

A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the Eocene of Iran

Donald Davesne Corresp. 1

 $^{f 1}$ Department of Earth Sciences, University of Oxford, Oxford, United Kingdom

Corresponding Author: Donald Davesne Email address: donald.davesne@earth.ox.ac.uk

Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged horn-like crest on the forehead. They are poorly represented in the fossil record, by only three described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil lophotid †*Protolophotus*, it is proposed hereby as a new genus and species. †*Babelichthys olneyi*, gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly projecting crest, suggesting a close relationship with the modern unicorn crestfish, *Eumecichthys*. This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs, improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic ecosystems.

- A fossil unicorn crestfish (Teleostei, Lampridiformes, Lophotidae) from the
- 2 Eocene of Iran

- 4 Donald Davesne 1
- ¹Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN Oxford,
- 6 United Kingdom
- 7 e-mail address: donald.davesne@earth.ox.ac.uk

ABSTRACT

9	Lophotidae, or crestfishes, is a family of rare deep-sea teleosts characterised by an enlarged
LO	horn-like crest on the forehead. They are poorly represented in the fossil record, by only three
l1	described taxa. One specimen attributed to Lophotidae has been described from the pelagic fauna
12	of the middle-late Eocene Zagros Basin, Iran. Originally considered as a specimen of the fossil
13	lophotid †Protolophotus, it is proposed hereby as a new genus and species. †Babelichthys olneyi,
L4	gen. et sp. nov., differs from the other fossil lophotids by its relatively long and strongly
15	projecting crest, suggesting a close relationship with the modern unicorn crestfish, Eumecichthys.
16	This new taxon increases the diversity of the deep-sea teleost fauna to which it belongs,
L7	improving our understanding of the taxonomic composition of the early Cenozoic mesopelagic
18	ecosystems.

INTRODUCTION

<u>. 1</u>	Lampitunorms are strange spiny-rayed teleosis, round in mesoperagic environments in every
22	ocean of the world (Olney, Johnson & Baldwin, 1993; Olney, 2002). Their most famous
23	representatives are the endothermic opah (Lampris guttatus) and the gigantic, serpentine oarfish
24	(Regalecus glesne), the longest known teleost. Along with these iconic taxa, lampridiforms
25	include equally weird ribbon-like and elongate animals, characterized by a silver-coloured skin
26	and long, bright red fins: the taeniosomes. The 15 to 18 extant species of the clade Taeniosomi
27	include oarfishes (Regalecidae), ribbonfishes (Trachipteridae), the tapertail (Radiicephalidae)
28	and Lophotidae, the crestfishes (Regan, 1907; Walters & Fitch, 1960; Olney, 1984; Roberts,
29	2012). Lophotids are characterized by unique structures, such as an ink gland (Walters & Fitch,
30	1960; Honma, Ushiki & Takeda, 1999) not found anywhere else in teleosts (except in the closely
31	related radiicephalids; Harrisson & Palmer, 1968). The most conspicuous osteological feature of
32	lophotids is a well-developed horn-like crest, formed by an anteriorly projecting expansion of the
33	frontal and supraoccipital bones of the cranium (Oelschläger, 1979, 1983; Olney, Johnson &
34	Baldwin, 1993). This crest is closely associated with the anterior pterygiophores supporting the
35	dorsal fin, and as a result, the dorsal fin expands over, and sometimes anterior to the cranium.
36	Lophotids are represented in modern fauna by one to three <i>Lophotus</i> species and by the unicorn
37	crestfish, Eumecichthys fiski (Walters & Fitch, 1960; Craig, Hastings & Pondella, 2004). Their
38	fossil record consists in at least three monotypic genera (Bannikov, 1999; Carnevale, 2004).
39	The present article is a revision of an anatomically distinctive fossil specimen attributed to
10	Lophotidae. Arambourg (1943, 1967) first described the specimen from a rich late Eocene fauna
11	located near Ilam, Zagros Basin, Iran. The Ilam fauna comprises numerous representatives of
12	teleost taxa such as Beryciformes, Gadiformes, Ophidiiformes and Stomiiformes, typical of the

- 43 modern deep-sea pelagic environments (Arambourg, 1967; Afsari et al., 2014; Přikryl,
- 44 Brzobohatý & Gregorová, 2016).
- The taxonomic status of the lophotid specimen studied here is currently unclear (Walters, 1957;
- Oelschläger, 1979; Bannikov, 1999), and it lacks a proper anatomical description. Given the
- 47 rarity of fossil material attributed to taeniosome lampridiforms, a detailed description and revised
- 48 taxonomy of this material is needed in order to improve our understanding of the morphological
- 49 evolution and fossil record of this peculiar group.

51

MATERIAL AND METHODS

52 Taxonomic status of the material

- The material described herein, MNHN.F.EIP11 (Figs. 1, 2), was discovered during excavations
- near Ilam (Zagros Basin, Western Iran) by Camille Arambourg in 1938-1939. The specimen was
- chosen to be the paratype of †Lophotes elami (Arambourg, 1943), along with the holotype
- 56 MNHN.F.EIP10 (Fig. 3). On the basis of osteological differences from extant lophotids, such as
- 57 the well-ossified pelvic girdle in a ventral position observed in the holotype of †Lophotes elami,
- Walters (1957) assigned it to a distinct new genus †*Protolophotus* (Fig. 3). Oelschläger (1979)
- later proposed that MNHN.F.EIP11 differs sufficiently from MNHN.F.EIP10 to be classified in a
- 60 different genus. He related the specimen to the extant *Eumecichthys* and gave it the name
- †'Protomecichthys'. However, the genus †'Protomecichthys' lacks both a designated type species
- and a formal description. Thus, it fails to meet the requirements of Article 13.3 of the
- 63 International Code of Zoological Nomenclature (International Commission on Zoological
- Nomenclature, 1999) and should be considered a *nomen nudum* (Bannikov, 1999).

