using the beam mechanic methodology described (Brassey et al.,
2013c). Results for Struthio camelus and T. rex are shown in Fig. 1 and whilst the values for
Struthio are easily within those predicted by safety factor analysis, those for T. rex would
likely exceed the yield strength for bone (approx. 200 MPa (Biewener, 1990)). This agrees
with more sophisticated results based on ostrich finite element analysis suggesting high
safety factors for this species that might relate to non-locomotor activities (Gilbert, Snively
& Cotton, 2016).

However there are two main problems with approaches based on joint reaction forces.
Firstly to accurately calculate the loads sustained in vivo during high speed locomotion
requires the integration of a large number of different force components from soft tissues,
joints, substrate interactions and body segment accelerations, and not simply the joint
reaction forces. Estimates can be made using quasi static approaches (e.g., Gilbert, Snively
& Cotton, 2016) but virtual robotic approaches such as multibody dynamics (MBDA)
allow calculation of the complete dynamic loading environment which can then be used
to estimate bone loading through beam mechanics (e.g., Sellers et al., 2009) or other
simulation approaches like finite element analysis (FEA) (e.g., Curtis et al., 2008; Snively
& Russell, 2002a). Secondly it is important that the optimsiation goal includes all the
important conditions directly. It is entirely possible that our previous high values for T. rex
skeletal stress are because the genetic algorithm was only looking for the fastest possible
gait. There may be gaits that are only slightly less fast but have a much lower skeletal stress
and these may be overlooked if skeletal stress is not considered within the machine learning
process. Herein we demonstrate the predictive power of using an integrated approach in
palaeontology by combining MBDA, machine learning algorithms and stress analysis to
reconstruct maximum locomotor speed in T. rex. Machine learning algorithms are used
to generate the muscle activation patterns that simultaneously produce the maximum
locomotor speed of a MBDA model of T. rex whilst maintaining defined skeletal safety
factors. Combining the two simulation systems (so-called multiphysics simulation) means
that only solutions that satisfy all the criteria are allowable and this should therefore narrow
the predicted range of our performance estimates.

MATERIALS AND METHODS
MBDA approaches to locomotor reconstruction require a linked segment model of the
animal to be built based on its skeletal morphology and inferred myology (Fig. 2). The
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Figure 1 Graph showing the femoral midshaft stress calculated from the joint reaction forces (2nd or-
der Butterworth low-pass filtered at 5 Hz) from previously published models of (A) S. camelus and (B)
T. rex (Sellers & Manning, 2007) using standard equations (Alexander, 1974). Ostrich bone cross sec-
tions parameters were scaled from the literature (Brassey et al., 2013b). Derivation of T. rex cross section
parameters are explained in the methods section.

basic methods used to construct these models have been described in detail elsewhere
(Sellers et al., 2009; Sellers et al., 2013) but the basic process is outlined below. The model
used here was based on a 3D laser scan of BHI 3033 (Bates et al., 2009) and consisted of 15
independent segments: a single aggregated trunk segment, along with left and right thigh,
shank, metatarsal and pes segments in the hind limb as well as arm, forearm and manus
segments in the forelimb. All segments were linked by hinge joints that permitted only
pure flexion-extension. This is currently a necessary simplification because our current
control system is not able to cope with a fully mobile limbs, but since the main joint
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Figure 2 Snapshot fromGaitSym2016 showing the details of the model. Muscle paths are in red and
joints are in blue. The axes arrows are 1 m long.

