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Schistosomiasis remains a major parasitic disease, endemic in large parts of South

America. Five neotropical species of Biomphalaria have been found to act as intermediate

hosts of Schistosoma mansoni in natural populations, while others have been shown to be

susceptible in experimental infections, although not found in the field. Among these

potential intermediate hosts, Biomphalaria peregrina represents the most widespread

species in South America, with confirmed occurrence records from Venezuela to northern

Patagonia. In this study, we report the southernmost record for the species at the Pinturas

River, in southern Patagonia, which finding implies a southward displacement of the limit

for the known species of this genus. The identities of the individuals from this population

were confirmed through morphological examination, and by means of two mitochondrial

genes, cytochrome oxidase subunit I (COI) and 16S-rRNA. With both markers, phylogenetic

analyses were conducted to assess the pattern of genetic variation of B. peregrina, and to

explore evolutionary relationships of these southernmost individuals from the Pinturas

River through available DNA sequences for the species from various locations. In addition,

we produced a potential distribution model of B. peregrina in South America and identified

the environmental variables that best predict that distribution. The model was estimated

through a maximum entropy algorithm and run with occurrence points obtained from

several sources, including the scientific literature and international databases, along with

climatic and hydrographic variables. Different phylogenetic analyses with either the COI or

16S-rRNA sequences did not conflict, but rather gave very similar topological

organizations. Two major groups were identified, with sequences from the Pinturas River

grouping together with haplotypes from subtropical and temperate regions. The model
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developed had a satisfactory performance for the study area. We observed that the areas

with higher habitat suitability were found to be mainly linked to subtropical and temperate

regions of South America between 15° and 45° south latitude, with different moderate-

and low-suitability areas outside this range. We also identified the coldest temperatures as

the main predictors of the potential distribution of this snail, which thermal driver could act

as a climatic barrier for the spread of schistosomiasis into temperate regions. Nonetheless,

susceptibility surveys would be required to evaluate if southern populations of B. peregrina

still retain their potential as intermediate hosts of S. mansoni.
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ABSTRACT  19 

Schistosomiasis remains a major parasitic disease, endemic in large parts of South 20 

America. Five neotropical species of Biomphalaria have been found to act as intermediate hosts 21 

of Schistosoma mansoni in natural populations, while others have been shown to be susceptible 22 

in experimental infections, although not found in the field. Among these potential intermediate 23 

hosts, Biomphalaria peregrina represents the most widespread species in South America, with 24 

confirmed occurrence records from Venezuela to northern Patagonia. In this study, we report the 25 

southernmost record for the species at the Pinturas River, in southern Patagonia, which finding 26 

implies a southward displacement of the limit for the known species of this genus. The identities 27 

of the individuals from this population were confirmed through morphological examination, and 28 

by means of two mitochondrial genes, cytochrome oxidase subunit I (COI) and 16S-rRNA. With 29 

both markers, phylogenetic analyses were conducted to assess the pattern of genetic variation of 30 

B. peregrina, and to explore evolutionary relationships of these southernmost individuals from 31 

the Pinturas River through available DNA sequences for the species from various locations. In 32 

addition, we produced a potential distribution model of B. peregrina in South America and 33 

identified the environmental variables that best predict that distribution. The model was estimated 34 

through a maximum entropy algorithm and run with occurrence points obtained from several 35 

sources, including the scientific literature and international databases, along with climatic and 36 

hydrographic variables. Different phylogenetic analyses with either the COI or 16S-rRNA 37 

sequences did not conflict, but rather gave very similar topological organizations. Two major 38 

groups were identified, with sequences from the Pinturas River grouping together with 39 

haplotypes from subtropical and temperate regions. The model developed had a satisfactory 40 

performance for the study area. We observed that the areas with higher habitat suitability were 41 

found to be mainly linked to subtropical and temperate regions of South America between 15° 42 

and 45° south latitude, with different moderate- and low-suitability areas outside this range. We 43 

also identified the coldest temperatures as the main predictors of the potential distribution of this 44 

snail, which thermal driver could act as a climatic barrier for the spread of schistosomiasis into 45 

temperate regions. Nonetheless, susceptibility surveys would be required to evaluate if southern 46 

populations of B. peregrina still retain their potential as intermediate hosts of S. mansoni. 47 

 48 

Key words: Gastropoda, Genetic variation, Planorbidae, Potential distribution, South America 49 
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INTRODUCTION 50 

Schistososomiasis is an acute and chronic parasitic disease that affects at least 258 million 51 

people worldwide. Seventy-eight countries are considered endemic for schistosomiasis, with the 52 

populations of 52 countries requiring preventive chemotherapy (World Health Organization, 53 

2015). The disease is frequent in tropical and subtropical regions, particularly in poor 54 

communities, and in the Americas is caused by the trematode Schistosoma mansoni (Sambon, 55 

1907) (Digenea); which species is transmitted by the freshwater snails of the genus Biomphalaria 56 

Preston, 1910; e.g. Biomphalaria glabrata (Say, 1818), Biomphalaria tenagophila (d’Orbigny, 57 

1835), and Biomphalaria straminea (Dunker, 1848). Other snail species, such as Biomphalaria 58 

peregrina (d’Orbigny 1835), have been infected experimentally and are thus considered as 59 

potential hosts of S. mansoni (Paraense & Côrrea, 1973). 60 

In the Americas, schistosomiasis currently occurs in Brazil, Venezuela, Surinam, Puerto 61 