66 Comparative material

- † Eolophotes lenis, PIN 1413/86; Eumecichthys fiski, USNM 164170 (radiographs); Lophotus
- 68 lacepede, NHMUK 1863.8.27.1 (radiographs); †Oligolophotes fragosus, PIN 3363/121;
- 69 †*Protolophotus elami*, MNHN.F.EIP10.

70

71

Nomenclatural acts

- 72 The electronic version of this article in Portable Document Format (PDF) will represent a
- 73 published work according to the International Commission on Zoological Nomenclature (ICZN),
- and hence the new names contained in the electronic version are effectively published under that
- 75 Code from the electronic edition alone. This published work and the nomenclatural acts it
- contains have been registered in ZooBank, the online registration system for the ICZN. The
- 77 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
- 78 through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The
- 79 LSID for this publication is: urn:lsid:zoobank.org:pub:B677BA4F-CCF4-4678-A8A8-
- 502F059704D2. The online version of this work is archived and available from the following
- 81 digital repositories: PeerJ, PubMed Central and CLOCKSS.

82

83

Methods

- 84 The specimen was examined with a stereomicroscope equipped with a camera lucida drawing
- arm. The interpretative drawing was produced with Adobe Illustrator CS6 from the camera
- lucida drawings and from photographs. Measurements were taken with a compass or with the
- 87 software ImageJ 1.5 from radiographs; angles were also measured with ImageJ. The method for
- 88 estimating the degree of projection of the crest is modified from Craig, Hastings & Pondella

89	(2004): it is based on the angle between the straight line from the tip of the crest to the proximal
90	end of its anterior margin (instead of the tip of the upper jaw, due to varying jaw positions in
91	fossils) and the vertical line drawn perpendicular to the main axis of the parasphenoid (instead of
92	the vertebral column, not preserved in MNHN.F.EIP11). The relative length of the crest is the
93	ratio between the crest length (distance between the tip of the crest and the proximal end of its
94	anterior margin) and the head length without the crest (from the anterior margin of the ethmoid
95	region to the posterior margin of the neurocranium). All extinct taxa are indicated with a dagger
96	(†).
97	
98	RESULTS
99	Systematic palaeontology
100	TELEOSTEI Müller, 1845
101	ACANTHOMORPHA Rosen, 1973
102	Order LAMPRIDIFORMES Goodrich, 1909
103	Suborder TAENIOSOMI Gill, 1885
104	Family LOPHOTIDAE Bonaparte, 1845
105	Genus † Babelichthys gen. nov.
106	urn:lsid:zoobank.org:act:86986E5E-5FFF-465D-A987-E475FBF02966
107	(Figs. 1, 2)
108	
109	Etymology. Hellenization of the name of the "Babel fish", the teleost-like, ear-dwelling, polyglot
110	extra-terrestrial species from Douglas Adams' 1979 book <i>The Hitchhiker's Guide to the Galaxy</i> ,
111	in reference to the very peculiar, almost alien-like, appearance of the genus.

Type and only species. †*Babelichthys olnevi*, sp. nov. 112 **Diagnosis.** A lophotid differing from † *Eolophotes*, *Lophotus*, † *Oligolophotes* and 113 †Protolophotus by the relatively longer, strongly projecting crest; and from Eumecichthys by the 114 relatively shorter, deeper and less strongly projecting crest, with strongly expanded anterior 115 dorsal-fin pterygiophores. 116 117 †Babelichthys olnevi sp. nov. 118 urn:lsid:zoobank.org:act:D2540D1F-F169-40DE-B910-7302810615E7 119 (Figs. 1, 2) 120 121 1943 †Lophotes elami Arambourg, p. 287, pl. X, fig. 1 122 1957 †*Protolophotus elami* Walters, p. 60 123 1967 †Protolophotes elami Arambourg, pl. VI, fig. 1 124 1979 †Protomecichthys sp. Oelschläger, p. 354, fig. 11 (nomen nudum) 125 126 Holotype. MNHN.F.EIP11d/g, almost complete articulated cranium and anterior portion of the 127 128 dorsal fin, in part and counterpart (Figs. 1, 2). This is the only specimen known for the genus and species. 129 130 **Etymology.** Species named in honour of the late John E. Olney, in recognition of his work on the 131 anatomy and ontogeny of Lampridiformes. Type locality and horizon. Near Ilam, Zagros Basin, Western Iran. This teleost fauna, part of 132 the Pabdeh Formation, was erroneously aged Cretaceous by Priem (1908), and Rupelian 133