actions are likely to be in the parasagittal plane in any case, we do not expect this to affect
the predictions to any great extent. Joint positions and ranges of motion were estimated
directly from the skeleton. The origins, insertions and paths of 58 hindlimb muscles (29
per limb) were mapped onto the skeletal model based on the comparative analysis of
hindlimb muscles in related extant species presented in previous studies (Hutchinson et
al., 2005). In this simulation a highly simplified forelimb musculature was used since the
forelimb was not judged to have an important locomotor role. Muscle mass properties
were estimated following the simplified pattern where each muscle action (flexion and
extension) and joint location (proximal, intermediate and distal) is considered to have a
specific fraction of the total body mass as calculated from a range of extant vertebrates
(Sellers et al., 2013). The total muscle mass was set at the highest plausible value of 50%
(Sellers & Manning, 2007) since the current simulation methodology (see below) is only
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minimally sensitive to the actual muscle proportion as long as there is sufficient muscle to
power the movement. Muscle fibre lengths and tendon lengths were set as a proportion
of the change in each muscle–tendon unit length across the range of joint permitted.
This setting tunes the actions of the muscles and tendons so that they operate at the most
effective parts of their length/tension curves and this minimises the effects of errors in
moment arms and lines of action (Sellers et al., 2009; Sellers et al., 2013). Body mass was
estimated from the minimum convex hull of the individual segments using a regression
curve calculated from our combined comparative dataset (Brassey et al., 2013a; Brassey et
al., 2016; Brassey & Sellers, 2014; Sellers et al., 2012), and resulted in a total body mass of
7206.7 kg, which is towards the lower-end of recent estimates from volumetric models
(Bates et al., 2009; Hutchinson et al., 2011). Further information about this calculation and
the full calibration dataset is included in the Supplementary Information. Limb segment
masses were calculated using the limb mass fractions of total body mass based on running
bird data (Hutchinson, 2004a). Inertial properties were calculated directly from the convex
hulls and scaled to match the predicted masses. The ability to calculate a complete set of
inertial properties is one of the major advantages of using volumetric methods for mass
estimation in the biomechanical context. Contact with the substrate was modelled using
contact spheres attached to the digits as in previous studies (e.g., Sellers & Manning, 2007;
Sellers et al., 2009; Sellers et al., 2013). These contacts act like stiff, damped springs under
compression, but allow the foot to be lifted with no resistance when needed. However they
do not attempt to model the complex, non-linear interactions that actually occur between
the foot and the ground.

Bone stress analysis was performed by treating the limb long bones as irregular beams
and calculating the mid-shaft loading. The load was calculated directly from the multibody
simulator by splitting each of the leg segments into two separate bodies that were linked by
a fixed joint. The simulator was then able to calculate both the linear forces and rotational
torques acting around this non-mobile joint using the full dynamic model and therefore
including inertial forces as well as muscle forces and joint reaction forces. A full finite
element analysis would have been preferable but this is currently too computationally
expensive in this context and previous work has shown that the mean error in long bone
loading is likely to be approximately 10% (Brassey et al., 2013c). Bone stress was calculated
following Alexander as the sum of the compressive/tensile stress and the normal bending
stress (Alexander, 1974; Pilkey, 2002).

σcompressive=
F
A

(1)

where: σcompressive is the normal stress in the beam due to compression (N m−2). F is the
longitudinal force (N). A is the cross-sectional area of bone (m2).

σbending=
Mx Iy+My Ixy
Ix Iy− I 2xy

y−
My Ix+Mx Ixy
Ix Iy− I 2xy

x (2)

where: σbending is the normal stress in the beam due to bending (N m−2). x is the
perpendicular distance to the centroidal y-axis (m). y the perpendicular distance to the
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centroidal x-axis. Mx is the bending moment about the x-axis (N m). My is the bending
moment about the y-axis (N m). Ix is the second moment of area about x-axis (m4). Iy is
the second moment of area about y-axis (m4). Ixy is the product moment of area (m4).

Equation (1) is the standard equation for calculating compressive stress. Equation (2)
calculates the bending stress at a specific x , y location in an arbitrary cross-section. The
stress calculated by summing the stress values from these two equations ignores the effects
of shear but previous work has identified bending and compression as the main loading
modes (Brassey et al., 2013c). This calculation requires an estimate of the cross-sectional
geometry of the limb bones and ideally this would have been obtained directly from
a CT scan of the specimen. However since this was not available it was estimated using
published cross sectional parameters (or crossectional images if the requiredmeasurements
were not directly reported) of tyrannosaurs (Farlow, Smith & Robinson, 1995; Horner &
Padian, 2004; Snively & Russell, 2002b). This produces a mean cortical thickness for the
femur of 38% of the mean external radius, a mean thickness for the tibia of 35%, a mean
thickness for the fibula of 96%, and for each bone in themetatarsus 60%. These percentages
were converted to actual values using the external outline measured from the laser-scan
based reconstruction using custom written python scripts. The complete simulation was
implemented in our open source GaitSym system.