Rico, the Dominican Republic, and on several islands of the Lesser Antilles, with recent evidence 62 

indicating a spread from northeastern Brazil southward. An expansion of the current disease-63 

distribution area can be expected, since the geographical range of snails that can act as 64 

intermedial hosts (IHs) is wider than that of the pathogen (Pan American Health Organization, 65 

2010). The southern area with the highest risk of establishing an endemic and a new focus of 66 

disease is located in the northeast of Argentina (the NEA Region), where the majority of the 67 

Biomphalaria species inhabit the major rivers of the Del-Plata basin. Five of those species are 68 

listed as potential IHs of schistosomiasis: B. tenagophila, B. straminea, B. peregrina, B. orbignyi, 69 

and B. oligoza (Rumi, 1991; Rumi & Vogler, 2014). 70 

The identification and recognition of Biomphalaria species thus far has mainly relied on 71 

features of shell morphology and the reproductive system (cf. Paraense, 1966, 1975, 2003; Rumi, 72 

1991). Character similarity among the species, however, has in fact hampered classification 73 

(Paraense, 1988; Estrada et al., 2006). Within the historical context, several of the South-74 

American species were described in genera of doubtful taxonomic position, as the example of 75 

Taphius Adams & Adams, 1855; Biomphalaria Preston, 1910; Tropicorbis Brown & Pilsbry, 76 

1914; Platytaphius Pilsbry, 1924; and Australorbis Pilsbry, 1934. In addition, the original 77 

diagnoses were mostly made based only on shell characters. Both situations facilitated the 78 

generation of species of doubtful validity. Subsequently, the anatomical evidence has 79 

demonstrated that no differences really existed between the genera and the various taxa all 80 
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belonging to the same genus (Paraense, 1958). Although the oldest name was Taphius, in 1965 81 

the International Committee of Zoological Nomenclature imposed the sole name Biomphalaria, 82 

considering that one to be the most widespread in the world (Barbosa et al., 1961; Paraense, 83 

2008). More recently, though, difficulties concerning morphological identification have been 84 

overcome through the use of molecular-genetic techniques that have contributed to delimiting 85 

species, mainly those occurring in the Neotropics (e.g. Caldeira et al., 1998, 2000; Vidigal et al., 86 

1998, 2000, 2001, 2002, 2004; Spatz et al., 1999, 2000; Velázquez et al., 2002; Estrada et al., 87 

2006; Standley et al., 2011; Collado & Méndez, 2012). 88 

Among the Biomphalaria species in South America, B. peregrina exhibits one of the most 89 

widespread distributions –and one involving a great diversity of hydrologic systems– with that 90 

species thus far having been recorded from Venezuela to northern Patagonia, Argentina. In the 91 

study reported here, the presence of B. peregrina in southern Patagonia is now documented for 92 

the first time, that location being the southernmost record for the species –and the genus as well–93 

worldwide. In order to confirm the identity of this most southerly population, we assessed the 94 

main conchologic and anatomical diagnostic characters (e.g. shell, genitalia, and radula) and 95 

obtained DNA sequences of the mitochondrial cytochrome oxidase subunit I (COI) and the 16S-96 

rRNA genes. Based on both markers, we examined the phylogenetic position of the recently 97 

discovered population and assessed the pattern of genetic variation by comparison with available 98 

data for B. peregrina from GenBank. In addition, upon consideration that B. peregrina represents 99 

a potential host for schistosomiasis, we produced a predictive model of the species’s spatial 100 

distribution in South America and identified the environmental variables that best predict its 101 

location. The resulting model indicating the likely whereabouts of that potential host will 102 

hopefully provide further guidance for future efforts aimed at schistosomiasis surveillance and 103 

control. 104 

 105 

MATERIALS AND METHODS 106 

The material analyzed (19 specimens) came from the Pinturas River, Santa Cruz province, 107 

Argentina (Gatherer: Hugo Merlo Álvarez, col. Date: 15-XI-2013, geographical coordinates: 46° 108 

50' 6' S; 70° 27' 38'' W; 355 m above sea level). The specimens studied were deposited in the 109 

malacological collections at the Museo de La Plata (DZI-MLP-Ma), Buenos Aires province 110 

(MLP-Ma N° 14186). 111 
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 112 

Morphological examination 113 

The adult specimens were analyzed according to Paraense (1966, 1975) and Rumi (1991). 114 

The morphology of the shell, the radula, and the other anatomical features (certain aspects of the 115 

reproductive system) were analyzed. The soft parts were separated from the shell for subsequent 116 

processing and fixed in Railleit-Henry or 90% (v/v) aqueous alcohol. Shell measurements 117 

(maximum and minimum diameter and height) were obtained with a Mitutoyo digital calipter. 118 

The dissection was done under a stereoscopic binocular microscope (LEICA MZ6). 119 

The radula and jaw were cleaned following Holznagel (1998): the structures were 120 

separated from the mass of tissue and placed in 1.5-ml microtubes containing 500 µl NET buffer 121 

(1 ml 1M Tris pH 8.0, 2 ml 0.5 M ethylenediaminetetraacetic acid, 1 ml 5 M NaCl, 20 ml 10% 122 

[w/v] sodium dodecyl sulfate, 76 ml water) and 10 µl of Proteinase K (20 mg/ml) were added. 123 

The samples were then incubated at 37 ºC with a subsequent renewal of the NET buffer and 124 