134	(Oligocene) by Arambourg (1943, 1967). It is more accurately middle to late Eocene in age
135	(Afsari et al., 2014; and references therein).
136	Diagnosis . As for the genus.
137	
138	Anatomical description
139	MNHN.F.EIP11 consists only of the head of the animal, along with the associated anterior
140	portion of the dorsal fin. The specimen is mostly articulated, except for the left ventral portion of
141	the hyoid arch that is upturned and preserved ventral to the rest of the cranium. The limits of
142	most bones are poorly preserved, probably due to their low degree of mineralization in life as is
143	the case in modern taeniosome lampridiforms.
144	
145	Measurements
146	Total head length: 104 mm; head length (without the crest): 44 mm; crest length (anterior
147	margin): 51.5 mm; head depth: 25.5 mm; orbit diameter: 23 mm.
148	
149	Neurocranium
150	The neurocranium of MNHN.F.EIP11 is highly modified. The frontal develops a dorsal lamina
151	that projects anterior to the jaws. Throughout approximately its anterior half, it is in contact with
152	an enlarged laminar process of the supraoccipital, delimited dorsally by a strong supraoccipital
153	spine. Together, they form a conspicuous "crest", long and strongly projecting anteriorly (at an
154	angle of 64.5°). Alone, the crest contributes to 58% of total head length.
155	The frontal makes up approximately 60% of the anterior margin of the crest. Both the frontal and
156	the supraoccipital show radial ornamentation on the crest; it radiates from the posterior end of

the frontaland the distal tip of the supraoccipital. The supraoccipital spine borders the dorsal margin of the bone, narrowing towards the tip.

The ethmoid region is poorly preserved, with an enlarged probable lateral ethmoid hiding the mesethmoid. An enlarged lachrymal is nested in the antero-ventral corner of the orbit; it is parallel to the parasphenoid ventrally, and curves dorsally along the edge of the lateral ethmoid. The orbitosphenoid runs along the dorsal margin of the orbit and has a conspicuous process pointing ventrally. The posterior wall of the orbit is delimited ventrally by a robust and straight basisphenoid. Otherwise, the sphenoid, otic and occipital regions are too poorly preserved to distinguish the individual bones. The parasphenoid is robust and slightly curves dorsally at its anterior end. The junction between the parasphenoid and the vomer is not discernable. There is no evidence of vomerine teeth.

Jaws

The premaxilla is relatively small, with a well-developed ascending process, and a barely visible alveolar process. The maxilla bears a conspicuous and pointed process at its antero-dorsal end. The posterior end is expanded dorsoventrally, forming a rounded lamina. Neither the premaxilla nor the maxilla bear visible teeth. There is no evidence of a supramaxilla. The anterior margin of the dentary, slightly concave and bearing no visible teeth, forms a strong angle with the ventral margin. The posterior margin of the dentary forms an interosseous space with the anguloarticular, which is mostly hidden by overlaying bones.

Suspensorium and hyoid arch

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

Only the proximal, single-headed articulation of the hyomandibula is clearly visible; the distal end of the bone seems to be preserved in close association with the metapterygoid. The latter is roughly triangular and is one of the best preserved bones of the suspensorium. The symplectic is rod-like, narrows slightly anteriorly and inserts in a notch on the postero-ventral margin of the quadrate. The triangular quadrate bears an antero-ventral condyle that articulates with the anguloarticular. The anterior portion of the suspensorium is poorly preserved, and it is difficult to outline the limits of the endopterygoid, ectopterygoid and palatine bones. The dorsal and posterior portions of the endopterygoid are preserved, suggesting that the bone forms two laminae, the dorsal one along the parasphenoid, and the ventral one contacting both the quadrate and the metapterygoid. Both the left and right ventral hyoid arches are visible. One is preserved in life position: its posterior end overlaps the operculum, but its dorsal margin is hidden by the lower jaw, suggesting it corresponds to the right ventral hyoid arch. The left one is displaced and upturned, and lies ventral to its counterpart. The posterior ceratohyal is triangular and articulates with the anterior ceratohyal with an interdigitated suture. The anterior ceratohyal shows a strong ventral concavity at midlength; its dorsal margin is much less concave. The anterior end of the anterior ceratohyal forms a rounded condyle, over which the curved ventral hypohyal articulates. The dorsal hypohyal lies dorsally over the anterior ceratohyal. There are six branchiostegals: the anterior two are shorter and articulate with the anterior ceratohyal at the level of its ventral concavity; the four others articulate more posteriorly (due to the faint distinction between both ceratohyals, it is difficult to determine on which one they articulate); they are very long (the posteriormost being the longest) and curved posteriorly over the ventral margin of the interopercle. The branchiostegals of the left hyoid arch are disarticulated.

203

204

205

206

207

Opercular series

The preopercle is wide and angled at mid-length. The interopercle is an elongate bone rounded at its extremity that forms the ventral margin of the opercular series. It has a smooth ventral margin, closely associated with the posterior branchiostegals. The possible presence of parts of the opercle, in contact with the preopercle, is unclear.

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Dorsal fin and supports

The dorsal fin is only partially preserved, with only the most anterior pterygiophores and dorsalfin rays visible. Its most striking feature is the extremely elongated and enlarged first dorsal-fin ray, which is 10 times as wide as the more posterior fin rays (at their base and greatest width). It does not bifurcate distally, lacks any visible segmentation, and a groove runs throughout its length. A rounded splint protrudes at its anterior base; it is unclear whether it constitutes a separate dorsal-fin element or not. Fifteen other dorsal-fin rays are preserved posteriorly. Their distal end is missing in most cases, but they all seem to be of a similar length, except for the second and third dorsal-fin rays that are noticeably longer. They do not bifurcate distally, and no segmentation is clearly visible. Ten dorsal-fin pterygiophores are clearly preserved. They are strongly inclined anteriorly, which causes the dorsal fin to originate at the tip of the crest, and to run along the entire head of the animal. The first two dorsal-fin pterygiophores are greatly enlarged and in close contact with the crest. Both also show a conspicuous flange at their posterior margin. The first pterygiophore is narrow posteriorly, where it does not contact the supraoccipital, and widens in its distal end. The second one is much wider and slightly narrows at its distal extremity. It is in close contact with