To calculate the dynamic loads, this simulation needs to be able to walk and run
bipedally. This was achieved using our standard gait morphing methodology (Sellers et
al., 2004) to generate the necessary control parameters to maximise forward velocity. This
process is computationally extremely expensive because of the large number of muscles
that are in the model and because of the available degrees of freedom within the model.
To reduce the computational difficulty the model was restricted to the parasagittal plane
which we have previously found to greatly simplify the control process whilst being unlikely
to greatly affect the limb loading (Sellers et al., 2010). Even so, finding a stable solution
required a great deal of computer time and generating a stable gait took approximately
5,000 core hours before the gait morphing process. The additional constraint of keeping
the bone stress below a particular value was implemented by using the peak limb bone
stress as a hard fail criteria in the simulator. The stress value was measured across the
three major hind limb segments and low-pass filtered at 5 Hz before testing to account
for the lack of soft-tissue cushioning in the model and to reflect the level of filtering
typically employed in neotological gait analysis (Winter, 1990). The simulation was run at
a range of different maximum peak stress values using gait morphing to fully investigate
the effects of changing this limit on the maximum running speed obtainable. In total
over 200 individual optimisation runs were performed to ensure that the search space
was adequately covered and that a reasonable estimate of the best performance had been
obtained. The full specification of the model is available as a portable, human-readable
XML file in the Supplementary Information. The skeletal element outlines and hulls are
downloadable from http://www.animalsimulation.org and as Supplementary Information.
The model specification is complete and can easily be ported to alternative simulation
systems if desired.
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Figure 3 Graphs showing the effects of changing the peak stress limit on gait parameters. (A) maxi-
mum velocity; (B) Froude number; (C) stride length; (D) gait cycle duration.

RESULTS
Figure 3 shows the results of repeated gait morphing whilst optimising for distance travelled
in a fixed amount of time using a range of peak stress limits. Figure 3A shows the maximum
velocities achieved, which peaks at a speed of 7.7 ms−1 for the high stress limit conditions
(>200 MPa). Lowering the peak stress limit has little effect on this maximum speed until it
is reduced below 150 MPa when the maximum speed drops rapidly. This clearly shows that
limiting the stress at high values has no effect on running speed and therefore the simulation
is not stress limited in these conditions. At lower stress limits, the stress limit controls the
maximum speed indicating that the simulation is stress limited at physiologically realistic
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Figure 4 Graphs showing the peak stress (2nd order Butterworth low-pass filtered at 5 Hz) calculated
at the functional mid-point of the hindlimb segments at different peak stress cutoffs. Foot contact times
are also shown (black is ipselateral limb, grey is contralateral limb). The time axis represents two complete
gait cycles, and the dashed line is drawn at 100 MPa which is the nominal stress limit for a safety factor
of 2.

peak stresses. Figure 3B shows the Froude Number calculated from the horizontal velocity
and standing hip height. Froude Number in this context is a measure of speed that controls
for body size and is therefore useful for cross species comparisons in running velocity
(Biewener & Gatesy, 1991). From this we can see that the Froude number at 100 MPa is
1.0 which typically is the upper limit for walking gaits. Figure 3C shows the stride lengths
adopted by the model. These are broadly in line with Froude number based predictions
(Alexander, 1976) and show a steady decrease with speed as expected. Figure 3D shows that
the gait cycle time is relatively constant in the simulations.

Figure 4 shows the actual peak stresses calculated in the limb during the complete gait
cycle as well as showing the periods of foot contact. Relatively high stresses are seen in all
the long bones but it is clearly the stress in the mid-tarsus that is highest at high speeds
(Figs. 3M–3O). As expected the highest stresses occur during stance phase and the relative
symmetry of the maximum and minimum stresses seen at any time show that this stress
is primarily due to bending and not to compressive loading on the limb. The foot contact
timings confirm the predictions from the Froude numbers that the higher speeds have a
clear aerial phase and represent running (i.e., duty factors < 0.5) whereas the slower speeds
have no aerial phase and represent a grounded gait (i.e., duty factors > 0.5). The 400 &
800 MPa limit cases are almost identical and the peak stress does not reach 400 MPa again
showing that stress is not a limiting factor in these cases.
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There are two definitions of walking and running that are commonly used when
considering bipedal gait. The traditional definition is ‘‘progress by lifting and setting down
each foot in turn, so as to have one foot always on the ground’’ (Shorter Oxford English
Dictionary, 2007). This definition translates to duty factors: walking has a duty factor of
>0.5 and therefore has a period of dual support, whereas running has a duty factor of
<0.5 and therefore has an aerial phase (Alexander, 1984). However, it is also possible to
define bipedal gait based on the energy transformations that are seen between kinetic
and gravitational potential energy (Cavagna, Heglund & Taylor, 1977). This allows the
definition of hybrid gaits such as grounded running where the movements of the centre
of mass are typical of running and yet the animal is able to achieve this whilst avoiding
an aerial phase in their gait—a gait style commonly seen in birds (Andrada et al., 2015).
We can perform a similar analysis on our T. rex simulation to further investigate the gaits
generated. Figure 5 shows the horizontal speed of the centre of mass of the simulation
and also the vertical height of the centre of mass. We can measure the phase difference
between the kinetic and gravitational potential energy using autocorrelation. At the lowest
speed there is a 22% phase difference between these two which drops to <15% at higher
speeds. This would indicate moderate energy exchange at low speeds as might be expected.
However Fig. 6 shows the actual horizontal kinetic energy of the simulations and the
gravitational potential energy and it can be clearly seen that because of the difference
in magnitude of the values there is actually very little scope for energy recovery. When
constrained by leg stress, the simulation appears to minimise the vertical movement of
the centre of mass so that very little gravitational potential energy is ever stored. Our
simulation is therefore not taking advantage of pendular energy saving mechanisms which
might reflect a preference for grounded running, or it might alternatively be that the model
optimisation is for maximum speed and not for minimum energy cost and this has led
grounded running to minimise the leg stress as opposed to pendular walking to minimise
energy cost.