Proteinase K to verify the absence of tissue. After two washes with distilled water, 25% (v/v) 125 

aqueous ethanol was added for preservation. Finally the radula and jaw were examined by 126 

scanning electron microscopy (JEOL 6360) in the Museum of La Plata. The radular formula 127 

gives the number of teeth per row: [(number of left teeth) + (number of central teeth) + (number 128 

of right teeth)] plus the number of transverse rows. 129 

 130 

DNA extraction, polymerase chain reaction (PCR) and DNA sequencing 131 

Total genomic DNA was extracted from the foot muscle of five individual snails through 132 

the use of the DNeasy Blood & Tissue kit (Qiagen, Valencia, CA) according to the 133 

manufacturer’s protocol. Partial sequences of the mitochondrial cytochrome oxidase subunit I 134 

(COI) and the 16S-rRNA genes were amplified by means of the primers LCO1490 (5'–GGT CAA 135 

CAA ATC ATA AAG ATA TTG G–3') and HCO2198 (5'–TAA ACT TCA GGG TGA CCA 136 

AAA AAT CA–3') for COI (Folmer et al., 1994), and 16SF-104 (5'–GAC TGT GCT AAG GTA 137 

GCA TAA T–3') and 16SR-472 (5'–TCG TAG TCC AAC ATC GAG GTC A–3') for 16S-rRNA 138 

(Ramírez & Ramírez, 2010). The amplification of the COI region was conducted following 139 

Vogler et al. (2014). The amplification of 16S-rRNA was performed in a total volume of 30 µl 140 

containing 30–50 ng of template DNA, 0.2 µM of each primer, 1X PCR green buffer, 0.2 mM 141 

dNTPs, and 1 U Dream Taq DNA Polymerase (Thermo Scientific). The thermocycling profile 142 
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was 35 cycles of 30 s at 94 °C, 30 s at 48 °C, 1 min at 72 °C followed by a final extension of 1 143 

min at 72 °C. The amplifications were run on a T18 thermocycler (Ivema Desarrollos). The PCR 144 

products were purified by means of a ADN PuriPrep-GP kit (InBio-Highway, Tandil, Buenos 145 

Aires). After purification, both DNA strands for each gene were then directly cycle-sequenced 146 

(Macrogen Inc., Seoul, Korea). The resulting sequences were trimmed to remove the primers, and 147 

the consensus sequences were visually edited by means of the BioEdit 7.2.5 software (Hall, 148 

1999). 149 

 150 

Phylogenetic analysis 151 

Phylogenetic analyses were conducted in order to confirm the morphology-based 152 

identification and to explore possible evolutionary relationships of the genetic sequences from the 153 

southernmost individuals from the Pinturas River to those of other B. peregrina individuals from 154 

various locations available in GenBank (Table 1). The phylogenetic analyses were carried out 155 

separately for each mitochondrial region as follows: the sequence alignment was performed with 156 

Clustal X 2.1 (Larkin et al., 2007), and optimized by visual inspection. The total lengths of the 157 

matrices analyzed were 546 bp for the COI gene, and 269 bp for the 16S-rRNA locus. The data 158 

were subjected to four different phylogenetic analyses by the methods of neighbor joining (NJ), 159 

maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). The NJ 160 

analysis was conducted with MEGA 6.06 (Tamura et al., 2013) through the use of the Kimura’s 161 

two-parameter (K2P) substitution model. The MP and ML analyses were carried out with 162 

PAUP*4.0b10 (Swofford, 2002). The MP was conducted by means of a heuristic search with the 163 

characters equally weighted, tree bisection and reconnection, branch-swapping, and 10 random 164 

stepwise additions. The optimal model of nucleotide substitution for ML inference was evaluated 165 

by the likelihood-ratio test and selected by means of the corrected Akaike Information Criterion 166 

with Jmodeltest 2.1.7 (Darriba et al., 2012). The TVM+I (for COI), and the TIM1+I (for 16S-167 

rRNA) substitution models were used as evolutionary paradigms. Statistical support for the 168 

resulting phylogenies was assessed by the bootstrap method with 1,000 replicates (Felsenstein, 169 

1985). BI was performed with Mr. Bayes 3.2.6 (Ronquist et al., 2012). Two runs were conducted 170 

simultaneously with 4 Markov chains that went for 106 generations, sampling every 100 171 

generations. The first 10,001 generations of each run were discarded as burn-in, and the 172 

remaining 18,000 trees were used to estimate posterior probabilities. In addition, the number of 173 
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haplotypes in the dataset was explored with DnaSP 5.10 (Librado & Rozas, 2009) and the genetic 174 

distances estimated in MEGA 6.06 through the use of the number of differences (p) and the K2P-175 

substitution model. Since we obtained shorter 16S-rRNA sequences than previously reported for 176 

B. peregrina from Argentina that did not include previously characterized molecular diversity 177 

(Standley et al., 2011), the COI data were employed only for estimating the number of haplotypes 178 

and genetic distances. 179 

 180 

Species-distribution model 181 

The study area comprised the South-American countries: Argentina, Bolivia, Brazil, 182 

Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, Uruguay and 183 

Venezuela. The occurrence data for B. peregrina were retrieved from the scientific literature, and 184 

from malacological collections and international databases (Table 2). All together, 689 spatially 185 

unique records were used. When the coordinates of localities were lacking, those data were 186 

derived secondarily following Wieczorek et al. (2004). Twenty-three environmental variables 187 

were used as predictors; comprising 19 climatic, 3 hydrologic, and 1 topographical (Table 3). The 188 

variables were downloaded from WorldClim (http://www.worldclim.org) and HydroSHEDS 189 

(http://hydrosheds.cr.usgs.gov) at a spatial resolution of 30 arc seconds (~1 km2). WorldClim and 190 

HydroSHEDS provide climatic information derived from weather stations spanning 1950–2000 191 

and hydrographic data obtained from a STRM digital-elevation model, respectively (Hijmans et 192 

al., 2005; Lehner et al., 2008). These variables have been commonly employed for generating 193 

distribution models in gastropods, including freshwater members, such as those belonging to the 194 

genus Biomphalaria (Scholte et al., 2012; Vogler et al., 2013; Pedersen et al., 2014; Beltramino 195 

et al., 2015; Martín et al., 2016). All environmental layers were trimmed to the study area. The 196 

potential-distribution model was estimated by using a maximum entropy algorithm in MaxEnt 197 

3.3.3k (Phillips et al., 2006; Phillips & Dudík, 2008). The data were randomly divided into the 198 

training data (75% of occurrences) and the model-testing data (the remaining 25%). The output 199 

was computed as logistic, which setting returns a map with an estimated probability ranging 200 

between 0 (no probability of the species presence) and 1 (high probability of presence). The 201 

resulting model was assessed by estimating the area under the receiver-operating-characteristic 202 

curve (ROC-curve analyses; Fielding & Bell, 1997). The relative contribution of variables to the 203 
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development of the model was evaluated by means of a jackknife test and through the response 204 

curves obtained in MaxEnt following Meichtry de Zaurlín et al. (2016). 205 

 206 

RESULTS 207 

Morphological examination 208 

Shell (Fig. 1, panel A). The empty shell is fundamentally light brown in color, with the 209 

growth lines clearly visible. The whorls, up to 5¾ in number, increase slowly and display a 210 

rounded surface on both sides. The shells exhibit a more or less marked deflection of the outer 211 

whorl to the left. The larger diameter was 13.5 mm (mean = 9.77 mm, SD = 1.54 mm, n = 12); 212 

the smaller 8.98 mm (mean = 7.53 mm, SD = 1.40 mm, n = 11). The greatest height has been 4.6 213 

mm (mean = 3.86 mm, SD = 0.64 mm, n = 12). 214 

Radula (Fig 1, panels B to E). Central tooth rather asymmetrical, bicuspid, with or 215 

without accessory cups, the base without special features. Number of rows is 106 and of teeth per 216 

half row (except for the central tooth) 20, of which 8 are lateral and 12 marginal. The first lateral 217 

tooth is tricuspid, with the mesocone more developed, the border free from the rounded, 218 

mesocone below or in the shape of a sword point. A crest with a central depression toward the 219 

posterior part of the tooth is evident. Finally, the marginal teeth are without special features. 220 

Radular formula: [20-1-20] 106. 221 

Jaw. The features correspond to the standard description of the species. 222 

Genital system. The specimens showed the typology described for B. peregrina, without 223 

any special variations. 224 

 225 

Phylogenetic analysis 226 

The molecular-genetic characterization of the specimens from the Pinturas River 227 

confirmed their identity as B. peregrina. Partial DNA sequences consisted of 655 bp for COI and 228 

265 bp for 16S-rRNA. Both markers contained no variation among the five individuals 229 

sequenced, resulting in the existence of only one haplotype per marker. After the inclusion of 230 

GenBank sequences from other locations with subsequent alignment, six haplotypes were 231 

identified within the COI dataset (Fig. 2). The sequence divergence among haplotypes is 232 

presented in Table 4. Different phylogenetic analyses with either the COI or 16S-rRNA marker 233 

did not conflict; rather, both loci gave very similar topological organizations for the NJ, MP, and 234 
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BI trees with minor differences in the ML-tree organization. In all instances, two major groups 235 

were identified, referred to as the tropical and temperate clades (Figs. 2 and 3). In terms of that 236 

subdivision, the specimens from the Pinturas River were placed within the temperate group. 237 

 238 

Species-distribution model 239 

Fig. 4 illustrates the potential distribution area for B. peregrina. The model conformed 240 

well to expectations, with values for the area under the curve of 0.927 for the training data and 241 

0.905 for the test data, with a standard deviation of 0.009. The areas with higher probability of 242 

the snail’s presence were found to be mainly linked to subtropical and temperate regions of South 243 

America between 15° and 45° south latitude, comprising central and northeastern Argentina, 244 

central Chile, eastern Paraguay, southeastern Brazil, and southern Bolivia and Uruguay. In 245 

addition, regions with a moderate to high habitat suitability were predicted for Peru, Ecuador, 246 

Colombia, and Venezuela. The areas of lower habitat suitability were located in French Guiana, 247 

Guyana, Suriname, Venezuela, and a large area of Brazil (Fig. 4, panel B). The jackknife test 248 

showed that the mean temperature of the coldest quarter (bio11), the minimum temperature of 249 

coldest month (bio6) and the annual mean temperature (bio1) were the variables that most greatly 250 

influenced the model development when used in isolation (Fig. 5, panel A). The flow 251 

accumulation produced a reduction in training gain when removed from the model, thus 252 

indicating that that variable contained information necessary for the model. The remaining 253 

predictors contributed less to the modelling. Fig. 5, panel B contains the marginal-response 254 

curves for the four strongest environmental predictors – i.e. the mean temperature of the coldest 255 

quarter, the minimum temperature of the coldest month, the annual mean temperature, and the 256 

flow accumulation. 257 

 258 

DISCUSSION 259 

The conchology and anatomy of the reproductive system of the specimens from the 260 