the first pterygiophore throughout its entire length. The third and fourth preserved pterygiophores are in close contact with the second one throughout almost all of their lengths. The more posterior pterygiophores have a mostly straight shaft that curves slightly at its distal extremity. The most posterior ones are less inclined than the anterior ones. The proximal ends of all preserved pterygiophores converge at the same point: the base of the crest – thus they insert anterior to the (not preserved) first neural spine. The elongated and enlarged first dorsal-fin ray inserts on the first pterygiophore. It is unclear if the rays two to eight insert on pterygiophores that are mostly hidden or not preserved, or in supernumerary association with the enlarged second pterygiophore. The rays 9-16 each insert serially on a corresponding pterygiophore.

DISCUSSION

Taxonomic justification

Oelschläger (1979) proposed that MNHN.F. EIP11 is different enough anatomically from the other lophotids, fossil and extant, to justify its attribution to a new genus. Indeed, it differs from the holotype of †*Protolophotus*, found in the same geological levels, by the relative development of the crest. In MNHN.F.EIP11, the crest is projecting anteriorly with an angle of 64.5°, and the ratio between the lengths of the crest's anterior margin and of the head without the crest is of 1.17 to 1. In the holotype of †*Protolophotus*, MNHN .F.EIP10 (Fig. 3), the anterior margin of the crest is almost vertical (degree of projection: 20°), and it is relatively shorter (margin of the crest/head length without the crest: 0.67/1). MNHN.F.EIP11 also bears a much stronger first dorsal-fin ray, and its two anterior dorsal-fin pterygiophores are considerably more developed. Body size is known to affect crest size and degree of projection in extant *Lophotus* (Craig, Hastings & Pondella, 2004), which could be misleading when trying to differentiate taxa based

on morphology. However, this bias can probably be ruled out in the case of MNHN.F.EIP11 and MNHN.F.EIP10: both individuals have similar head lengths without the crest (42 and 44 mm, respectively), suggesting that they are at a similar growth stage. It then seems that classifying MNHN.F.EIP11in a different genus and species, †*Babelichthys olneyi*, is justified from a morphological point of view.

253

254

255

248

249

250

251

252

Systematic position

Babelichthys as a taeniosome lampridiform

The monophyly of Lampridiformes (excluding *Stylephorus*, sensu Nelson, Grande & Wilson, 256 2016) is well-supported by molecular phylogenetic analyses (Wiley, Johnson & Dimmick, 1998; 257 Miya et al., 2007; Betancur-R. et al., 2013; Near et al., 2013) and by numerous morphological 258 features (Olney, Johnson & Baldwin, 1993; Davesne et al., 2014, 2016; Delbarre, Davesne & 259 Friedman, 2016). Several of these character states are unambiguously found in †*Babelichthys*: 260 the premaxilla and dentary are toothless, the frontal and the supraoccipital are both involved in a 261 sagittal crest, the anterior ceratohyal forms a condyle that articulates with the ventral hypohyal, 262 263 and the first dorsal-fin pterygiophore inserts anterior to the neural spine of the first abdominal vertebra. 264 The phylogenetic studies that explore lampridiform intrarelationships with a sufficient sampling 265 all recover a monophyletic Taeniosomi (Wiley, Johnson & Dimmick, 1998; Grande, Borden & 266 Smith, 2013; Martin, 2015). The taeniosome character states found in †Babelichthys include the 267 absence of supraneurals, and anterior dorsal-fin pterygiophores that are enlarged and inclined 268 over the neurocranium (Olney, Johnson & Baldwin, 1993). †Babelichthys then clearly shows a 269 character state combination that confirms its identification as a taeniosome lampridiform. 270

D • . •	• . 1 •	T 1 1 1	
Pasitian	within	Lophotid	ΠP
1 USILIUII	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lopnom	uc

Olney, Johnson & Baldwin (1993) proposed that the enlarged supraoccipital process, projecting
anteriorly over the frontals (forming the "crest" as described herein) and supporting the first
dorsal-fin pterygiophore, is a synapomorphy of Lophotidae. Since it is not observed elsewhere in
lampridiforms, this character confirms the attribution of †Babelichthys to Lophotidae. It has to
be noted that in the yet unpublished phylogenetic analysis of Martin (2015), the monophyly of
Lophotidae is ambiguous, with one parsimonious tree finding <i>Lophotus</i> more closely related to
the other taeniosomes than to <i>Eumecichthys</i> , while in the other both genera are sister groups.
Given this ambiguity, Lophotidae is kept as a monophyletic group in this discussion.
The distinction between an almost horizontal "crest" projecting anteriorly and a more vertical
and relatively shorter "crest" distinguishes †Babelichthys from †Protolophotus (see above,
Taxonomic justification), but also from the extant <i>Lophotus</i> and the other known lophotid fossil
taxa (Table 1). Conversely, in the <i>Eumecichthys</i> specimen that is examined, the crest is strongly
projected anteriorly (angle of 72.4°) and relatively very long (Table 1). Another element is the
apparent absence of vomerine fang-like teeth in †Babelichthys (it is however possible that they
were present, but not preserved in the fossil), like in Eumecichthys, while they are present in
Lophotus (Olney, Johnson & Baldwin, 1993). Since only one specimen is available, it is
impossible to perform a thorough comparison of head morphologies at various growth stages and
between individuals. Nevertheless, it seems based on available elements that head morphology in
†Babelichthys is closer to the one observed in Eumecichthys than in Lophotus, corroborating
Oelschläger's (1979) proposition that it represents a potential fossil sister group to <i>Eumecichthys</i> .
It would then be the first known fossil unicorn crestfish. Nevertheless, † <i>Rabelichthys</i> also differs

from *Eumecichthys*: its crest is less strongly projecting and relatively shorter (Table 1).