In the Supplementary Information there are two movie files illustrating the output of
the simulator for the fast grounded gait at 100 MPa limit (S2), and the fast run at 400 MPa
limit (S3). The full model specification for the models that generated these movies are also
available in S1 (S3 and S4).

DISCUSSION
The velocity changes in Fig. 4 clearly show the marked difference in peak load when
comparing walking with running gaits. Extensive work on safety factors in cursorial
vertebrates suggests that bone would have a typical maximum stress of not more than
100 MPa (18). In our simulations, fast walking leads to stresses that match this prediction
well (Figs. 2 and 3). However all simulations with true running gaits show a large jump
in maximum peak stresses that clearly exceeds the maximum allowable value. Body
accelerations are higher in running and the force during the contact phase must also be
higher because the duty factor is lower. In contrast, accelerations in walking are lower
and the increased duty factor reduces forces, and slow walking allows a substantial double
support phase so the load on the legs can be divided between both limbs. These factors
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Figure 5 These graphs show the centre of mass horizontal velocities and the centre of mass vertical po-
sitions in the different peak load simulations.

acting together produce the sharp increase noted in peak load in aerial running and,
based on the typical stress limits in living animals (Biewener, 1990), the skeleton is not
strong enough to cope with this load level. Therefore, even if safety factors below the
lower limit seen in living animals are allowed, our analysis demonstrates that T. rex was
not mechanically capable of true running gaits (Figs. 2 and 3). Previous quantitative
estimates of absolute maximal speeds for T. rex ranged from 5-15m/s (Gatesy, Baker &
Hutchinson, 2009;Hutchinson, 2004b;Hutchinson & Garcia, 2002; Sellers & Manning, 2007)
and identified soft tissue unknowns as a major source of uncertainty but by including hard
tissue mechanical information we can show that the highest values, whilst possible if
we allow generous estimates for soft tissue, are impossible given skeletal strength. Bone
strength is based directly on the skeletal dimensions and in our analysis of T. rex the forces
generated by the muscles are not limiting the top speed. When extremely high stresses
are permitted in the model (>150 MPa, and especially 400–800 MPa) then predicted
speeds are consistent with mean estimates from previous models in which only muscular
constraint on maximal performance are considered (Sellers & Manning, 2007). In addition
our analysis of energy transformations (Figs. 4 and 5) further reinforces the suggestion that
the simulation is finding solutions that minimise the skeletal load and that low impact,
bird-style grounded running (Andrada et al., 2015) may be an appropriate gait for bipedal
dinosaurs.
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Figure 6 These graphs show the energy transformations within the simulation: horizontal kinetic en-
ergy, gravitational potential energy, and also the sum of these two energy values.