Pinturas River were consistent with the descriptions of Paraense & Deslandes (1956) and 261 

Paraense (1966) for B. peregrina. The shells of the individuals from that river recall the original 262 

descriptions by the first authors for Australorbis inflexus (nowadays considered synonymous with 263 

B. peregrina; Paraense, 1966) from Pouso Alegre, Mina Gerais, Brazil because of the strong 264 

inflection of the aperture located toward the left side. Nevertheless, the specimens from the 265 
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Pinturas River have much wider and rounder shells on both sides than those described for A. 266 

inflexus. The radulae of the individuals from south Patagonia have a folding and a groove 267 

between the cuspids of the central tooth that has not been described for other populations of this 268 

species. 269 

In addition, the specimens from the Pinturas River were confirmed genetically as being B. 270 

peregrina and no intrapopulational sequence variation was detected in the mitochondrial-marker 271 

loci examined. Likewise, Standley et al. (2011) reported the absence of variation in the COI 272 

marker for the population studied from Agua Escondida, Mendoza, Argentina. Those authors 273 

suggested that the lack of variation in that population could be owing to a founding event in 274 

recent years since the species of Biomphalaria are hermaphroditic and capable of rapidly 275 

colonizing a new locality, even from a sole individual founder. This explanation would appear to 276 

be also valid for the lack of genetic variation evidenced in the B. peregrina population from the 277 

Pinturas River, although studies based on a greater number of specimens would be required to 278 

confirm this hypothesis. Nevertheless, the phylogenetic trees revealed that the species can be 279 

considered as divided into two clades, here referred to as the tropical and the temperate. For the 280 

COI marker, the first clade comprised exclusively B. peregrina individuals from Brazil, whereas 281 

the second included specimens from southern Brazil and Argentina. For the 16S-rRNA, the 282 

sequences from Brazil all grouped together within the tropical clade, whereas the temperate clade 283 

included only sequences from Argentina and Uruguay. These clades could be linked to the 284 

biogeography and ecologic history of B. peregrina in terms of the colonization of freshwater 285 

environments. Nonetheless, of pertinence to emphasize here is that although B. peregrina 286 

possesses a wide distribution in South America, at the present time only few DNA sequences are 287 

available in Genbank. Therefore, investigations focussing on the phylogeography of this species 288 

are required to acquire a comprehensive understanding of its evolutionary history, similar to 289 

those carried out for B. glabrata (Mavárez et al., 2002; DeJong et al., 2003), especially since B. 290 

peregrina has been shown to occupy a basal position in the phylogenetic analyses of the genus 291 

(DeJong et al., 2001; Jarne et al., 2011). 292 

Biomphalaria peregrina –as its name might suggest– is the species most widely 293 

distributed in South America within the genus. The occurrence of representative individuals from 294 

Venezuela down to one of the most southern areas of Patagonia in the Province of Santa Cruz 295 

demonstrates that the species possesses an ample range of environmental tolerance. Even so, the 296 
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historical registration of B. peregrina and the area of its potential distribution described here 297 

nevertheless indicate that the species's greatest abundance and dispersion are within the Atlantic 298 

corridor in the south of Brazil as well as in the northeast and pampean region of Argentina. 299 

According to the results obtained here, and in agreement with the findings of Rumi (1991), the 300 

distribution of B. peregrina involves the most southerly areas of the Great-Del-Plata basin, then 301 

spreads to the west through the endorrheic basins of Córdoba –the ancient beds of the Paraná 302 

River– toward the Andes region, and finally, remaining east of the Andes, extends to the north of 303 

the continent up to Venezuela, where the registers become quite scarce. To the south, the 304 

distribution stretches from the pampas of the Buenos Aires province, which area corresponds to 305 

the central-Argentine malacological region V (Núñez et al., 2010), to the west and to the south, 306 

occupying areas on both sides of the Andes range. On the Argentine side, B. peregrina inhabits 307 

the malacologic regions VI in Cuyo, VII in northern Patagonia, and to the south reaches the 308 

region VIII in southern Patagonia (Núñez et al., 2010). On the Chilean side of the Andes, the 309 

species is dispersed from the region IX to IV.  310 

As to the distribution of Biomphalaria in South America (cf. Teles et al., 1991; Teles, 311 

1996; Scholte et al., 2012), and especially with reference to B. glabrata, B. tenagophila, and B. 312 

straminea –natural propagators of schistosomiasis– along with B. peregrina, various authors have 313 

proposed that the patterns observed could be attributed to, among other causes, a competitive 314 

exclusion or displacement among themselves. For this reason, their ecological functionality in the 315 

face of certain adverse aspects of their local environment could be considered critical for their 316 

development at a given site, such as their inherent resistance to draught and their tolerance to 317 

extremes in temperature (Tuan et al., 2012). This same argument may be advanced for B. 318 

peregrina. When the results of studies along those lines worldwide are analyzed (cf. Barbosa, 319 