Moreover, no other lophotid, fossil or extant, has such an extreme enlargement and expansion of the dorsal-fin pterygiophores, in particular the second one.

297

298

The taeniosome fossil record

Taeniosome lampridiforms are known by several fossil representatives. The oldest 299 unquestionable occurrences are all attributed to Lophotidae: the diminutive † *Eolophotes lenis* 300 (Fig. 4A), from the Lutetian (Eocene) of Georgia (Daniltshenko, 1962, 1980) and 301 †Protolophotus elami (Fig. 3), found in the same middle-late Eocene formation as †Babelichthys 302 (see above). An additional, younger fossil lophotid is †Oligolophotes fragosus (Fig. 4B) from the 303 early Oligocene Pshekha Formation of Adygea, northern Caucasus, Russia (Bannikov, 1999). 304 The taeniosome fossil record also includes the trachipterid †*Trachipterus mauritanicus* from the 305 306 Messinian (late Miocene) of Algeria (Carnevale, 2004), and a fragmentary possible oarfish (Regalecus) from the Pliocene of Italy (Bronzi, 2001; Roberts, 2012). There is no known fossil 307 Radiicephalidae. Finally, the small and distinctive †Bajaichthys elegans, from the Ypresian 308 309 (early Eocene) of Bolca, Italy, has been classified as a taeniosome or close relative due to its mobile jaws, elongate body and reduced caudal fin (Sorbini & Bottura, 1988; Bannikov, 2014). 310 However, it can be confidently classified in Zeiformes, another teleost clade (Davesne, 311 Carnevale & Friedman, 2017). In total, five entirely fossil species of taeniosomes are currently 312 known (four Lophotidae, one Trachipteridae), a diversity expanded by the present description of 313 †Babelichthys. 314

315

316

CONCLUSION

317	In the present paper, †Babelichthys olneyi, a new genus and species of Lophotidae from the
318	Eocene of Iran is described. Few fossil representatives of Taeniosomi, an elusive group of deep-
319	sea teleosts, are known and only one of them has been previously described in detail (Bannikov,
320	1999). †Babelichthys is potentially the only known fossil close relative of the unicorn crestfish
321	Eumecichthys. This discovery is also significant because it expands the diversity of the middle-
322	late Eocene Ilam fauna. Modern lophotids are found in mesopelagic environments (Olney, 2002),
323	so the presence of at least two representatives of the family in the fauna that is mostly composed
324	by relatives of modern deep-sea teleosts (Arambourg, 1967; Afsari et al., 2014; Přikryl,
325	Brzobohatý & Gregorová, 2016) reinforces the assumption that it represents a valuable glimpse
326	of the poorly known early Cenozoic deep-water ecosystems.
327	
328	Institutional Abbreviations
329	MNHN, Muséum national d'Histoire naturelle, Paris, France; NHMUK, Natural History
330	Museum, London, United Kingdom; PIN, Borisyak Paleontological Institute of the Russian
331	Academy of Sciences, Moscow, Russia; USNM, National Museum of Natural History,
332	Smithsonian Institution, Washington D.C., United States.
333	
334	ACKNOWLEDGEMENTS
335	The author thanks Gaël Clément (MNHN) for allowing access to the specimen of study,
336	Alexandre Bannikov (PIN) for his useful information on the lampridiform fossil record and for
337	suggesting the redescription of this specimen, as well as Giorgio Carnevale (Università degli
338	Studi di Torino) for insightful anatomical discussion. Sandra Raredon (USNM) kindly sent
339	radiographs of extant lophotids for comparison, while Lilian Cazes, Philippe Loubry (MNHN)

340	and A. V. Mazın (PIN) provided high-quality photographs of the fossil specimens. Finally, the
341	editor Jérémy Anquetin and referees Alexandre Bannikov and Dave Johnson are thanked for
342	their invaluable reviews and comments.
343	
344	REFERENCES
845	Afsari S., Yazdi M., Bahrami A., Carnevale G. 2014. A new deep-sea hatchetfish (Teleostei:
846	Stomiiformes: Sternoptychidae) from the Eocene of Ilam, Zagros Basin, Iran. Bollettino
347	della Società Paleontologica Italiana 53:27–37. DOI: 10.4435/BSPI.2014.03.
348	Arambourg C. 1943. Note préliminaire sur quelques Poissons fossiles nouveaux. Bulletin de la
849	Société Géologique de France 5:281–288.
350	Arambourg C. 1967. Résultats Scientifiques de la Mission C. Arambourg en Syrie et en Iran
351	(1938-1939). II. Les Poissons Oligocènes de l'Iran. Notes et Mémoires sur le Moyen-Orient
352	8:1–210.
353	Bannikov AF. 1999. A review of fossil Lampridiformes (Teleostei) finds with a description of a
354	new Lophotidae genus and species from the Oligocene of the Northern Caucasus.
355	Paleontological Journal 33:68–76.
356	Bannikov AF. 2014. A new genus of the family Palaeocentrotidae (Teleostei, Lampridiformes)
357	from the Oligocene of the Northern Caucasus and comments on other fossil Veliferoidei.
358	Paleontological Journal 48:624–632. DOI: 10.1134/S0031030114060021.
359	Betancur-R. R., Broughton RE., Wiley EO., Carpenter K., López JA., Li C., Holcroft NI., Arcila
360	D., Sanciangco M., Cureton JC., Zhang F., Buser T., Campbell MA., Ballesteros JA., Roa-
861	Varón A., Willis S., Borden WC., Rowley T., Reneau PC., Hough DJ., Lu G., Grande T.,
862	Arratia G., Ortí G. 2013. The tree of life and a new classification of bony fishes. <i>PLoS</i>