As with all attempts at reconstructing the locomotor capabilities of fossil animals it is
important to be somewhat cautiouswith our interpretations. These results improve on those
obtained by previous biomechanical work by excluding some of the previously plausible
values and thereby reducing the range of uncertainty but many of the previous caveats still
apply. Our previous work on sensitivity analysis (Bates et al., 2010) tested the effects of body
mass, centre ofmass location and variousmeasures ofmuscle physiology, but these complex
models have a large number of additional parameters that could potentially affect themodel
predictions. Ideally a full Monte Carlo style sensitivity analysis would be performed to
analyse the effects of all of these parameters (Campolongo et al., 2000) but unfortunately the
computational requirement for such an analysis is enormous and currently not a practical
undertaking. It would also be useful to ground truth our predictions based on experimental
work with living animals. Direct bone strain measurement is a well-established technique
that has been performed on a wide range of animals (e.g., Biewener & Taylor, 1986; Burr et
al., 1996; Main & Biewener, 2006; Rubin & Lanyon, 1982) and multibody dynamic analysis
derived strains have been validated against the literature in several cases (e.g., Al Nazer et
al., 2008; Curtis et al., 2008) but there is certainly a need to combine these approaches in
the same experimental system and this would be a useful future approach. The models
used in our simulations are currently the most anatomically complete reconstructions
ever attempted. However, they are still appreciable simplifications of the true complexity
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of the living organism. In particular, extending the stress analysis to a full finite element
model would be of considerable benefit especially if coupled with a more realistic muscle
coverage achieved by subdividing anatomical muscles into multiple functional units and
by including other non-bone tissues. These extra elements would potentially allow the
model to exploit the possibilities of peak stress reduction using soft tissue tensile elements
to produce tensegrity structures (Schilder, 2016) which might turn out to have a substantial
effect as has been suggested in other tyrannosaurids (Snively & Russell, 2002a). Finally, our
simulations rely on machine learning to find muscle activation patterns that maximise the
speed given a range of constraints. There are toomany possible combinations of parameters
to perform an exhaustive search over all possibilities so we need to use a non-exhaustive
approach. This is a very active area of current computational research and we would
certainly expect that better solutions will be found using a combination of the improved
algorithms and the greater computational power which will be available in future.

The finding that T. rex was restricted to walking gaits supports arguments for a less
athletic lifestyle for the largest bipedal dinosaurs like T. rex. Tyrannosaurs underwent
pronounced allometric changes during ontogeny (Brusatte et al., 2010) and previous studies
have suggested the torso became longer and heavier whereas the limbs became proportion-
ately shorter and lighter as T. rex grew (Hutchinson et al., 2011). It would therefore be very
valuable not only to investigate other species but also apply our multiphysics approach to
different growth stages within species. Ontogenetic niche partitioning has been suggested
formany dinosaurs (Fricke & Pearson, 2008; Lyson & Longrich, 2011), and energetic consid-
erations (Horner, Goodwin & Myhrvold, 2011) and changes in skull anatomy (Carr, 1999)
and bite performance (Bates & Falkingham, 2012) may indicate a shift towards increased
consumption of larger prey and/or carrion as T. rex grew. Such a shift towards large
prey specialism is not incompatible with our findings here regarding locomotor speed, as
presumably large multi-tonne herbivores similarly experienced the same general scaling-
related restrictions onmusculoskeletal performance as T. rex (Bates, Benson & Falkingham,
2012; Bates et al., 2010; Hutchinson, 2004b; Hutchinson et al., 2005; Hutchinson & Garcia,
2002; Sellers & Manning, 2007). There certainly appears to be direct evidence of predatory
behaviour in T. rex (Carpenter, 1998; J 2008) which supports the idea of predator prey
interactions concerning locomotor performance. It is somewhat paradoxical that the
relatively long and gracile limbs of T. rex—long argued to indicate competent running
ability (Bakker, 1986; Christiansen, 1998; Paul, 1998; Paul, 2008)—would actually have
mechanically limited it to walking gaits, and indeed maximised its walking speed. This
observation illustrates the limitation of approaches that rely solely on analogy and the
importance of a full biomechanical analysis when investigating animals with extreme
morphologies such as T. rex. The new approach we introduce here clearly has the
potential to contribute widely to our understanding of the evolution of animal locomotion,
particularly major ecological shifts such as colonization of land or bipedal-quadrupedal
transitions.
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CONCLUSION
The results presented demonstrate that the range of speeds predicted by earlier
biomechanical models for T. rex locomotion include speeds that would apply greater
loads to the skeleton than it would have been able to withstand. These high load speeds
can therefore be excluded from our predictions and this means that the possible range
of maximum speeds has been greatly reduced and essentially limits adults of this species
to walking gaits. This finding may well generalise to other long-limbed giants such as
Giganotosaurus,Mapusaurus, and Acrocanthosaurus but this idea should be tested alongside
experimental validation work on extant bipedal species. This work demonstrates how
including multiple physical modalities and multiple goals can improve our reconstructions
of the locomotor biology of ancient organisms and lead to a better understanding of the
mechanical constraints of large body size.
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