1973, 1987; Michelson & Dubois, 1979; Monteiro & Ferreira Dias, 1980; Luz et al., 1982; 320 

Olazarri, 1984, Barbosa et al., 1984, 1985, 1993), the conclusion can be drawn that, in general, B. 321 

straminea and B. tenagophila prove to be species that are more competitively aggressive than B. 322 

glabrata (better IH and also more susceptible to parasitosis by S. mansoni). On the contrary, B. 323 

peregrina –it only a potential host– could be competitively displaced by all three of the other 324 

species. If, however, we restrict the analysis along these lines to the degree of competitiveness 325 

and aggressiveness that the four species could manifest with respect to each other within the 326 

Argentine southern cone, we could infer the possibility that B. tenagophila and B. straminea have 327 
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obstructed the southern dispersion of B. glabrata, along with other influences. In the same way, 328 

those two more aggressive species have been able to displace B. peregrina toward a southward 329 

direction since the latter would apparently be a species better adapted to subtropical or temperate 330 

climates – just as these present results would suggest, where the environmental variables that 331 

most greatly influenced the potential-distribution model were the coldest temperatures. 332 

Each species of Biomphalaria that is a natural or potential host for S. mansoni consists in 333 

populations that exhibit varying degrees of susceptibility to different local strains of the parasite 334 

(Paraense & Côrrea, 1973, 1978, 1985; Coelho et al., 2004; Simões et al., 2013; Marques et al., 335 

2014). The susceptibility to S. mansoni has been shown to be heritable and linked to the gene 336 

pool of the IHs, each of which –according to its capability for reproduction through cross- or self-337 

fertilization– produces progeny with differing degrees of parasitotrophic susceptibility (Newton, 338 

1953; Richards & Merritt, 1972; Richards, 1973, 1975; Coelho et al., 2004). As mentioned above 339 

in Results under the investigation of the genetic variability of B. peregrina, the haplotypes were 340 

found to be bifurcated into two, those from tropical areas and those inhabithing the southern cone 341 

of South America, where the climate goes from subtropical to temperate in the Patagonian region 342 

to the south. These results are highly relevant since Paraense & Côrrea (1973) demonstrated 343 

experimentally that populations of B. peregrina from Lapa of Paraná (in Brazil), and Chillogallo 344 

(in Ecuador) are markedly susceptible to infection with the BH (Belo-Horizonte) and SJ (San-345 

Jose) strains of S. mansoni, though these B. peregrina strains have not yet been found to be 346 

infected in the wild. Although the susceptibility to different strains of S. mansoni of populations 347 

of B. peregrina that inhabit subtropical or temperate areas have still not been evaluated, other 348 

Biomphalaria species such as B. tenagophila and B. straminea in the northeast of Argentina have 349 

indeed been found to serve as IHs (Borda & Rea, 1997; Simões et al., 2013). Moreover, as has 350 

been demonstrated for other species of snails, variable rates of infection exist among populations 351 

that do not depend on the species’ geographical origin, but rather on their genetic diversity 352 

(Mohamed et al., 2012 and references therein). In fact, Carvalho et al. (2001) had observed that 353 

the genetics of the snail host may be even more influential on the epidemiology of 354 

schistosomiasis than those of the parasite itself. Because of this possibility, new studies on the 355 

susceptibility and genetic variation of diverse variants and morphotypes of B. peregrina are 356 

needed involving populations that contain the haplotypes identified here as subtropical and 357 

temperate. For example, those individuals characterized within the snails at the Pinturas River, 358 
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for their part, presented morphologic similarities to a morphotype of B. peregrina registered in 359 

Mina Gerais, Brazil; but that Brazilian variant, in contrast, was demonstrated experimentally to 360 

not be susceptible to parasitism by S. mansoni (Paraense & Deslandes, 1956). Thus, 361 

determinations of this nature are fundamental for delineating the potential area of occupation of 362 

B. peregrina and obtaining a more realistic approximation of the corresponding potential zone of 363 

occupation of populations susceptible to parasitism, which information could be associated with 364 

the possible appearance of foci of infection and a southward dispersion of the endemium. 365 

With respect to region, B. peregrina has a relatively high incidence of parasitism by 366 

digenean species, i.e. at least 25 taxa from 7 families (Flores et al., 2010 and references therein). 367 

If we consider the current distribution of the Schistosomatidae in South America (Fernández et 368 

al., 2013; Ostrowski de Núñez & Hamann, 2013), in general the majority of the schistosome 369 

cercariae have thus far been restricted to the northeast of Argentina, which region presents 370 

hydrologic and climatic conditions similar to those of the south of Brazil. The registers of these 371 

parasites have, however, reached more southern locations; namely, in the Quequén River (38° 32' 372 

S; 58° 42' W) in the southeast of the Buenos Aires province between the Tandilia and Ventania 373 

mountains, where the mean annual temperature registered between 1961 and 1990 was 14 ºC 374 

(Kruse et al., 1997). Along these lines, schistosome cercariae have been described for Argentina 375 

that use B. peregrina as an IH: for example, Cercaria quequeni Szidat, 1951 and Cercaria 376 

planorbicola Szidat & C. de Szidat, 1960 (Fernández et al., 2013). Moreover, C. planorbicola is 377 

similar to Furcocercaria sp. XVIII, but uses B. straminea as an IH (Fernández et al., 2013). 378 