863	Currents Tree of Life 2013 Apr 1. DOI:
864	10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
865	Bonaparte CL. 1845. Specchio generale del sistema ittiologico. Atti della sesta Riunione degli
866	Scienziati Italiani 6:386–390.
867	Bronzi P. 2001. Regalecus cf. glesne, prima segnalazione dal Pliocene marchigiano. Fossili &
868	Fossili, Centro studi e ricerche geopaleontologici di Sigillo 2:39–42.
869	Carnevale G. 2004. The first fossil ribbonfish (Teleostei, Lampridiformes, Trachipteridae).
370	Geological Magazine 141:573–582. DOI: 10.1017/S0016756804009598.
371	Craig MT., Hastings PA., Pondella DJ. 2004. Notes on the systematics of the crestfish genus
372	Lophotus (Lampridiformes: Lophotidae), with a new record from California. Bulletin -
373	Southern California Academy of Sciences 103:57–65.
374	Daniltshenko PG. 1962. Fishes from the Dabhakan Formation of Georgia. <i>Paleontologicheskii</i>
375	Zhurnal 1:111–126.
376	Daniltshenko PG. 1980. Order Lampridiformes. Pp. 91–96 in: Iskopayemyye kostistyye ryby
377	SSSR [Fossil bony fishes of the USSR]. Trudy Paleontologicheskogo Instituta, Akademiya
878	Nauk CCCP 178.
379	Davesne D., Carnevale G., Friedman M. 2017. Bajaichthys elegans from the Eocene of Bolca
880	(Italy) and the overlooked morphological diversity of Zeiformes (Teleostei,
881	Acanthomorpha). Palaeontology 60:255–268. DOI: 10.1111/pala.12280.
882	Davesne D., Friedman M., Barriel V., Lecointre G., Janvier P., Gallut C., Otero O. 2014. Early
883	fossils illuminate character evolution and interrelationships of Lampridiformes (Teleostei,
884	Acanthomorpha). Zoological Journal of the Linnean Society 172:475–498. DOI:
885	10.1111/zoj.12166.

886	Davesne D., Gallut C., Barriel V., Janvier P., Lecointre G., Otero O. 2016. The phylogenetic
887	intrarelationships of spiny-rayed fishes (Acanthomorpha, Teleostei, Actinopterygii): fossil
888	taxa increase the congruence of morphology with molecular data. Frontiers in Ecology and
889	Evolution 4:129. DOI: 10.3389/fevo.2016.00129.
390	Delbarre DJ., Davesne D., Friedman M. 2016. Anatomy and relationships of †Aipichthys
391	pretiosus and †"Aipichthys" nuchalis (Acanthomorpha: Lampridomorpha), with a review of
392	Late Cretaceous relatives of oarfishes and their allies. Journal of Systematic Palaeontology
393	14:545–567. DOI: 10.1080/14772019.2015.1078538.
394	Gill T. 1885. Sub-order XII - Taeniosomi. In: Kingsley JS ed. <i>The Standard Natural History</i> .
395	Boston: S. E. Cassino and Co., 265–267.
396	Goodrich ES. 1909. Part IX. Vertebrata Craniata (First Fascicle: Cyclostomes and Fishes). In:
397	A Treatise on Zoology. London: Adam and Charles Black.
398	Grande T., Borden WC., Smith WL. 2013. Limits and relationships of Paracanthopterygii: A
399	molecular framework for evaluating past morphological hypotheses. In: Arratia G, Schultze
100	H-P, Wilson MVH eds. Mesozoic Fishes 5 - Global Diversity and Evolution. Munich:
101	Verlag Dr. Friedriech Pfeil, 385–418.
102	Harrisson CMH., Palmer G. 1968. On the neotype of Radiicephalus elongatus Osório with
103	remarks on its biology. Bulletin of the British Museum (Natural History) Zoology 16:187-
104	211.
105	Honma Y., Ushiki T., Takeda M. 1999. Histology of the ink tube and its associated organs in a
106	unicornfish, Eumecichthys fiskii (Lampridiformes). Ichthyological Research 46:19-25.
107	International Commission on Zoological Nomenclature. 1999. International Code of Zoological
108	Nomenclature. 4th Edition.