Specimens of this Furcocercaria sp. XVIII were collected in a rice field in the Corrientes 379 

province and were found to be rare species; being present only in March (during a survey period 380 

from December 2010 through May 2011), which monthly temperatures ranged from 19.5 to 30.5 381 

°C (mean value, 24.3 ± 4.5 ºC). In accordance with the results from our model, the mean 382 

temperature of the coldest quarter (bio11), the minimum temperature of the coldest month (bio6), 383 

and the annual mean temperature (bio1) were the variables that most strongly influenced the 384 

development of the potential-distribution model for B. peregrina. Thus, the low temperatures of 385 

southern Patagonia very likely acted as a climatic barrier that functioned negatively in the 386 

survival of the free-living schistosome stages, the miracidia and cercariae; but not in the 387 

dispersion of the IHs, and especially B. peregrina. 388 
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Finally, as mentioned above, further reserch is still needed for a better understanding of 389 

the evolutionary history, ecology, parasitic susceptibility, and genetic variarion among the 390 

potential IHs of S. mansoni in South America, such as B. peregrina; which species is 391 

comparatively underrepresented in current research on planorbid snails despite its wide 392 

distribution in South America, as indicated by the evidence of the record of the new population 393 

described here in southern Patagonia. 394 

 395 
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TABLES 742 

Table 1. Information on the samples used in the phylogenetic reconstruction of Biomphalaria peregrina.  743 

Sample Geographical origin Voucher # GenBank accession # Reference 
   COI 16S-rRNA  

B. tenagophila** Mogi das Cruzes, São Paulo, Brazil LBMSU547 KF926202 KF892001 Tuan et al. (2013)* 
Tuan & Palasio (2013)* 

B. pfeifferi** Abu Usher, Sudan – DQ084835 DQ084857 Jørgensen et al. (2007) 
B. peregrina      
 Pinturas River, Santa Cruz, Argentina MLP-Ma14186 KY124272 KY124273 This work 
 Agua Escondida, Mendoza, Argentina – GU168593 GU168591 

GU168592 
Standley et al. (2011) 

 La Plata, Buenos Aires, Argentina UCH La Plata1 JN621901  JF309030 Collado et al. (2011) 
Collado & Méndez (2012)    UCH La Plata2 JN621902 JF309031 

  UCH La Plata3 JN621903 JF309032 
 Rancharia, São Paulo, Brazil LBMSU584 KF926176 – Tuan et al. (2013)* 
 Bagé, Rio Grande do Sul, Brazil LBMSU663 KX354439 – Palasio & Tuan (2016)* 
 Ipaussu, São Paulo, Brazil LBMSU761 KX354440 – Palasio & Tuan (2016)* 
  LBMSU756 KX354441 – Palasio & Tuan (2016)* 
  LBMSU755 KX354442 – Palasio & Tuan (2016)* 
  LBMSU338 – KF892035 Tuan & Palasio (2013)* 
 Ourinhos, São Paulo, Brazil LBMSU747 KX354443 – Palasio & Tuan (2016)* 
  LBMSU739 KX354444 – Palasio & Tuan (2016)* 
  LBMSU300 – KF892034 Tuan & Palasio (2013)* 
 Martinópolis, São Paulo, Brazil LBMSU582 KF926180 – Tuan et al. (2013)* 
  LBMSU581 KX354445 KF892036 Palasio & Tuan (2016)* 

Tuan & Palasio (2013)* 
 Nova Lima, Minas Gerais, Brazil – – AY030232 DeJong et al. (2001) 
 San Antonio, Uruguay – – AY030231 DeJong et al. (2001) 

 744 

*GenBank unpublished sequences: the sequence author and submission year are indicated. **Outgroup species. LBMSU, 745 

Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias do Estado de São Paulo, Brazil; 746 

MLP, Museo de La Plata, Argentina; UCH, Universidad de Chile, Chile.  747 
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Table 2. Sources of Biomphalaria peregrina occurrences in South America used in the distribution model. 748 

Country Occurrences Sources consulted* 
Argentina 343 d’Orbigny (1835); Paraense (1966); Bonetto et al. (1990); Castellanos & Miquel (1991); Rumi 

(1991); Rumi et al. (1996); Rumi et al (1997); Flores & Brugni (2005); Rumi et al. (2006, 2008); 
Ciocco & Scheibler (2008); Standley et al. (2011) 
Malacological collections: CECOAL; IFML; FIOCRUZ; MACN; MLP 
 

Bolivia  8 Paraense (1966) 
Malacological collections: MACN 
  

Brazil 241 Paraense (1966); Teles et al. (1991); Prando & Bacha (1995); De Jong et al. (2001); Pepe et al. 
(2009) 
Malacological collections: FIOCRUZ 
Websites: GenBank; WMSDB 
 

Chile 24 Dunker (1848); Biese (1951); Barbosa et al. (1956) 
Malacological collections: FIOCRUZ; MACN 
 

Colombia 1 Website: WMSDB 
 

Ecuador 12 d’Orbigny (1835); Cousin (1887); Paraense (1966, 2004) 
Malacological collections: FIOCRUZ 
Website: WMSDB 
 

Paraguay 29 In Quintana (1982): Paravicini (1894); Bertoni (1925); Schade (1965); Russel (1972); Moreno 
González (1981)  
Malacological collections: MACN 
 

Peru 6 Paraense (2003) 
Malacological collections: FIOCRUZ 
Website: WMSDB 
  

Uruguay 23 Paraense (1966); De Jong et al. (2001); Scarabino (2004) 
Malacological collections: FIOCRUZ; MACN 
Website: GanBank; WMSDB 
 