409	Martin JM. 2015. Phylogeny, ontogeny and distribution of the ribbonfishes (Lampridiformes:
410	Trachipteridae). PhD thesis, College of William & Mary, Williamsburg, Virginia, USA.
411	Miya M., Holcroft NI., Satoh TP., Yamaguchi M., Nishida M., Wiley EO. 2007. Mitochondrial
412	genome and a nuclear gene indicate a novel phylogenetic position of deep-sea tube-eye fish
413	(Stylephoridae). <i>Ichthyological Research</i> 54:323–332. DOI: 10.1007/s10228-007-0408-0.
414	Müller J. 1845. Über den Bau und die Grenzen der Ganoiden, und über das natürliche System
415	der Fische. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin
416	1844:117–216.
417	Near TJ., Dornburg A., Eytan RI., Keck BP., Smith WL., Kuhn KL., Moore JA., Price SA.,
418	Burbrink FT., Friedman M., Wainwright PC. 2013. Phylogeny and tempo of diversification
419	in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of
420	Sciences 110:12738–12743. DOI: 10.5061/dryad.d3mb4.
421	Nelson JS., Grande TC., Wilson MVH. 2016. Fishes of the World, Fifth Edition. Hoboken, New
422	Jersey: John Wiley & Sons.
423	Oelschläger HA. 1979. Zur funktionellen Osteologie der Lophotidae (Pisces: Teleostei).
424	Zoologische Jahrbücher 102:336–360.
425	Oelschläger HA. 1983. Vergleichende und funktionelle Anatomie der Allotriognathi (=
426	Lampridiformes), ein Beitrag zur Evolutionsmorphologie der Knochenfische.
427	Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 541:1–127.
428	Olney JE. 1984. Lampriformes: development and relationships. In: Moser HG, Richards WJ,
429	Cohen DM, Fahay MP, Kendall AW, Richardson SL eds. Ontogeny and Systematics of
430	Fishes, Special Publication Number 1, American Society of Ichthyologists and
431	Herpetologists. Lawrence, Kansas: Allen Press, 368–379.

432	Olney JE. 2002. Lophotidae, Radiicephalidae, Trachipteridae, Regalecidae. In: Carpenter KE ed.
433	The Living Marine Resources of the Western Central Atlantic. Volume 2: Bony Fishes part
434	1 (Acipenseridae to Grammatidae). Rome: Food and Agriculture Organization of the United
435	Nations, 954–959.
436	Olney JE., Johnson GD., Baldwin CC. 1993. Phylogeny of lampridiform fishes. Bulletin of
437	Marine Science 52:137–169.
438	Priem F. 1908. Poissons fossiles de Perse. <i>Annales d'Histoire Naturelle, Paléontologie</i> 1:1–25.
439	Přikryl T., Brzobohatý R., Gregorová R. 2016. Diversity and distribution of fossil codlets
440	(Teleostei, Gadiformes, Bregmacerotidae): review and commentary. Palaeobiodiversity and
441	Palaeoenvironments 96:13–39. DOI: 10.1007/s12549-015-0222-z.
442	Regan CT. 1907. On the anatomy, classification, and systematic position of the teleostean fishes
443	of the suborder Allotriognathi. Proceedings of the Zoological Society of London 1907:634-
444	643.
445	Roberts TR. 2012. Systematics, Biology and Distribution of the Species of the Oceanic Oarfish
446	Genus Regalecus (Teleostei, Lampridiformes, Regalecidae). Paris: Publications
447	Scientifiques du Muséum.
448	Rosen DE. 1973. Interrelationships of higher euteleostean fishes. In: Greenwood PH, Miles RS,
449	Patterson C eds. Interrelationships of Fishes. London: Academic Press, 397–513.
450	Sorbini L., Bottura C. 1988. <i>Bajaichthys elegans</i> , an Eocene lampridiform from Bolca (Italy).
451	Bollettino del Museo Civico di Storia Naturale di Verona 14:369–380.
452	Walters V. 1957. <i>Protolophotus</i> , a new genus of allotriognath fish from the Oligocene of Iran.

Walters V., Fitch JE. 1960. The families and genera of the Lampridiform (Allotriognath)

Copeia 1:60-61.

453

155	suborder Trachipteroidei. California Fish and Games 46:441–451.
156	Wiley EO., Johnson GD., Dimmick WW. 1998. The phylogenetic relationships of lampridiform
157	fishes (Teleostei: Acanthomorpha), based on a total-evidence analysis of morphological and
158	molecular data. Molecular Phylogenetics and Evolution 10:417–425. DOI:
159	10.1006/mpev.1998.0532.
160	
161	
162	
163	Figure captions
164	FIGURE 1. †Babelichthys olneyi, gen. et sp. nov., holotype. (A) MNHN.F.EIP11d. (B)
165	counterpart MNHN.F.EIP11g. Scale bars = 20 mm.
166	FIGURE 2. † Babelichthys olneyi, gen. et sp. nov. holotype MNHN.F.EIP11d. (A) Photograph
167	(detail of the head) and (B) interpretative drawing. Legend: achy, anterior ceratohyal; bra,
168	branchiostegal; bsp, basisphenoid; den, dentary; dfr, dorsal-fin ray; dhhy, dorsal hypohyal; dpt,
169	dorsal-fin pterygiophore; enpt, endopterygoid; fr, frontal; hyo, hyomandibula; iop, interopercle;
170	lac, lachrymal; let, lateral ethmoid; mpt, metapterygoid; mx, maxilla; osp, orbitosphenoid; pal,
171	palatine; pchy, posterior ceratohyal; pmx, premaxilla; pop, preopercle; psp, parasphenoid; qu,
172	quadrate; soc, supraoccipital; soc-sp, spine of the supraoccipital; spl, splint of the first dorsal-fin
173	ray; vhhy, ventral hypohyal; vo, vomer. Scale bar = 10 mm.
174	FIGURE 3. † <i>Protolophotus elami</i> , holotype MNHN.F.EIP10d. Scale bar = 20 mm.
175	FIGURE 4. Other fossil taxa attributed to family Lophotidae. (A) † <i>Eolophotes lenis</i> , holotype
176	PIN 1413/86; scale bar = 5 mm. (B) † Oligolophotes fragosus, holotype PIN 3363/121; scale bars
177	= 10 mm.