Venezuela 2 Website: WMSDB 
 749 

*CECOAL, Centro de Ecología Aplicada del Litoral; FIOCRUZ, Fundação Oswaldo Cruz; IFML, Instituto Fundación Miguel 750 

Lillo; MACN, Museo Argentino de Ciencias Naturales; MLP, Museo de La Plata; WMSDB, Worldwide Mollusc Species Data 751 

Base  752 
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Table 3. Variables used in the model development. Temperatures are expressed in ºC*10, precipitations in 753 

mm, elevation above sea level in m, and flow accumulation in number of cells.  754 

Variable  Description 
alt  Altitude 
bio1  Annual mean temperature 
bio2  Mean diurnal range (monthly mean, T° max-T° min) 
bio3  Isothermality (bio2/bio7) x 100 
bio4  Temperature seasonality (standard deviation x 100) 
bio5  Maximum temperature of warmest month 
bio6  Minimum temperature of coldest month 
bio7 Temperature annual range (bio5-bio6) 
bio8 Mean temperature of wettest quarter 
bio9 Mean temperature of driest quarter 
bio10 Mean temperature of the warmest quarter 
bio11  Mean temperature of coldest quarter 
bio12  Annual precipitation 
bio13  Precipitation of wettest month 
bio14  Precipitation of driest month 
bio15  Precipitation seasonality (coefficient of variation) 
bio16  Precipitation of wettest quarter 
bio17  Precipitation of driest quarter 
bio18  Precipitation of the warmest quarter 
bio19 Precipitation of the coldest quarter 
acc Flow accumulation 
dir Flow direction 
con Hydrologically conditioned elevation 

  755 
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Table 4. Genetic distances among COI haplotypes of Biomphalaria peregrina. The distances are listed as 756 

uncorrected (below the diagonal) and corrected by the Kimura’s two parameter substitution model (above 757 

the diagonal). 758 

 H1 H2 H3 H4 H5 H6 GenBank accession numbers* 
H1 – 0.001834 0.003676 0.026321 0.032147 0.032147 H1: KY124272; GU168593 
H2 0.001831 – 0.005525 0.028256 0.034104 0.034104 H2: JN621901; JN621902; JN621903 
H3 0.003663 0.005494 – 0.030198 0.036068 0.036068 H3: KX354439 
H4 0.025641 0.027472 0.029304 – 0.012987 0.012987 H4: KF926176; KF926180; KX354445 
H5 0.031135 0.032967 0.034798 0.012820 – 0.011116 H5: KX354441 
H6 0.031135 0.032967 0.034798 0.012820 0.010989 – H6: KX354443; KX354444 
 759 

*References to the sequences are provided in Table 1.  760 
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FIGURES 761 

 762 

Figure 1. External shell morphology and radula of Biomphalaria peregrina from the 763 

Pinturas River, Argentina. Panel A: Right, left, and ventral views. Panels B–D: Detail of the 764 

rachidian or central (CT) and lateral teeth (LT); ec, ectocone; en, endocone; me, mesocone. Panel 765 

E: Detail of marginal teeth. 766 
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 767 

Figure 2. Bayesian tree of Biomphalaria peregrina based on the partial COI gene. The 768 

bootstrap values for the NJ, MP, ML trees and posterior-probability values for BI are shown 769 

above and below the branches. The numbers within parentheses are GenBank-accession numbers. 770 

The geographical distribution of the localities sampled and the haplotypes (H) is shown. The 771 

literature references to the sequences are given in Table 1. 772 
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 773 

Figure 3. Bayesian tree of Biomphalaria peregrina based on the partial 16S-rRNA gene. The 774 

bootstrap values for the NJ, MP, ML trees and posterior-probability values for BI are shown 775 

above and below the branches. The numbers within parentheses are GenBank-accession numbers. 776 

The geographical distribution of the localities sampled is shown. The literature references to the 777 

sequences are given in Table 1. 778 
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 779 

Figure 4. Distribution of Biomphalaria peregrina in South America. Panel A: Records of the 780 

snail’s presence used in the modelling approach, with the southernmost record being from the 781 

Pinturas River, Argentina, as indicated by a yellow star. Panel B: Potential distribution in logistic 782 

format. The color code for location suitability and thus probability of the snail’s presence: red, 783 

very high; yellow, high; azure, moderate; blue, low. 784 

PeerJ reviewing PDF | (2016:12:15126:0:1:NEW 18 Dec 2016)

Manuscript to be reviewed



34 

 

 785 

Figure 5. Relative influence of the environmental variables for the potential distribution of 786 

Biomphalaria peregrina in South America. Panel A: Jackknife test determining the contribution 787 

of each environmental variable to the development of the model. In the figure, the regularized 788 

training gain is plotted on the abscissa for each of the variables indicated on the ordinate. Color 789 

code: gray, without a variable; blue, with only a single variable; red, with all variables. Panel B: 790 

Marginal-response curves for the four strongest environmental predictors. In each of the figures, 791 

the logistic output, a measure of the probability of presence, is plotted on the ordinate for—from 792 

the upper to the lower figure – the mean temperature of the coldest quarter (bio11), the minimum 793 

temperature of the coldest month (bio6), the annual mean temperature (bio1), and the flow 794 

accumulation (acc). 795 
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