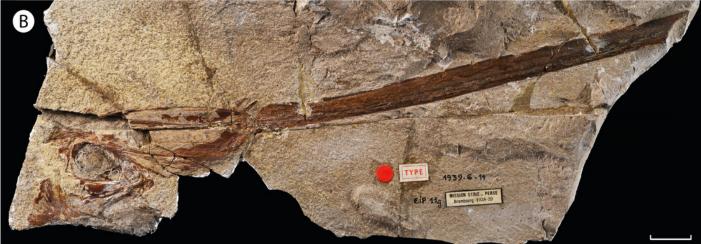


Figure 1

†Babelichthys olneyi, gen. et sp. nov., holotype.

(A) MNHN.F.EIP11d. (\mathbf{B}) counterpart MNHN.F.EIP11g. Scale bars = 20 mm.



Figure 2(on next page)

†Babelichthys olneyi, gen. et sp. nov. holotype MNHN.F.EIP11d.

Photograph (detail of the head) and interpretative drawing. Legend: achy, anterior ceratohyal; bra, branchiostegal; bsp, basisphenoid; den, dentary; dfr, dorsal-fin ray; dhhy, dorsal hypohyal; dpt, dorsal-fin pterygiophore; enpt, endopterygoid; fr, frontal; hyo, hyomandibula; iop, interopercle; lac, lachrymal; let, lateral ethmoid; mpt, metapterygoid; mx, maxilla; osp, orbitosphenoid; pal, palatine; pchy, posterior ceratohyal; pmx, premaxilla; pop, preopercle; psp, parasphenoid; qu, quadrate; soc, supraoccipital; soc-sp, spine of the supraoccipital; spl, splint of the first dorsal-fin ray; vhhy, ventral hypohyal; vo, vomer. Scale bar = 10 mm.

Figure 3

†Protolophotus elami, holotype MNHN.F.EIP10d.

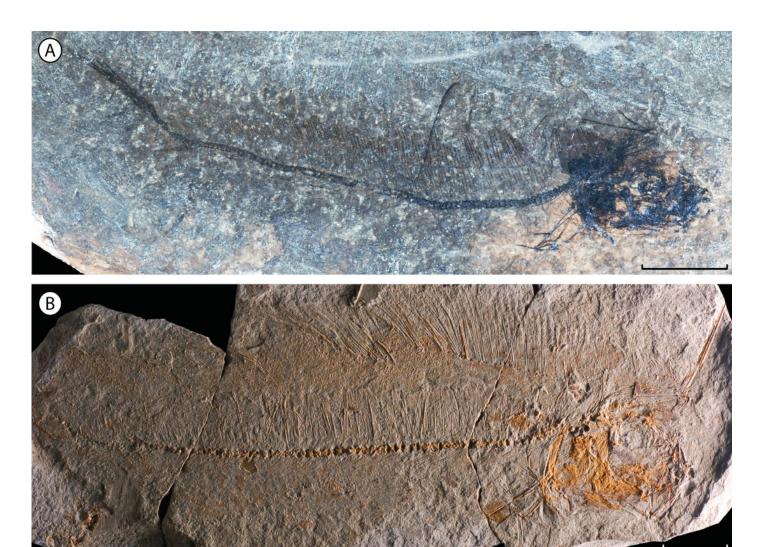

Scale bar = 20 mm.

Figure 4

Other fossil taxa attributed to family Lophotidae.

(A) † Eolophotes lenis, holotype PIN 1413/86; scale bar = 5 mm. (B) † Oligolophotes fragosus, holotype PIN 3363/121; scale bars = 10 mm.

Table 1(on next page)

Comparison between crest measurements in selected specimens of known lophotid genera.

¹ Angle (°) between the straight line from the tip of the crest to the proximal end of its anterior margin, and the line drawn perpendicular to the main axis of the parasphenoid.

² Distance (mm) between the tip of the crest to the proximal end of its anterior margin.

³ Distance (mm) between the anterior margin of the ethmoid and the posterior margin of the neurocranium

Species	Specimen studied	Projection of	Crest	Head	Crest length /
		the crest ¹	length 2	length 3	head length
†Babelichthys	MNHN.F.EIP11	64.5°	51.5 mm	44 mm	1.17/1
olneyi, sp. nov.					
†Protolophotus	MNHN.F.EIP10	20°	28 mm	42 mm	0.67/1
elami					
†Eolophotes lenis	PIN 1413/86	-17°	1.1 mm	2.1 mm	0.52/1
†Oligolophotes	PIN 3363/121	6.7°	6.8 mm	12.7 mm	0.54/1
fragosus					
Lophotus lacepede	NHMUK	25.7°	99.8 mm	108.6	0.92/1
_	1863.8.27.1			mm	
Eumecichthys fiski	USMN 164170	72.4°	26.8 mm	17.2 mm	1.55/1

TABLE 1. Comparison between crest measurements in selected specimens of known lophotid genera.

345

- ¹ Angle (°) between the straight line from the tip of the crest to the proximal end of its anterior margin and the line drawn perpendicular to the main axis of the parasphenoid.
- 7 2 Distance (mm) between the tip of the crest to the proximal end of its anterior margin.
- 8 ³ Distance (mm) between the anterior margin of the ethmoid and the posterior margin of the
- 9 neurocranium